
, , 1–16 ()
c© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Two approaches for parallelizing the UEGO algorithm *

P.M. ORTIGOSA, I. GARCı́A pilar@iron.ualm.es, inma@iron.ualm.es
Department of Computer Architecture and Electronics, University of Almerı́a, Spain.

M. JELASITY jelasity@inf.u-szeged.hu
Research Group on Artificial Intelligence, MTA-JATE, Szeged, Hungary.

Abstract. In this work UEGO, a new stochastic optimization technique for accelerating and/or parallelizing
existing search methods is described and parallelized. The skeleton of the algorithm is a parallel hillclimber.
The separate hillclimbers work in restricted search regions (or clusters) of the search space. The volume of
the clusters decreases as the search proceeds which results in a cooling effect similar to simulated annealing.
Besides this, UEGO can be effectively parallelized because the amount of information exchanged among clusters
(communication) is minimal. The purpose of this communication is to ensure that a hill is explored only by one
hillclimber. UEGO makes periodic attempts to find new hills to climb. Two parallel algorithms of UEGO have
been implemented and empirical results are also presented including an analysis of speedup.

Keywords: Global Optimization, Stochastic Methods, Parallelism, Evolutionary Algorithms.

1. Introduction

UEGO stands for Universal Evolutionary Global Optimizer. Though this method is not
’evolutionary’ in the usual sense, we have kept the name for historical reasons. The pre-
decessor of UEGO was GAS, a steady-state genetic algorithm with subpopulation support.
GAS offers a solution to the so-called niche radius problem which is a common problem
for many simple niching techniques such as fitness sharing [2, 3], simple iteration or the
sequential niching [1]. This problem is related to functions that have multiple local optima
and whose optima are unevenly spread throughout the search space. The solution of GAS
involves a ’cooling’ technique which enables the search to focus on the promising regions
of the space, starting off with a relatively large radius that decreases as the search proceeds.
For more details on GAS the reader should consult [7].

In [6] an introduction to the history, motivation behind developing UEGO and its evalua-
tion for binary problem is given.

The common part of UEGO with GAS is the species creation mechanism and the ’cooling’
method. However, the species creation and ’cooling’ mechanisms have been logically
separated from the present optimization algorithm, so it is possible to implement any kind
of optimizers that work ’inside a species’. This allows the adaptation of the method to a
large number of possible search domains using existing domain specific optimizers while
enjoying the advantages of the old GAS-style subpopulation approach. In this paper, an
algorithm called SASS, proposed by Solis and Wets ([10]), was applied as the optimizer
algorithm.

* In Franco Giannessi, Panos M. Pardalos and Tamás Rapcsák (eds): Optimization Theory: Recent Develop-
ments from Mátraháza, Applied Optimization series 59, Kluwer, 2001. This work was supported by the Ministry
of Education of Spain (CICYT TIC99-0361) and by the Tempus Structural Joint European Project.

2 P.M. ORTIGOSA, I. GARĆıA AND M. JELASITY

In the following sections the term species will be used instead of e.g. cluster, zone,
region, sub-domain, etc. This may be strange, since in evolutionary computation this term
normally refers to a population of similar individuals while here it denotes a subset of the
search domain. This is not a major problem however; a species, in our sense, is nothing else
but the set of all possible members that are similar according to some similarity measure
which is application dependent. We think that the behavior of a species to be defined later
has strong biological analogies.

1.1. Outline of the Paper

Section 2 describes UEGO; the basic concepts, the general algorithm and the theoretical
tools used to set the parameters of the system based on a few user-given parameters. Sec-
tions 3 and 4 describe two parallel algorithms and show experimental results. Section 5
then provides a short summary.

2. Description of UEGO

In this section the basic concepts, the algorithm, and the setting of the parameters are
outlined. In UEGO, a domain specific optimizer has to be implemented. Wherever we refer
to ’the optimizer’ in the paper, we mean this optimizer.

2.1. Basic Concepts

In the following part it will be assumed that the parameters of the function take values
from the unit interval. This is easy to achieve for any function via normalization. With this
assumption, some concepts (i.e. radius, attraction region) are easier to be understood.

A key notion in UEGO is that of a species. A species can be thought of as a window on
the whole search space. This window is defined by its centre and a radius. The centre is a
solution, and the radius is a positive number. Naturally, this definition assumes a distance
defined over the search space. The role of this window is to ’localize’ the optimizer, which
is always called by a species and can ’see’ only its window; so every new sample is taken
from there. This means that the largest step made by the optimizer in a given species is no
larger than the radius of the given species. If the value of a new solution is better than that
of the old centre, the new solution becomes the centre and the window is moved.

The radius of a species is not arbitrary; it is taken from a list of decreasing radii, the
radius list. The radii decrease in a regular fashion in geometrical progression. The first
element of this list is always the diameter of the search space. This allows the largest
species to always contain the whole space independently of its centre. The diameter is
given by the largest distance between any of the two possible solutions according to the
distance mentioned above. If the radius of a species is the i-th element of the list, then we
say that the level of the species is i.

During the optimization process, a list of species is kept by UEGO. The algorithm is,
in fact, a method for managing this species-list (i.e. creating, deleting and optimizing
species); it will be described in Section 2.2.

TWO APPROACHES FOR PARALLELIZING THE UEGO ALGORITHM. 3

Algorithm 1 : Description of UEGO strategy

Begin UEGO
init species list
optimize species(n[1])
for i = 2 to levels

create species(new[i]/length(species list))
fuse species(r[i])
shorten species list(max spec num)
optimize species(n[i]/max spec num)
fuse species(r[i])

end for
End UEGO

2.2. The Algorithm

Firstly, some parameters of UEGO will be dealt with; more details can be found in Sec-
tion 2.3.

As we mentioned earlier, every species has a fixed level during its lifetime. However,
species-level operators are allowed to change this level as will be described. The maximal
value for the level is given by a parameter called levels. Every valid level i (i.e. for
levels from [1,levels]) has a corresponding radius value (ri) and two integers (newi,
ni) which denote the number of function evaluations. newi is used when new species
are created at a given level while ni is applied when optimizing individual species. To
define the algorithm fully, one more parameter is needed: the maximal length of the above
species list (max spec num). The basic algorithm is shown in Algorithm 1. Now, the set
of procedures called by UEGO will be described.

Init species list. Create a species list consisting of a single species with a random
centre at level 1.

Create species(evals). For every species on the list, create random pairs of solu-
tions in the ’window’ of the species, and for every such pair take the middle of the section
connecting the pair. If the objective function value at the middle is worse than the values
of the pair, then the members of the pair are inserted in the species list. Every new inserted
species is assigned the actual level value (i in Algorithm 1).

The motivation behind this method is simple: to create species that are on different ’hills’
so ensuring that there is a valley between the new species (see Figure 1).

Naturally this is a heuristic only. In higher dimensions it is possible (in fact typical) that
many species are created even if the function is unimodal. This is an unlucky effect which
is handled by the cooling process to ensure that at the beginning the algorithm does not
create too many species capturing only the rough structure of the landscape. The parameter
of this procedure is an upper bound for the number of function evaluations. Note that this
algorithm needs a definition of section in the search space.

4 P.M. ORTIGOSA, I. GARĆıA AND M. JELASITY

C1 r1

C2 r2

Cn rn

PA

PB

PC

PD

PE

EAB

EAC

E....

PA PBEAB

C1 r1

C2 r2

Cn rn

PA ri

PB ri

Initial species-list at
level i

Final species-list at
level i

Figure 1. Species creation mechanism

C1C1 C2

Figure 2. Fusion mechanism

Fuse species(radius). If the centres of any pair of species from the species list are
closer to each other than the given radius, the two species are fused. The centre of the new
species will be the one with the best function value, while the level will be the minimum
of the levels of the original species to be fused (see Figure 2). Naturally this method does
not ensure that no species will overlap after fusion though the amount of the overlapping
regions is typically highly decreased.

Shorten species list(max spec num). Delete species to reduce the list length
to the given value. Higher level species are deleted first.

Optimize species(evals). Start the optimizer for every species with the given
evaluation number (i.e. every single species in the actual list receives the given number of
evaluations). See Section 2.1.

It is clear that if for some level i the species list is shorter than the allowed maximal
length, max spec num, the overall number of function evaluations will be smaller than
ni (see Algorithm 1, optimize species).

TWO APPROACHES FOR PARALLELIZING THE UEGO ALGORITHM. 5

Finally, let us make a remark about a possible parallel implementation. The most time-
consuming parts of the basic algorithm is the creation and optimization of the species. Note
that these two steps can be done independently for every species, so each species can be
assigned to a different processor. Notice also that a species is defined by its centre and its
level, so the amount of information used in communications is really small.

2.3. Parameters of UEGO

The most important parameters are those that depend on the level (i): the radii (ri) and
two function evaluation numbers for species creation (newi) and optimization (ni) (see
Algorithm 1). In this section a method is described that determines the value of these
parameters, using a few easy-to-understand parameters provided by the user.

We will now make use of the notation introduced in Section 2.2. The user-given param-
eters are listed below. Short notations (in brackets) that will be used in equations in the
subsequent sections are also given.

evals (N): The maximal number of function evaluations the user allows for the whole
optimization process. Note that the actual number of function evaluations may be less
than this value.

levels (l): The maximal level value (see Algorithm 1).

threshold (ν): The meaning of this parameter will be explained later.

max spec num (M): The maximal length of the species list.

min r (rl): The radius that is associated with the maximal level, i.e. levels.

The parameter setting algorithm to be described can use any four of the above five values
while the remaining parameters are set automatically.
Speed of the optimizer. Before presenting the parameter setting method, the notion of the
speed of the optimizer must be introduced. As explained earlier, the optimizer cannot make
a larger step in the search space than the current radius of the species. Furthermore, if the
centre of a species is far from the local optima, then these steps will be larger while if the
centre is already close to a local optimum then the steps will be very small. Given a certain
number of evaluations, it is possible to measure the distance the given species moves during
the optimization process assuming that the species is suboptimal. This distance can be
approximated (as a function of the radius and evaluations) for certain optimizers using ideal
landscapes (such as linear functions) with the help of mathematical models or experimental
results. This naturally leads to a notion of speed that will characterize a given domain
(assuming e.g. a linear landscape) and will depend on the species radius. Speed will be
denoted by v(r). As we will not give any actual approximations here, the reader should
refer to [7].

The parameter-setting method is based on intuitive and reasonable principles. These
principles are now described below.

Principle of equal chance. At a level, every species moves a certain distance from its
original centre due to optimization. This principle ensures that every species will receive

6 P.M. ORTIGOSA, I. GARĆıA AND M. JELASITY

the number of evaluations that is enough to make it move at least a fixed distance, assuming
that the speed of this motion is v(r). A species will not necessarily move so far but the
definition of speed is such that if the species is far from the local optima, then it will move
approximately the given distance. This common distance is defined by r1ν. The meaning
of threshold can now be given: it directly controls the distance a species is allowed
to cover, so it actually controls the probability that a species will eventually represent a
local optimum: the further a species can go, the higher the probability of reaching a local
optimum is (and the more expensive the optimization is). Recall that r1 is always the
diameter of the search space. Now, the principle can be formalized:

v(ri)ni

M
= r1ν (i = 2, . . . , l) (1)

Principle of exponential radius decreasing. This principle is quite straightforward;
given the smallest radius and the largest one (rl and r1) the remaining radii are expressed
by the exponential function:

ri = r1(
rl

r1

)
i−1

l−1 (i = 2, . . . , l). (2)

Principle of constant species creation chance. This principle ensures that even if the
length of the species list is maximal, there is a chance of creating at least two more species
for each old species. It also makes a strong simplification, namely, all the evaluations
should be set to the same constant value.

newi = 3M (i = 2, . . . , l) (3)

Decomposition of N . Let us define new1 = 0 for the sake of simplicity since new1 is
never used by UEGO. The decomposition of N results in the trivial equation

l∑

i=1

(ni + newi) = (l − 1)3M +
l∑

i=1

ni = N (4)

making use of (3) in the process. One more simplification is possible; set n1 = 0 whenever
l > 1. Note that if l = 1 then UEGO is simply the optimizer.

Expressing ni from (1) and substituting it for (4), we can write

(l − 1)3M +

l∑

i=2

Mr1ν

v(ri)
= N (5)

Using (2) as well, it is quite evident that the unknown parameters in (5) are just the user
given parameters and due to the monotony of this equation in every variable, any of the
parameters can be given using effective numerical methods, provided that the other pa-
rameters are known. Using the above principles, the remaining important parameters (ni,
newi and ri) can be calculated as well. Note, however, that some of the configurations set
by the user may be unfeasible.

TWO APPROACHES FOR PARALLELIZING THE UEGO ALGORITHM. 7

2.4. Preparing experiments

The optimizer used by UEGO was the hill climber suggested in [10] (SASS) where the
parameter ρub (maximal step size) was set to the value of the species radius from which
the optimizer is called and the accuracy of the search was set to min(ρub/103, 10−5). The
rest of parameters of the algorithm was set as the authors suggested in [10]. No fine tuning
of the parameters of the optimizer was carried out.

In [6] and [8] several experiments with test functions were made, and those experi-
ments showed that UEGO was a reliable global optimization method for finding not only
the global maximum/maxima, but also several local optima. They also allowed confir-
mation that both the clustering technique and the level-based “cooling” technique showed
some advantages over their predecessors. Comparisons to other algorithms showed that
UEGO was competitive, at least on the examined test problems.

Table 1. Set of Test Functions

Function Domain N. Optima. Refer.
F1

∑10

i=1
1

(ki·(x−ai))
2+ci

[0, 10] 8 [7]

F2
∑5

i=1
i · sin((i + 1)x + i) [−10, 10] > 20 [11]

F3 − sin(x2
1 + 2x2

2) · e−x
2

1
−x

2

2 [−3, 3]2 > 30 [11]
F4 − sin2(πy1) −

∑2

i=1
(y2 − 1)2(1 + sin2(πyi+1))

−(y3 − 1)2 where yi = 1 + (xi − 1)/4 [−10, 10]4 > 1000 [11]
F5 − sin2(πy1) −

∑3

i=1
(yi − 1)2(1 + 10 sin2(3πyi+1))

−(y4 − 1)2 where yi = 1 + (xi − 1)/4 [−10, 10]4 > 100 [11]
F6 2.5 ·

∏
n

i=1
sin(xi − π/2) +

∏
n

i=1
sin(5(xi − π/2)) [0.0, π]n > 100 [12]

F7 0.5 ·

∑
n

i=1
(xi − 2)2 [−1, 1]20 > 200 [5]

F8 0.5 ·

∑
n

i=1
(xi + 0.5)2 [−1, 1]20 > 200 [5]

F9 10 ·

∑
n

i=1
x2

i
[−1, 1]20 > 200 [5]

F10 0.5 ·

∑
n

i=1
(xi − 8)2 [−1, 1]20 > 200 [5]

F11 0.5 ·

∑
n

i=1
i(xi − 2)2 [−1, 1]20 > 200 [5]

The goal of this work is to evaluate two different parallel implementations of UEGO but
not the sequential version which is studied in [8]. Table 1 shows the set of test functions
used for evaluating both parallel versions of UEGO where the name, dimension and number
of local optima of each function can be seen. The last column shows the references where
the test functions can be found.

Due to the stochastic nature of UEGO, all the numerical results given in this work are
average values of one hundred executions.

3. Parallel Strategy: Synchronous Global Model (PSUEGO)

Regarding the parallelization of UEGO, it seems that the most convenient model is the
centralized one where a master-worker communication is required (see Figure 3). It is
interesting to remark that the most time-consuming parts of the basic sequential algorithm
is the creation and optimization of the species, therefore, these two steps can be carried out
independently for every species, so each species can be assigned to a different processor.

8 P.M. ORTIGOSA, I. GARĆıA AND M. JELASITY

Manage
lists of
species

Create &
Optimize
 Species

Create &
Optimize
 Species

Create &
Optimize
 Species

Master

Slave 1 Slave 2 Slave 3

Figure 3. Parallel Strategy: Global Model

3.1. Description of PSUEGO strategy

The first parallel strategy is a synchronous algorithm where the slave processors carry
out the creation and optimization procedures (see Figure 4), while the master processor
manages the global species list (fuse, delete, etc.).

In order to run the ”optimize” and ”create species” procedures, the slave processors
need to receive from the master processor only the two parameters of a species (i.e. its
centre and its radius), so the amount of information involved in the communication proce-
dure is quite small.

The optimize and create species procedures do not need any additional information;
each procedure depends on a species only and does not depend on other parameters or
species. For this reason, these procedures can be run independently on several slave pro-
cessors at the same time.

Algorithms 2 and 3 show a description of the master and the slave processor algorithms.
The master processor, (see Algorithm 2), initializes the species list. In this parallel ver-

sion, the init species list procedure does not create a single individual. Instead, it creates
NP individuals randomly where NP is the number of slave processors. These NP indi-
viduals will be the centres of the first NP species, which will be included in the species
list. Once the species list has been initialized, the master processor sends one species to
each slave processor, so all species can be optimized simultaneously. Later, the master
processor receives the optimized species from the slave processors and starts the iterative
optimization process. The value of the level increases in each iteration (as was prevoiusly
mentioned, levels is a user parameter that indicates the maximum number of levels).

At every iteration the master processor sends species from the species list to the slave
processors. Then, when a slave processor generates a new species list, it sends this sub-

TWO APPROACHES FOR PARALLELIZING THE UEGO ALGORITHM. 9

Slaves Slaves

C1 r1
C2 r2

Cn rn

Cj rj

Ck rk

Cl rl

OPTIMIZE

OPTIMIZE

OPTIMIZE

P1A ri
P1B ri

C1 r1
C2 r2

Cn rn

P3C ri

P3D ri

P1A ri

P1B ri

C1 r1
C2 r2

Cn rn

P3C ri

P3D ri
 Initial
species-list
 at level i

 Final
species-list
 at level i

 Optimized
species-list
 at level i

Master
Master Master

P1A
P1B
P1C
P1D

P2A
P2B
P2C
P2D

P3A
P3B
P3C
P3D

CREATE

CREATE

CREATE

Increase level

Figure 4. PSUEGO strategy

list back to the master processor. The master processor receives the sublist from a slave
processor and sends another species (if there is a species from the species list that has not
been sent yet) to the slave processor. Once the master processor has received all the sub-
lists from the slave processors, it joins (join procedure) them to the previous species list
and executes the fuse species and shorten species procedures. Then, the master processor
distributes the species among the slave processors in the same way as in the previous case.
When the master processor receives all the optimized species, it executes the fuse species
procedure and finally the level is increased starting a new iteration.

3.2. Evaluation and results of PSUEGO

For analyzing the performance of this synchronous parallel version of UEGO (PSUEGO),
the set of test functions described in Table 1 was used. All experiments were run 100
times, and results are the average value of 100 executions. Experiments were done on a
Cray T3E using up to 33 processors.

Results have been obtained by using some of the tools available at Cray T3E (PAT pro-
gram). These numerical results showed that in this parallel strategy the computational load
was not well balanced; some processors worked more than others. In addition, due to the
synchronization procedures, processors spent a large amount of time waiting for informa-
tion, so they were quite frequently idle. Table 2 shows the percentage of idle time for
every test function for several values of the number of processors. Results show that this
percentage ranges from 16% to 50%.

10 P.M. ORTIGOSA, I. GARCı́A AND M. JELASITY

Algorithm 2 : Description of MASTER PSUEGO strategy

Begin MASTER PSUEGO
init species list
SEND species to be optimized to slaves
RECEIVE optimized species from slaves
for i = 2 to levels

while there are any species not sent
SEND species (to create more new ones) to slaves
RECEIVE lists of created species from slaves

end while
join new lists to the old list of species
fuse species
shorten species list
while there are any species not sent

SEND species to be optimized to slaves
RECEIVE optimized species from slaves

end while
fuse species

end for
End MASTER PSUEGO

Algorithm 3 : Description of SLAVE PSUEGO strategy

Begin SLAVE PSUEGO
RECEIVE species from master
optimize species
SEND optimized species to master
for i = 2 to levels

while there is any species not sent in master
RECEIVE species from master
create species
SEND lists of created species to master

end while
while there is any species not sent in master

RECEIVE species from master
optimize species
SEND optimized species to master

end while
end for

End SLAVE PSUEGO

TWO APPROACHES FOR PARALLELIZING THE UEGO ALGORITHM. 11

Table 2. Percentage of idle time for PSUEGO for several processors.

Function % Idle time
NP=2 NP=3 NP=4 NP=5 NP=9 NP=17 NP=33

F1 49 34 26 20 18 23 36
F2 49 34 25 20 20 28 26
F3 49 36 27 21 18 21 38
F4 49 34 26 21 19 23 36
F5 49 35 28 21 18 21 36
F6 49 38 25 16 19 28 38
F7 49 36 27 21 18 17 35
F8 49 34 26 20 20 29 36
F9 49 33 26 20 19 16 35

F10 50 34 28 21 18 26 36
F11 49 34 26 21 18 21 33

2 3 4 5 9 17 33
No. processors

2
4

9

17

33

Sp
ee

d-
up

PSUEGO

Ideal
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11

Figure 5. Speedup of PSUEGO for the set of test functions described in Table 1

As a consequence of the unbalanced workload and the synchronization procedures, PSUEGO
does not exhibit a very good performance. This fact is shown in Figure 5, where the val-
ues of speedup versus the number of processors (NP) were depicted. The speedup for
NP processors is defined by: speedup = t1

tNP
where t1 is the execution time when the

algorithm is run, using a single processor (sequential case), and tNP is the execution time,
using NP processors.

12 P.M. ORTIGOSA, I. GARCı́A AND M. JELASITY

4. Parallel Strategy: Asynchronous Global Model (PAUEGO)

The second parallel strategy (PAUEGO) is intended to solve some of the previous problems.
In this new implementation the load has been balanced forcing the master processor to
optimize and create species while the slave processors are working. Another change is the
reduction in the number of synchronization points. Now the master processor can start to
carry out the synchronous operations over the species before receiving all the information,
so the idle time for slave processors can be considerably reduced.

4.1. Description of PAUEGO strategy

Algorithms 4 and 5 describe the master and slave strategies for PAUEGO algorithm. The
first difference from PSUEGO is in the initialization phase. Now, every slave processor has a
species initialization procedure, i.e. every slave processor chooses two or more individuals
as centres of new species to optimize. When a slave processor has optimized all its species,
it creates new species and the new species sublist is sent to the master processor. On the
other hand, the master processor only initializes a single individual as the centre of a single
species (it does not choose NP individuals like in PSUEGO), optimizes it and creates new
species. Once this new sublist has been created, the master processor is prepared to receive
any information (sublists of species) from any slave processor. If the master processor does
not receive any sublist, it begins to fuse species saved in the current list of species. This
fusion process stops when the master processor receives a sublist from a slave processor,
and goes on when no more information is received. Once the master processor has received
all sublists created by the slave processors and has applied the fuse procedure, the iterative
loop starts.

The iterative part of PAUEGO for slave processors does not have any modification com-
pared to the iterative part of PSUEGO. However, for PAUEGO, the master processor al-
ways checks the arrival of information (a newly created sublist of species or an optimized
species) from slave processors and it sends a new species on information arrival. In addi-
tion, the master processor contributes to the optimization process by creating, fusing and
optimizing species. The processes executed by the master processor are always interrupted
when new information arrives, and they are resumed later.

4.2. Evaluation and results of PAUEGO

For the analysis of the performance of PAUEGO, a set of experiments using the same set of
test functions (see Table 1), was performed.

From the experiments we can conclude that the percentage of idle time for PAUEGO
is much smaller than for PSUEGO as it can be seen in Table 3. For the asynchronous
version, the percentage of idle time is no greater than 4% (which only appears for some test
functions using up to 33 processors), while the same bound was 50% in the synchronous
case.

Another conclusion based on the results is that the computational load is much more
balanced: every processor executes a similar number of operations. Table 4 shows an

TWO APPROACHES FOR PARALLELIZING THE UEGO ALGORITHM. 13

Algorithm 4 : Description of MASTER PAUEGO strategy

Begin MASTER PAUEGO
init species list and optimize species
create species
RECEIVE a new species’s sublist from each slave
while there are any species to be received

if any slave processor has sent a sublist
RECEIVE the sublist from the slave

else fuse species
end while
for i = 2 to levels

while there are any species not sent
SEND species to slave
if any slave processor has sent a sublist

RECEIVE the sublist from the slave
else fuse species

end while
shorten species list
while there are any species not sent

SEND species to be optimized to slave
while any optimized species has been sent

optimize a not yet optimized species
fuse species

end while
RECEIVE optimized species from slave

end while
end for

End MASTER PAUEGO

example of the results achieved for test function F10 using up to 9 processors. Similar
results were obtained for all test functions and number of processors.

In Table 4, first column (PE) indicates the processor identifier number where the identi-
fier 0 corresponds to the master processor. The cycles column shows the number of cycles
consumed by each processor during the execution.The operations column shows the num-
ber of operations made by each processor. It can be seen that the differences in the number
of operations are quite small. The oper/sec column indicates the number of operation per
second, and it is directly related to the workload balance. Data in this column show that
approximately all the processors execute the same number of operations. The dcache col-
umn shows the cache misses, and the miss/sec column the average value of cache misses
per second. It can be seen from here that the master processor has much fewer misses than
the slave processors.

Figure 6 shows the speedup for PAUEGO versus the number of processors. It can be seen
that the speedup is closer to the ideal case, mainly for a small number of processors. Ap-

14 P.M. ORTIGOSA, I. GARCı́A AND M. JELASITY

Algorithm 5 : Description of SLAVE PAUEGO strategy

Begin SLAVE PAUEGO
init species list and optimize species
while there is any species to send to master

create species
SEND lists of created species to master

end while
for i = 2 to levels

while there is any species not sent in master
RECEIVE species from master
create species
SEND lists of created species to master

end while
while there is any species not sent in master

RECEIVE species from master processor
optimize species
SEND optimized species to master

end while
end for

End SLAVE PAUEGO

Table 3. Percentage of idle time for PAUEGO for several processors.

Function % idle time
NP=2 NP=3 NP=4 NP=5 NP=9 NP=17 NP=33

F1 0 1 1 2 2 3 4
F2 0 0 1 1 1 1 2
F3 0 0 1 2 2 2 4
F4 0 0 0 1 1 2 2
F5 0 1 1 0 1 1 2
F6 1 1 1 2 2 3 4
F7 0 1 1 0 1 1 2
F8 0 0 1 1 0 1 2
F9 0 0 1 1 0 1 1

F10 0 0 1 1 2 2 3
F11 0 0 1 0 1 2 2

plying PAUEGO to a problem more expensive from computation point of view, the speedup
would be better due to the overlapping of communication and computation times.

TWO APPROACHES FOR PARALLELIZING THE UEGO ALGORITHM. 15

Table 4. Results from an execution of PAUEGO for F10 test function
using up 9 processors. Processor 0 is the master processor.

PE cycles operations ops/sec dcache misses/sec
0 42368.98 2645.99 28.11 0.83 0.01
1 42227.79 2659.16 28.34 14.59 0.16
2 38129.47 2393.44 28.25 15.85 0.19
3 42306.36 2645.33 28.14 13.53 0.14
4 38244.14 2379.04 28.00 13.50 0.16
5 42542.94 2622.72 27.74 10.79 0.11
6 38443.14 2367.07 27.71 10.74 0.13
7 38223.73 2360.04 27.79 12.09 0.14
8 38218.41 2360.70 27.80 12.05 0.14

2 3 4 5 9 17 33
No. processors

2
4

9

17

33

Sp
ee

d-
up

PAUEGO

Ideal
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11

Figure 6. Speedup of PAUEGO for the set of test functions described in Table 1

5. Summary

In this paper, a new general technique (UEGO) for accelerating existing search methods has
been described and two parallel implementations have been evaluated.

The first parallel strategy is a synchronous algorithm where the slave processors carry out
the creation and optimization procedures while the master processor manages the global
species list (fuse, delete, etc.). The main drawback of this strategy is that, due to points
of synchronization, the slave processors are idle for a considerable amount of time, so the
parallel program is inefficient. Another problem is that the load is not balanced, the master
processor spends a long time waiting for information from the slave processors.

16 P.M. ORTIGOSA, I. GARCı́A AND M. JELASITY

The second parallel strategy is intended to solve some of the previous problems. In this
new implementation the load has been balanced, forcing the master to optimize and create
species, while the slave processors are working. Another change was the reduction in
the number of points of synchronization. Now the master processor can start to carry out
the synchronous operations over the species before receiving all the information from the
slaves processors, so the idle time for slaves was considerably reduced.

References

1. D. Beasley, D. R. Bull, and R. R. Martin. A sequential niche technique for multimodal function optimiza-
tion. Evolutionary Computation, 1(2):101–125, 1993.

2. Kalyanmoy Deb. Genetic algorithms in multimodal function optimization. TCGA report no. 89002, The
University of Alabama, Dept. of Engineering mechanics, 1989.

3. Kalyanmoy Deb and David E. Goldberg. An investegation of niche and species formation in genetic func-
tion optimization. In J. D. Schaffer, editor, The Proceedings of the Third International Conference on
Genetic Algorithms. Morgan Kaufmann, 1989.

4. A. Ferreira and Panos M. Pardalos. Solving Combinatorial Optimization Problems in Parallel: Methods
and Techniques, volume 1054 of Lecture Notes in Computational Science. Springer-Verlag, 1996.

5. C. A. Floudas and Panos M. Pardalos, editors. A Collection of Test Problems for Constrained Global
Optimization Algorithms. Lecture Notes in Computational Science. Springer-Verlag, Berlin, 1978.

6. Márk Jelasity. UEGO, an abstract niching technique for global optimization. In Agoston E. Eiben, Thomas
Bäck, Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature - PPSN
V, volume 1498 of Lecture Notes in Computational Science, pages 378–387. Springer-Verlag, 1998.

7. Márk Jelasity and József Dombi. GAS, a concept on modeling species in genetic algorithms. Artificial
Intelligence, 99(1):1–19, 1998.

8. Márk Jelasity, Pilar Martı́nez Ortigosa, and Inmaculada Garcı́a. UEGO, an abstract clustering technique
for multimodal global optimization. Journal of Heuristics, 7(3):215–233, May 2001.

9. A. Migdalas, Panos M. Pardalos, and S. Storoy. Parallel Computing in Optimization. Kluwer Academic
Publishers, 1998.

10. Francisco J. Solis and Roger J.-B. Wets. Minimization by random search techniques. Mathematics of
Operations Research, 6(1):19–30, 1981.

11. G. W. Walster, E. R. Hansen, and S. Sengupta. Test results for a global optimization algorithm. In P. T.
Boggs, Richard H. Byrd, and Robert B. Schnabel, editors, Numerical Optimization, pages 272–287. SIAM,
1984.

12. Z. B. Zabinsky, D. L. Craesser, M. E. Tuttle, and G. L. Kimm. Global optimization of composite laminates
using improving hit-and-run. In C. A. Floudas and Panos M. Pardalos, editors, Recent Advances in Global
Optimization, pages 343–368. Princeton University Press, Princeton, 1992.

