
Towards Automated Detection of Peer-to-Peer Botnets:

On the Limits of Local Approaches∗

Márk Jelasity
University of Szeged, Hungary, and

Hungarian Academy of Sciences

Vilmos Bilicki
University of Szeged, Hungary

Abstract

State-of-the-art approaches for the detection of peer-to-
peer (P2P) botnets are on the one hand mostly local and
on the other hand tailored to specific botnets involving
a great amount of human time, effort, skill and creativ-
ity. Enhancing or even replacing this labor-intensive pro-
cess with automated and, if possible, local network mon-
itoring tools is clearly extremely desirable. To investi-
gate the feasibility of automated and local monitoring,
we present an experimental analysis of the traffic dis-
persion graph (TDG)—a key concept in P2P network
detection—of P2P overlay maintenance and search traf-
fic as seen at a single AS. We focus on a feasible sce-
nario where an imaginary P2P botnet uses some basic
P2P techniques to hide its overlay network. The simu-
lations are carried out on an AS-level model of the In-
ternet. We show that the visibility of P2P botnet traffic
at any single AS (let alone a single router) can be very
limited. While we strongly believe that the automated

detection and mapping of complete P2P botnets is possi-
ble, our results imply that it cannot be achieved by a local

approach: it will inevitably require very close coopera-
tion among many different administrative domains and it
will require state-of-the-art P2P algorithms as well.

1 Introduction

P2P botnets are a challenge to the security of the Internet
that is rather difficult to underestimate. Considering the
fact that P2P botnets have not even begun to fully uti-
lize the increasingly advanced P2P techniques for their
advantage, the future seems even more challenging.

State-of-the-art approaches for detecting P2P botnets
rely on considerable human effort: a specimen of the P2P
bot needs to be captured and reverse engineered, message
exchange patterns and signatures need to be extracted,

∗In Proc. LEET’09. USENIX, 2009.
http://www.usenix.org/events/leet09/tech/.

the network needs to be crawled using tailor-made soft-
ware, its indexing mechanism poisoned, or otherwise in-
filtrated, and a countless number of creative techniques
has to be applied such as visualizations, identifying ab-
normal patterns in DNS or blacklist lookups, understand-
ing propagation mechanisms, and so on (e.g., [3, 5, 23]).
Besides, aggressive infiltration and crawling introduces
lateral damage: it changes the measured object itself very
significantly [12].

While creative and knowledge-intensive approaches
are obviously useful, it would be important to be able
to detect and map botnets automatically, and as generi-

cally as possible. Ideally, network monitoring and filter-
ing tools installed at routers and other network compo-
nents should take care of the job with very little human
intervention based on the (often enormous volumes of)
Internet traffic constantly flowing through them.

This automation problem has been addressed in the
context of IRC-based botnets [26] and, recently, also in
the context of detecting generic botnet activity [4] and,
specifically, P2P traffic [8].

In this paper we examine how techniques presented
in [8] perform in the case of botnets. Instead of looking
at real traffic traces, we base our methodology on sim-
ulation: we define synthetic flows on top of an AS-level
model of the Internet assuming various P2P botnets. This
is necessary because our main goal is not to evaluate cur-
rent botnets, but rather to explore some advanced P2P
techniques such as localization and clustering that future

P2P botnets are likely to adopt to avoid detection.
Our main contribution is demonstrating that P2P bot-

nets can easily hide their traffic even at the largest back-
bone router if they apply a few P2P techniques that are
available from the literature or that are fairly evident,
while being able to maintain their overlay and hence their
malicious activity as well.

The implication is that local and isolated efforts are not
very promising; if we would like to protect the Internet
from P2P botnets that are likely to increase in size and
sophistication, and that are still very far from their full

potential, we need to fight fire with fire and start to devote
serious efforts to the consideration of P2P infrastructures
and algorithms for automated detection.

2 Focusing on Overlay-Related Traffic

If we want to identify and filter P2P botnet traffic in an
automated way, we can focus on roughly three kinds of
activity: propagation, attacks by the botnet, and over-
lay traffic, which involves repairing failed overlay links,
adding new nodes to the overlay, and spreading and
searching commands of the botmaster.

We argue that the most promising approach is to focus
on overlay traffic. It has a small volume, but it is ar-
guably the most regular and reliable traffic any P2P bot-
net generates, since the overlay network has to be con-
stantly repaired, and bots need regular information about
commands of the botmaster, updates, and so on.

Although the propagation of bots can be detected if
it involves port scanning and similar suspicious network
activity (e.g., [1]) bots can also spread under the radar
via email, websites, file sharing networks, ad hoc wire-
less networks, or even via the old-fashioned way by in-
fecting files on pen drives and on other portable media
that generate no network traffic at all [15, 27].

Certain “visible” attacks—such as DDos, spamming
or brute force login—could also be detected automat-
ically. In an optimistic scenario, we can immediately
identify and block those bots that participate in these at-
tacks. But this is still far from enough: P2P overlays can
apply very cheap and simple methods that can enable
them to tolerate extremely well if large portions (even
80%) of the overlay gets knocked out [10]. In addition,
certain types of malicious activity, such as collecting per-
sonal data (bank account information, passwords, etc)
can blend into (even piggyback) overlay traffic perfectly.

One interesting idea is that—instead of concentrating
just on the overlay or only on attacks—we should look
for a correlation between groups of nodes that produce
a similar flow-level behavior due to overlay traffic and
groups that perform attacks, as proposed in [4]. How-
ever, as acknowledged in [4], such correlations could be
reduced to a minimum by a sophisticated botnet.

The basic motivation of our work is that we think that
the structure of P2P networks is a very promising, al-
though difficult, target to try to detect. The structure
is completely insensitive to actual flow characteristics:
Nodes can mimic other protocols or they can behave ran-
domly, but the traffic dispersion graph they generate must
still reveal the overlay network they are organized in. Ev-
idently, this structure will have to be correlated to mali-
cious behavior as well.

Accordingly, in the rest of the paper we focus on over-
lay traffic.

3 Network Monitoring with Traffic Disper-

sion Graphs

Approaches to automated traffic classification and filter-
ing typically start from observing packets or flows and
classify them through the application of a stack of meth-
ods ranging from simple port-based filtering to sophis-
ticated supervised or unsupervised machine learning and
classification methods over packet and flow data. A sum-
mary of such methods is given in [22].

However, P2P botnet overlay traffic does not neces-
sarily look malicious or harmful (in fact in itself it is
neither), even if isolated and classified properly. It is es-
sential to be able to identify this traffic as part of a net-

work that, as such, makes it suspicious and could trigger
a warning [2].

It has already been argued that it is very difficult to de-
tect P2P traffic using packet or flow classification meth-
ods alone [7, 8]. Most of the key characteristics of P2P
traffic lie in the network defined by the flows, the so-
called traffic dispersion graph (TDG). By building and
analyzing TDGs of locally observable flow data after the
classification phase, it is possible to extract important ad-
ditional clues about the organization of an application
and, for example, label them as P2P.

In [7], the TDG is defined on top of a set of flows
S that have the usual format <srcIP, srcPort, dstIP, dst-
Port, protocol>. The TDG is the directed graph G(V, E)
where V , the set of vertices, contains the set of IPs in S,
and E, the set of edges, contains the edges (a, b) such
that there is a flow in S with srcIP = a and dstIP = b.

Since the present work intends to challenge the feasi-
bility of local methods for detecting botnets, in order to
be convincing we need to be generous to the local meth-
ods that are available for traffic classification. Therefore
we assume that traffic that belongs to a given P2P botnet

can be isolated in an unlabeled way. That is, we assume
that there are methods available to group a set of flows
together that belong to the P2P botnet, but that we can-
not determine whether the identified class of traffic is in
fact botnet traffic.

Note that this is already an extremely strong assump-
tion. We will argue that even with this assumption, it
is very difficult to identify the traffic as P2P traffic gen-
erated by a large P2P network if a P2P botnet applies
certain P2P techniques. To show this, we examine how
the P2P traffic identification approach presented in [8]
performs in this context.

4 Our P2P Overlay Model

There is a huge number of design options for P2P over-
lays [16], so selecting a suitable model that allows us
to draw conclusions on the detectability of P2P botnet
overlay traffic in general is highly non-trivial. First we

2

give a very brief bird’s-eye-view of existing overlay de-
signs, and based on this overview we propose a simple
model. Finally, we present techniques that could help a
P2P botnet to hide; we will examine these techniques in
our experiments in Section 5.

4.1 P2P Overlays

Unstructured P2P Overlays The broad class of un-

structured overlays refers to random topologies with
different degree distributions such as power-law net-
works [24] or uniform random networks [10]. They offer
no possibility for routing or key lookup, and they support
flooding, random walk, or variations of these, as search
methods. Gossip protocols are also well supported [13].

Superpeer Overlays In superpeer networks peers are
not equal: a small subset of the peers are automatically
selected as temporary servers to help functions such as
search and control [21]. Many P2P applications such
as Skype, FastTrack and Gnutella [16] apply superpeers.
Since superpeer networks are more visible, and less ro-
bust to targeted attacks, we assume that the most efficient
botnets are not likely to adopt this design.

Structured P2P Overlays Structured overlays are dis-
tributed linked data structures designed for efficient rout-
ing (ID search). Nodes have unique IDs that can be used
to address them. The overlay is organized to make effi-
cient routing to a given ID possible. All versions of these
overlays can be described as having a local structure
based on some metric (often a ring, along which the IDs
are ordered) and long range links that serve as shortcuts.
Shortcuts are typically arranged in a way that is consis-
tent with the optimal arrangement described in [14]. Cur-
rent P2P botnets are based on structured overlays such as
Kademlia [3].

4.2 Our Model

Unstructured networks are extremely robust, and, due to
their lack of structure, they can be harder to discover
as well. However, command and control operations are
more expensive; and, most importantly, communication
cannot be localized (an important technique we describe
below) since we have no structure to map on the under-
lay. Although we do not rule out unstructured networks
as a potential architecture for botnets, here we focus on
structured networks.

As a model we use an ordered ring with exponential
long range links, a simplified version of the Chord topol-
ogy [25]: We have N nodes with IDs 0, 1, . . . , N − 1.
Node i is connected to nodes i − 1 (mod N) and
i + 1 (mod N) to form the ring. In addition, node

i is connected to nodes i + 2j (mod N) for j =
1, 2, . . . , (log

2
N) − 1, which are the long range links.

It is important to make a distinction between the over-
lay and the flows that exist in the overlay. Two nodes a
and b are connected in the overlay if a “knows about” b.
This, however, does not imply that a will ever actually
send a message to b. For example, a might remember b
simply in order to increase robustness in case of a failure.
On the other hand, a node a might send a message to b
even though b is not the neighbor of a in the overlay (that
is, for the overlay to function properly, a does not need to
remember b after sending it a message). For example, in
Kademlia if a wants to find the node of ID x then a will
actually contact all nodes on the route to x. This is why
Storm bots generate so many messages locally as part of
the overlay traffic [5].

In short, we want to model the flows and not the over-
lay per se, so our model refers to the flows we can poten-
tially observe. In the actual overlay there would probably
be links to the 2nd, 3rd, etc, neighbors in the ring as well
that are learned from direct neighbors.

In the following we describe two fairly straightforward
techniques that future botnets could use to hide their traf-
fic. The key point is that, using these techniques, the
functionality of the overlay can be preserved while using
far fewer links and traversing fewer routers.

4.2.1 Clusters for Sharing Long Range Links

In the ring every node has two neighbors that it actually
communicates with at any given time, but it has log N
long range links all of which are frequently used for com-
munication to achieve as few as O(log N) hops in over-
lay routing (where N is the network size). Evidently,
the ring would be sufficient for communication but then
sending a message from a node to another random node
would require O(N) hops in expectation.

There is a middle ground: we can reduce the number
of long range links to a constant number, and still have
relatively efficient routing: O(log2 N) hops [19] or even
O(log N) hops [18].

However, let us remember that we are interested in the
flows and not the overlay. In fact, we can modify our
model to have a single long range flow per node, and still
have O(log2 N) hops for routing messages in expecta-
tion. The trick is to create clusters of log N consecutive
nodes in the ring, and allow each node to actually use
only one of its long range links. Routing proceeds as
usual: but when a node decides to send a message over
a long range link, it first has to locate the node in its
cluster that is allowed to use that link and send the mes-
sage to that node along the ring. Note that nodes that are
in the same cluster can rely on an identical set of long
range links since clusters can be interpreted as replicas
of a node in an overlay of size N/ logN .

3

Finally, we state without proof that a much simpler
stochastic approach in which we have no clustering at
all, but where each node can use only one random long
range link results in a similar routing complexity in ex-
pectation. Here a node has to look at its log N neighbors
in the ring and pick the best long range link that is al-
lowed in some of these neighbors.

In sum, from the point of view of flows all nodes now
have two ring flows (one in and one out) and two long
range flows on average (one out and one in on average).

4.2.2 Locality

We can also optimize the ring by trying to assign IDs
to nodes in such a way that the resulting ring has links
which touch the smallest possible number of routers.
Several algorithms are known for achieving such opti-
mized topologies that could be adapted to this applica-
tion, for example [9, 20].

5 Simulation Experiments

To examine the partial TDGs as seen locally from sev-
eral points of the Internet, we (i) created a static AS-level
model of the Internet topology and routing, (ii) mapped
the overlay network to this AS-level topology, (iii) and
we analyzed the local TDGs that are defined for each AS
by the set of traversing flows in our model. We will now
elaborate on these steps.

5.1 The AS-level Underlay

As our AS-level underlay we used an AS link dataset
from CAIDA [6] that we cleaned by deleting uncertain
links (around 3% of all links). We are aware of the
methodological problems with collecting AS-level links
and simulating protocols over them. However, for the
purposes of this study, the main goal was not to achieve
perfect low level realism but to capture the important
structural properties of the Internet as a complex net-
work, a level that even a good topology generator could
provide.

We calculated the shortest paths for each pair of nodes
in the topology after assuming that edges have equal
weights. As a simple model of BGP routing we assumed
that flows actually follow these shortest paths. Short-
est paths also define the betweenness centrality of each
node, that is, the number of shortest paths that touch a
given node. This is a very important metric from the
point of view of TDGs, since an AS with a high between-
ness value is likely to be able to capture a more complete
view of the TDG of the application.

The statistical properties of the AS graph have been
studied intensively (see for example [17]). Figure 1 il-
lustrates the distribution of betweenness centrality in the

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 1 10 100 1000

A
S

 b
e
tw

e
e
n
n
e
s
s
 v

a
lu

e
 (

u
n
n
o
rm

a
liz

e
d
)

AS betweenness rank

Figure 1: The power law relationship of betweenness
rank and value in our dataset. After the sharp drop at
around rank 1700, the relationship becomes exponential
(not shown).

dataset we used, which is presented because we found
the sharp switch to an exponential relationship at rank
1700 interesting.

5.2 Mapping the Overlay to the Underlay

Based on notions described in Section 4, we experiment
with two kinds of mappings: random and localized. First
we describe the common settings for these two map-
pings, and then we discuss the specifics of both.

5.2.1 Common Settings

In all our experiments the overlay contains 100,000
nodes. Note that we do not expect our results to be sen-
sitive to increasing the overlay size, since the overlay lo-
calization techniques we discussed in Section 4 essen-
tially cause the problem to depend only on the AS-level
graph.

The AS topology contains 14,630 nodes. With each
type of overlay we map the overlay nodes onto the AS
nodes in such a way that the number of overlay nodes in
each AS is proportional to the size of the AS, but each AS
has at least one overlay node. That is, in our model we do
not take into account the geographical, social, or cultural
bias that is known to affect botnet distribution [5]. The
size of an AS is approximated based on the IP-prefix-to-
AS mapping available from CAIDA1.

It is interesting to note that the size and the between-
ness of an AS seem to show no correlation, as illustrated
by the scatter plot in Figure 2.

4

 0

 2

 4

 6

 8

 10

 12

 14

 16

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

o
v
e
rl
a
y
 n

o
d
e
s
 i
n
 A

S

betweenness

Figure 2: Scatter plot of the number of overlay nodes in
an AS and the betweenness centrality of the same AS.

AS2

AS3AS4

1 2 3 4 5

678

AS1

Figure 3: Localized mapping: alignment of the overlay
ring (solid lines and circles) with the AS tour (dotted
lines and rectangles) that is output by the nearest neigh-
bor heuristic.

5.2.2 Specific Mappings

In the random mapping we assign overlay nodes to ASes
at random, keeping only size-proportionality in mind, as
outlined above.

To create a localized mapping as described in Sec-
tion 4.2.2, we first define a traveling salesperson problem
(TSP) over the AS topology and, using a simple heuris-
tic algorithm, we produce a “good enough” tour over the
ASes. Finally, we assign the overlay nodes to ASes in
such a way that the overlay ring is consistent with this
tour as illustrated in Figure 3.

We define the TSP as follows: find a permutation of
the ASes such that if we visit all the ASes exactly once in
the order given by the permutation, but assuming a closed
tour that returns to the origin, and assuming also that for
each transition from one AS to the other we follow the
shortest paths in the AS-level topology, then the sum of

the hops in the AS-level topology is minimal.
The heuristic we applied is nearest neighbor tour con-

struction [11]. We start the tour with a random AS, and
iteratively extend the tour by adding an AS that has the
smallest shortest path length among those ASes that have
not yet been visited. Ties are broken at random.

Before moving on to the analysis of TDGs, some com-
ments are in order. First, our simulation is completely
indifferent to the way a solution for the TSP problem is
generated (i.e., a P2P algorithm or some other arbitrary
heuristic method). What we would like to focus on is
what happens when the mapping is sufficiently well lo-
calized.

Second, the heuristic mapping we produce is most
likely quite far away from the optimal localization. The
actual optimal mapping is prohibitively expensive to cal-
culate since the TSP problem is NP-hard in general, and
we have a very large instance. Moreover, the definition
of the localization problem itself could be refined as well,
taking the requirements of the P2P botnet into account
more directly in the objective function, and, for example,
minimizing the sum or the maximal number of flows that
can be seen at the ASes.

For these reasons our results should be interpreted as
an upper bound on the amount of information that is
available at local nodes.

5.3 Analysis of TDGs

We experimented with four overlay models that are given
by the two kinds of mappings described in Section 5.2.2
(random and localized) with or without the clustering
technique described in Section 4.2.1.

For these models we simply collected the flows that
traverse a given AS, created the TDG, and collected
statistics. The statistics we collected were the following:
number of nodes, number of edges, number of weakly
connected components, size of largest weakly connected
component, average node degree (where we count both
incoming and outgoing connections) and finally, a met-
ric called InO, introduced in [8]. InO is the proportion
of nodes that have both incoming and outgoing connec-
tions.

The results are shown in Figure 4. The first observa-
tion we can make is that the more efficient factor for hid-
ing the overlay traffic is clustering. Recall, that the main
effect of clustering is to reduce the flows each node par-
ticipates in from O(log N) to 4 on average. The effect of
localization is significant as well, but it is less dramatic
overall. There is one exception: the largest connected
component, where localization results in a value that is
two orders of magnitude smaller for the two most central
ASes.

Let us first compare these results to those found in [8]
for existing P2P networks in real traces. There, it was
concluded that P2P traffic can be characterized by a high
InO value (larger than 1%) and a high average degree

5

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

10
7

10
8

n
u
m

b
e
r

o
f

n
o
d
e
s

betweenness

random
localized
random, clustered
localized, clustered

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
3

10
4

10
5

10
6

10
7

10
8

n
u
m

b
e
r

o
f

e
d
g
e
s

betweenness

random
localized
random, clustered
localized, clustered

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

10
7

10
8

n
u

m
b

e
r

o
f
c
o

n
n

e
c
te

d
 c

o
m

p
o
n
e
n
ts

betweenness

random
localized
random, clustered
localized, clustered

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

10
7

10
8

s
iz

e
 o

f
la

rg
e

s
t
c
o

n
n

e
c
te

d
 c

o
m

p
o
n
e
n
t

betweenness

random
localized
random, clustered
localized, clustered

 0

 20

 40

 60

 80

 100

10
2

10
3

10
4

10
5

10
6

10
7

10
8

In
O

(%
)

betweenness

random
localized
random, clustered
localized, clustered

 1

 2

 3

 4

 5

 6

 7

 8

 9

10
2

10
3

10
4

10
5

10
6

10
7

10
8

a
v
e

ra
g

e
 d

e
g

re
e

betweenness

random
localized
random, clustered
localized, clustered

Figure 4: Different characteristics of the TDG as seen from different ASes of a given betweenness.

(larger than 2.8). From this point of view, the TDGs we
observe do not classify as P2P traffic, because the aver-
age degree is extremely low: in fact less than 2 in the case
of the localized and clustered network even for the most
central ASes. It is interesting that even for the random
mapping without clustering the threshold is crossed only
at the most central ASes, although by a large margin.

On the other hand, the InO values are high. This is
simply because we did not pay any attention to deceiv-
ing this metric explicitly. The reason is that in practice

determining the direction of a flow is not very reliable,
is prone to errors and quite possible to manipulate. We
predict that the InO value could also be manipulated by
a botnet using techniques that cannot be captured by the
relatively high level model we apply that ignores flow
details and dynamics.

In addition, in [8] some applications with high InO
and low average degree have been found: one example is
FTP, where the server initiates connections to the client
as well, which further complicates detection and offers

6

the botnet other opportunities for camouflage.

Of course it is possible that other metrics could help
characterize these TDGs as belonging to a P2P network.
Let us look at the TDGs using other metrics in order to
have a more precise idea of what information is visible
locally. Out of the 200,000 edges in the overlay, even the
most central AS can see only 16,814 edges. The number
of nodes in the TDG is 24,985 which is much larger than
the number of edges: indeed, the connected components
are mostly of size 2 (pairs) and 3. There are 8,172 clus-
ters, the maximal of which contains only 29 nodes. A
visualization of the TDG that belongs to the most cen-
tral AS is shown in Figure 5. The information available
at the less central ASes is significantly less, as shown in
Figures 4 and 5. Finally, the maximal node degree we
observed in any TDG we have generated is no more than
4.

It is important to emphasize that results presented here
are based on the assumption that within one AS transit
traffic traces can be aggregated and treated in a unified
way. Although not impossible, this is a rather strong as-
sumption, especially for the most interesting ASes with
high betweenness centrality, that handle enormous vol-
umes of transit traffic. In practice, the information visible
locally could be even more fragmented.

Overall, then, we may conclude that when localization
and clustering are applied, the overlay network traffic is
almost completely hidden. A non-trivial proportion of
the traffic can be seen only at the most central ASes, but
even there, what is visible is predominantly unstructured.

6 Conclusions

Instead of looking at existing P2P botnets, we created
synthetic flow data to model the set of flows that are
available at an AS locally for observation. While it is
clear that this methodology involves a simplified model
of communication, it does allow us to get ahead of bot-
nets via experimenting with algorithms that have not yet
been deployed.

In spite of the low resolution that this methodology of-
fers, we were able to predict and analyze a real problem:
P2P overlays that are capable of efficiently and robustly
organizing and controlling a large set of bots with a min-
imal communication footprint so as to avoid automated
detection.

We hope that our results will provide non-trivial clues
concerning directions for future research in automated
botnet detection. Our results also show that we need to
fight fire with fire and develop and apply P2P technology
over large sets of cooperating administrative domains.

AS3491 (betweenness 4,460,142), random

AS3491 (betweenness 4,460,142), localized, clustered

AS174 (betweenness 48,904,554), localized, clustered

Figure 5: Visualizations of TDGs at various ASes.
AS174 had maximal betweenness in the dataset.

7

7 Acknowledgments

M. Jelasity was supported by the Bolyai Scholarship of
the Hungarian Academy of Sciences.

References

[1] CHEETANCHERI, S. G., AGOSTA, J. M., DASH, D. H.,
LEVITT, K. N., ROWE, J., AND SCHOOLER, E. M. A dis-
tributed host-based worm detection system. In Proceedings of

the 2006 SIGCOMM workshop on Large-scale attack defense

(LSAD’06) (New York, NY, USA, 2006), ACM, pp. 107–113.

[2] DAGON, D. Botnet detection and response: The network is the
infection, 2005. OARC Workshop presentation.

[3] GRIZZARD, J., SHARMA, V., NUNNERY, C., KANG, B., AND

DAGON, D. Peer-to-peer botnets: Overview and case study. In
Proceedings of the First USENIX Workshop on Hot Topics in Un-

derstanding Botnets (HotBots’07) (2007).

[4] GU, G., PERDISCI, R., ZHANG, J., AND LEE, W. BotMiner:
Clustering analysis of network traffic for protocol- and structure-
independent botnet detection. In Proceedings of the 17th USENIX

Security Symposium (Security’08) (2008).

[5] HOLZ, T., STEINER, M., DAHL, F., BIERSACK, E., AND

FREILING, F. Measurements and mitigation of peer-to-peer-
based botnets: a case study on storm worm. In Proceedings of

the 1st USENIX Workshop on Large-Scale Exploits and Emer-

gent Threats (LEET’08) (Berkeley, CA, USA, 2008), USENIX
Association.

[6] HYUN, Y., HUFFAKER, B., ANDERSEN, D., ABEN,
E., LUCKIE, M., K CLAFFY, AND SHANNON, C.
The IPv4 Routed /24 AS Links Dataset – 2008-01-02.
http://www.caida.org/data/active/ipv4_

routed_topology_aslinks_dataset.xml.

[7] ILIOFOTOU, M., PAPPU, P., FALOUTSOS, M., MITZEN-
MACHER, M., SINGH, S., AND VARGHESE, G. Network mon-
itoring using traffic dispersion graphs (TDGs). In Proceedings

of the 7th ACM SIGCOMM conference on Internet measurement

(IMC’07) (New York, NY, USA, 2007), ACM, pp. 315–320.

[8] ILIOFOTOU, M., PAPPU, P., FALOUTSOS, M., MITZEN-
MACHER, M., VARGHESE, G., AND KIM, H. Graption: Au-
tomated detection of P2P applications using traffic dispersion
graphs (TDGs). Tech. Rep. UCR-CS-2008-06080, Department
of Computer Science and Engineering, University of California,
Riverside, June 2008.

[9] JELASITY, M., AND BABAOGLU, O. T-Man: Gossip-based over-
lay topology management. In Engineering Self-Organising Sys-

tems: Third International Workshop (ESOA 2005), Revised Se-

lected Papers (2006), S. A. Brueckner, G. Di Marzo Serugendo,
D. Hales, and F. Zambonelli, Eds., vol. 3910 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 1–15.

[10] JELASITY, M., VOULGARIS, S., GUERRAOUI, R., KERMAR-
REC, A.-M., AND VAN STEEN, M. Gossip-based peer sampling.
ACM Transactions on Computer Systems 25, 3 (Aug. 2007), 8.

[11] JOHNSON, D. S., AND MCGEOCH, L. A. The traveling sales-
man problem: A case study in local optimization. In Local Search

in Combinatorial Optimization, E. H. L. Aarts and J. K. Lenstra,
Eds. John Wiley and Sons, 1997, pp. 215–310.

[12] KANICH, C., LEVCHENKO, K., ENRIGHT, B., VOELKER,
G. M., AND SAVAGE, S. The heisenbot uncertainty problem:
Challenges in separating bots from chaff. In Proceedings of the

1st USENIX Workshop on Large-Scale Exploits and Emergent

Threats (LEET’08) (Berkeley, CA, USA, 2008), USENIX Asso-
ciation.

[13] KERMARREC, A.-M., AND VAN STEEN, M., Eds. ACM

SIGOPS Operating Systems Review 41. Oct. 2007. Special is-
sue on Gossip-Based Networking.

[14] KLEINBERG, J. Navigation in a small world. Nature 406 (2000),
845.

[15] KLEINBERG, J. The wireless epidemic. Nature 449 (2007), 287–
288. News and Views.

[16] LUA, E. K., CROWCROFT, J., PIAS, M., SHARMA, R., AND

LIM, S. A survey and comparison of peer-to-peer overlay net-
work schemes. IEEE Communications Surveys and Tutorials 7,
2 (2005), 72–93.

[17] MAHADEVAN, P., KRIOUKOV, D., FOMENKOV, M., DIM-
ITROPOULOS, X., K C CLAFFY, AND VAHDAT, A. The Internet
AS-level topology: three data sources and one definitive metric.
SIGCOMM Comput. Commun. Rev. 36, 1 (2006), 17–26.

[18] MALKHI, D., NAOR, M., AND RATAJCZAK, D. Viceroy: A
scalable and dynamic emulation of the butterfly. In Proceedings

of the 21st ACM Symposium on Principles of Distributed Com-

puting (PODC’02) (2002).

[19] MANKU, G. S., BAWA, M., AND RAGHAVAN, P. Symphony:
Distributed hashing in a small world. In Proceedings of the

4th USENIX Symposium on Internet Technologies and Systems

(USITS’03) (2003).

[20] MASSOULIÉ, L., KERMARREC, A.-M., AND GANESH, A. J.
Network awareness and failure resilience in self-organising over-
lay networks. In Proceedings of the 22nd Symposium on Reliable

Distributed Systems (SRDS 2003) (Florence, Italy, 2003), pp. 47–
55.

[21] MONTRESOR, A. A robust protocol for building superpeer over-
lay topologies. In Proceedings of the 4th IEEE International Con-

ference on Peer-to-Peer Computing (P2P’04) (Zurich, Switzer-
land, Aug. 2004), IEEE Computer Society, pp. 202–209.

[22] NGUYEN, T. T. T., AND ARMITAGE, G. A survey of techniques
for Internet traffic classification using machine learning. IEEE

Communications Surveys and Tutorials 10, 4 (2008), 56–76.

[23] RAMACHANDRAN, A., FEAMSTER, N., AND DAGON, D. Re-
vealing botnet membership using DNSBL counter-intelligence.
In Proceedings of the 2nd Workshop on Steps to Reducing Un-

wanted Traffic on the Internet (SRUTI’06) (2006).

[24] RIPEANU, M., IAMNITCHI, A., AND FOSTER, I. Mapping the
gnutella network. IEEE Internet Computing 6, 1 (2002), 50–57.

[25] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F.,
AND BALAKRISHNAN, H. Chord: A scalable peer-to-peer
lookup service for Internet applications. In Proceedings of the

2001 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications (SIGCOMM) (San
Diego, CA, 2001), ACM, ACM Press, pp. 149–160.

[26] STRAYER, W. T., LAPSELY, D., WALSH, R., AND LIVADAS,
C. Botnet detection based on network behavior. In Botnet Detec-

tion: Countering the Largest Security Threat, W. Lee, C. Wang,
and D. Dagon, Eds., vol. 36 of Advances in Information Security.
Springer, 2008, pp. 1–24.

[27] WEAVER, N., ELLIS, D., STANIFORD, S., AND PAXSON, V.
Worms vs. perimeters: the case for hard-LANs. In Proceedings

of the 12th Annual IEEE Symposium on High Performance Inter-

connects (HOTI’04) (Washington, DC, USA, 2004), IEEE Com-
puter Society, pp. 70–76.

Notes

1http://www.caida.org/data/routing/

routeviews-prefix2as.xml

8

