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1 Introduction

In peer-to-peer (P2P) networks it is a central problem to maintain a so called overlay network

with certain desired properties. An overlay network is defined by logical connections (i.e., the
”who knows whom” relation) between peers over an underlying physical network. If node i is
connected to node j in an overlay network, it means that node i knows the address of j and
so it can send messages to j. An overlay network must fulfill certain requirements to allow for
optimal cost and efficiency of the application of the overlay. Besides, a typical P2P network is
large, heterogeneous and very dynamic, which makes the overlay network construction problem
even harder. In this work we address the Membership Overlay Problem (MOP) [8], a special
case of the general overlay network construction problem. In this problem, we are interested in
constructing an overlay network which is unstructured, that is, used to define the membership
of a dynamic set of peers. Unstructured overlay networks have many important applications
such as information dissemination and data aggregation (datamining) [3, 7]. In this case,
each node sends gossip messages periodically to its neighbors. It is important that load is
distributed in a fair manner so that the throughput of the network is maximized without any
nodes being overloaded.

The MOP can be formulated as follows. A graph G = (V,E) of n vertices is given, where the
nodes correspond to peers that want to communicate with each other. The edges correspond
to possible communications, i.e., if there is an edge (i, j) then i can possibly send a message to
j using the underlying routing infrastructure. Each node can dynamically enter and exit the
network, and when it is connected it can make use of a limited bandwidth. Therefore, each

∗Márk Jelasity is also with RGAI, MTA SZTE, Szeged, Hungary. This work was partially supported by the
Future & Emerging Technologies unit of the European Commission through Project BISON (IST-2001-38923).

Vienna, Austria, August 22–26, 2005



??-2 MIC2005: The Sixth Metaheuristics International Conference

node has two associated weights, pi and wi, i = 0, . . . , n, corresponding to its uptime (measured
as the percentage of time that the peer is available and responding to traffic, normalized to 1)
and to the available bandwidth of its connection to the Internet, respectively.

The MOP asks to find a subgraph G′ = (V,E′) of G. The edges in the graph G′ define
the fact that two nodes actually decide to allocate some bandwidth to communicate with each
other, i.e., when two nodes i and j establish a connection, each one must allocate part of its
bandwidth. If bi and bj are the bandwidths which could be allocated by i and j, then the
bandwidth of the connection can be at most bij = min{bi, bj}. The two values bi and bj could
be equal to wi and wj or could be less than that, due to other connections already maintained
by the peers. Moreover, there is a lower bound lij on the bandwidth of acceptable connections
and a limit on the maximal value uij that bij can take. The graph G′ has to be such that the
expected network throughput is maximized, the diameter of G′ is kept logarithmic and the
total bandwidth used by each node i is less than or equal to bi.

As mentioned, the algorithm for solving this problem should be local: no global knowledge
of the network is provided, each node i can exchange information only with the nodes in N ′

i ,
that is, with its neighbors in G′. Preliminary work on this problem was reported in [8].

1.1 The static problem

First a mathematical formulation (P ) of the static version of the problem will be presented,
which will be later adapted to the dynamic case. A comprehensive mathematical analysis of the
MOP can be found in [2]. Two sets of decision variables are used: {xij} and {ξij}, (i, j) ∈ E.
The decision variables xij specify the bandwidth allocated to the connection between peers i

and j. Therefore they are continuous variables 0 ≤ xij ≤ uij , which will be further constrained
when they are not 0 to be at least lij . Decision variables ξij are binary variables which are
1 if arc (i, j) is used for a connection, 0 otherwise. The formulation, denoted by P , is the
following:

zP = max
∑

(i,j)∈E

pijxij (1)

s.t.
∑

j∈Ni

xij ≤ bi, i ∈ V (2)

∑

i∈Sh

∑

j∈V \Sh

ξij ≥ 1, ∀Sh ⊂ 2V (3)

lijξij ≤ xij ≤ uijξij, (i, j) ∈ E (4)

ξij ∈ {0, 1}, (i, j) ∈ E (5)

where pij = pi×pj, for each edge (i, j) ∈ E, and Ni represents the neighborhood of i in G (i.e.,
Ni = V \ {i} if graph G is complete). Constraints (3) enforce connectivity as they require any
subset of nodes to be connected to the subset of remaining nodes. Problem P is NP-hard [8].

The LP-relaxation of problem P is obtained by replacing constraints (5) with constraints
in the form 0 ≤ ξij ≤ 1, for each (i, j) ∈ E. The resulting problem LP can be solved by
an LP-solver provided that constraints (3), which are in exponential number, are added in
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a cutting plane fashion. However, in a practical setting and especially in dynamic scenarios,
when nodes continuously leave and join the network, there will be other mechanisms to ensure
connectivity of the overlay network, so it is not critical that our optimization framework
enforces connectivity. Since in this abstract we focus on such scenarios, we omit constraints (3)
from now on. We denote the resulting problem with P ′, which is still NP-hard as it subsumes
the multiple knapsack problem.

Formulation P ′ can be effectively solved by a Lagrangian relaxation, associating non neg-
ative penalty λi to each constraint (2) and obtaining the following problem LR:

zLR(λ) = max
∑

(i,j)∈E

p′ijxij +
∑

i∈V

biλi (6)

s.t. 0 ≤ xij ≤ uij, (i, j) ∈ E (7)

where p′ij = pij − λi −λj and variables {ξij} are not required since, given λ, the optimal value
zLR′(λ) can be computed according the following observations:
1) if p′ij ≥ 0 we use as much bandwidth as possible, i.e. ξij = 1 and xij = uij ;
2) if p′ij < 0 we don’t use the connection, i.e. ξij = 0 and xij = 0.

In order to find the value of λ that minimizes the upper bound zLR(λ) we must solve
the Lagrangian Dual min [zLR(λ) : λ ≥ 0]. The optimal solution of the Lagrangian Dual is
equivalent to the optimal solution of the LP relaxation of problem P ′.

2 A Lagrangean metaheuristic for the MOP

MOP was solved by means of a Lagrangean metaheuristic approach. Before detailing our
approach, a general introduction is required.

In order to determine which algorithm is a metaheuristic and which is not, definitions
are obviously needed. The naming was introduced by F.Glover, who denoted tabu search
”as a ’meta-heuristic’ superimposed on another heuristic” [5]. This definition was made more
normative by stating that a metaheuristic ”refers to a master strategy that guides and modifies
other heuristics to produce solutions beyond those that are normally generated in a quest for
local optimality” [6]. A discussion on this topic by S.Voss concludes that ”A meta-heuristic is
an iterative master process that guides and modifies the operations of subordinate heuristics to
efficiently produce high-quality solutions” [9]. Maybe, one point which could still be underlined
is included in this further definition of metaheuristic: ”1) A high-level algorithmic framework
or approach that can be specialized to solve optimization problems. or 2) A high-level strategy
that guides other heuristics in a search for feasible solutions” [1], where the need of problem
specialization is made explicit.

In the following we will outline a solution methodology based on the subgradient optimiza-
tion [4] of the Lagrangean dual which, in its general structure, guides search for determining
good quality solution of any combinatorial optimization problem and which, in order to be
applied to a specific problem, must be specialized by defining a problem-specific repair pro-
cedure that permits obtaining (good quality) feasible solutions. Subgradient optimization is
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the master process while the Lagrangean heuristic is the subordinate heuristic. Therefore, we
will outline a metaheuristic. To the best of our knowledge there were no previous efforts for
framing subgradient optimization in a metaheuristic setting. We call this approach Lagrangean

metaheuristic.

The basic idea is to use subgradient optimization for guiding search, and to repair each
subgradient solution to make it feasible. Before introducing the details, we first remind that
Lagrangean decomposition is a general approach for bounding the optimal cost of any combi-
natorial optimization problem. The central idea is that, whenever one has to solve a problem
defined as z∗ = min cx subject to constraints Ax = b, Cx = d and x ∈ X, where the
first set of constraints is difficult to deal with, one can associate a Lagrangean multiplier (or
penalty) to each constraint of the first set and solve the resulting Lagrangean subproblem
min {cx + µ(Ax− b) : Cx = d, x ∈ X}. Since any penalty value set yields a different problem
instance, whose optimal cost is guaranteed to be a lower bound to z∗, we are actually facing
a function L(µ) for which we want a maximum. Problem L∗ = maxµL(µ) is referred to as
the Lagrangean Dual of the initial problem. If L(µk) happens to be feasible for the original
problem, it is also optimal. Otherwise, a repair procedure is needed to get an actual solution.

The complete pseudocode can be found in [2]. This approach has a number of advantages
over most state-of-the-art metaheuristics. The main advantages are:
1) it is mathematically well-founded and it can rely over dozens of years of usage;
2) it includes optimality conditions to determine whether an optimum has been found;
3) it evolves both an upper and a lower bound to the problem to solve, thus at any time it
can produce an estimation of the quality of the currently best heuristic solution.

We used a Lagrangean metaheuristic for solving the MOP, first in its static version, then
extending the result to the dynamic case. As mentioned, we worked on formulation P ′ and
relaxed constraints (2) and we considered LR as a subproblem, which can be easily solved as
detailed in subsection 1.1. The upper bound provided by the LR solution can be infeasible
because the resulting overlay topology could be disconnected and connections allocated to a
node i have a total bandwidth greater than bi, i.e.

∑
j∈Ni

xij > bi. The first case occurs rarely,
and at rate which is compatible with the natural dynamicity of the application setting. The
second case must explicitly be dealt with. In the following we will detail how to get a solution
with feasible bandwidths.

Let z∗LR be the solution obtained by the subgradient optimization of problem LR using
penalties λ∗

i , i ∈ V . If the solution is infeasible a heuristic solution is obtained by considering
the penalized costs p′ij = (pij − λ∗

i − λ∗
j), ranking all arcs (i, j) ∈ E by non increasing p′ij

values and allocating all possible bandwidth to each successively considered connection. This
approach is derived from the exact method for solving continuous knapsack problems. In our
case it is not guaranteed to be optimal but it consistently produces good quality solutions in
polynomial time as the highest cost operation being the ordering of the arcs.

The dynamic case has been tackled by means of a continuous application of the interwoven
Lagrangean and heuristic procedures described for the static case. Moreover, the global steps
required by a subgradient approach are limited to the computation of the denominator of
one equation. We were able to prove [2] that substituting the summation over all nodes in
the network with a summation local to each node, limited to its neighbors, does not interfere
with the convergence properties of the approach. Therefore, we were able to implement our
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Lagrangean heuristic in a fully distributed way.

Since variations of the network structure happen continuously, the optimization algorithm
is run continuously. It is assumed that the speed of execution of iterations of the subgradient
optimization procedure is higher than the rate of network changes, thus that a few subgradient
iterations can be performed between consecutive network changes. The exact number of iter-
ations is currently a parameter, named InnerIter in the following, which implicitly quantifies
the network variability. The following algorithm is run concurrently by each node i of the
network. It is assumed that each node knows its neighborhood Ni(t) at each iteration t.

DistrLagrMOP()
1 Initialize penalty λi and iteration counter t

2 while (true)
3 do t + +
4 Solve problem LR

5 Compute the subgradient component gi =
∑

j∈Ni
xij − bi

6 Check for infeasibility and update λi

7 if t mod InnerIter == 0
8 then call LagrHeuristic(p′)
9 foreach j in Ni(t)

10 do send λi and gi to j

11
12 on receive λj and gj

13 update p′ij

LagrHeuristic(p′)
1 initialize si = bi

2 foreach arc (i, j), j in Ni(t), in nonincreasing p′ order
3 do slack = min{si, uij}
4 xij = ξij = 0
5 if slack ≥ lij
6 then xij = slack

7 ξij = 1
8 si = si − slack

9 send xij and ξij to j

10
11 on receive xji and ξji

12 if xij > xji

13 then xij = xji, ξij = ξji

Computational testing was performed on two problem sets, named A and B. Set A is com-
posed by instances where nodes have a location associated, while set B is patterned following
actual Internet parameters. Figure 1 (left) shows the solution for an instance of type A, where
nodes correspond to peers and solid lines to connections suggested by LagrHeuristic. Figure
1 (right) shows one solution for an instance of type B. In this case, since the spatial position
of the nodes has no meaning, we grouped the peers communicating with only another one in
circles around this last. This permits an operational identification of superpeers.
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The full presentation of our computational results, though preliminary, cannot comply with
the number of page constraint. We refer the interested reader to [2] for a better account on
experiments, which so far refer to runs on a single server machine simulating the distributed
environment. An object implementing DistrLagrMOP was instantiated for every network
node. We report results provided for a variable number of DistrLagrMOP internal loops (0
in the case of column LagrHeu, then 100 and 1000). Current results demonstrate the viability
of the approach. The next step of our research will be to deploy the system in a full-featured
distributed environment, in order to validate real-world performance.

Figure 1: A lower bound solution of instances A100 (left) and B300 (right).
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