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Abstract

This thesis describes a self organizing learning algorithm that learns phonemes from acous-
tic input. For generating acoustic input a highly simplified articulatory model is used and the
phonemes are expressed in these articulatory terms. The simplification allows us to concentrate
on specific issues like the effect of articulatory effort on learning and sound change without hav-
ing to deal with rather complex realistic models that only hinder these phenomena and make ex-
tensive computational simulations impossible. The thesis is also concerned with methodological
issues in general linguistics. The approach taken here is motivated by arguing against structurally
inclined ways of looking at linguistic problems that still dominate the field.
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1 Introduction

This thesis describes a self organizing learning algorithm that learns phonemes from acoustic in-
put. Our approach makes use of the rapid development of computer hardware: the performance
of computers has been exponentially increasing for decades. Furthermore the possibilities of ex-
isting and also exponentially growing computer networks are just beginning to be exploited. This
makes it possible to refresh the methodology of linguistics trough the application of extensive
computer simulations. We can capture features and test theories that were completely impossible
before. This possibility can put several aspects in a new light and can help understand linguistic
phenomena better.

On applying computers I do not mean natural language processing. My short term goal is
not to solve the practical problem of e.g. machine translation or human-machine communication.
The approaches there tend to be quite pragmatic and therefore probably unrealistic since human
and machine capabilities differ remarkably. My intention is to apply computers in “pure linguis-
tics”. This would help understand language better but in the short run it would not necessarily
help building talking machines. So the goal must be capturing some basic features that still allow
us to build realistic models of a simplified but complete world (as opposed to building unrealistic
models of isolated parts of the real world and then trying to figure out how these isolated models
fit together).

In the present model for generating acoustic input a highly simplified articulatory model is
used and the phonemes are expressed in these articulatory terms. This model has every com-
ponent of a real situation but these components are simplified. The simplification allows us to
concentrate on specific issues like the effect of articulatory effort on learning and sound change
without having to deal with rather complex realistic models that only hinder these phenomena
and make extensive computational simulations impossible. Unfortunately realistic sound pro-
cessing is still out of the scope of computer simulations in spite of the rapid improvement of
technology.

As the above ideas already suggest the thesis is also concerned with methodological issues in
general linguistics. The approach taken here is motivated by arguing against structurally inclined
ways of looking at linguistic problems that still dominate the field. I will suggest that viewing
language as an essential part and product of the human mind and culture is of essential impor-
tance. Conducting research with this in mind is a great step towards a unified theory of human
intelligence.



2 Background

In this chapter the methodology of the present approach is explained and an overview of the
recent relevant literature is given.

2.1 Methodology

Even though the motivation of the researcher is normally not as relevant as the results themselves,
I felt it necessary to elaborate on placing this work in the branch of scientific fields that somehow
have to do with linguistics. The ideas are presented here without much argumentation since the
point is to sketch my background only and not to convince the reader. It would need at least a
book, or maybe even a whole life’s work. Maybe it is not even necessary or possible to convince
anyone about such questions and most likely even my own position will change over time.

Everyone trying to tackle problems in linguistics has to have a clear idea about the subject
of linguistic investigation. Those who do not make a choice explicitly do it implicitly and I
prefer to keep things explicit. Methodology has always been in the focus of attention in the
field of linguistics. The most far-reaching idea in the XX. century was probably Saussure’s
structural approach (de Saussure, 1939). His basic idea is that when studying language we must
differentiate between two essentially different subjects. The first is the parole which refers to
an implementation of the second, the langue. Thus langue is abstract and therefore cannot be
observed directly, and parole is everything that we say, hear, write or read. In fact this is just a
variant of the frequently recurring idea of making a difference between important an unimportant
features, between design and implementation, between higher and lower levels of description.
Every natural science uses such level structures for organizing the accumulated knowledge. Even
everyday knowledge is organized this way. Most people have no idea about engines, yet everyone
can drive any (standard) car. It is true even for mathematics since it is perfectly possible to
understand and apply theorems without understanding why they are true.

To summarize: the separation of parole and langue is not original in itself. In fact it is trivial
that for a scientific investigation we have to ignore some aspects of reality if we do not want to get
lost in its infinite richness. The real question lies in the choice of features to ignore. Saussure’s
standpoint is rather radical. We have to ignore everything that has to do with any other existing
science: psychology, history, sociology, biology, physics, etc. The rest we can call linguistics.
In Saussure’s view this residue is an abstract structure in which the relationship and function of
elements are the valid topics of research. Furthermore this structure can be studied synchronously
without any reference to historical changes.
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At the beginning of the XX. century many schools adopted a similar view and tried to describe
structure based on strict methodological principles, trying to do clean linguistics. Chomsky’s
generative approach (Chomsky, 1979) grew out of the American branch of structuralists. It was
an answer to the emerging problems of the structural methodology in connection with the way
structuralists tried to describe structure, their main subject (see e.g. (Harris, 1951)). Without
going into the details, Chomsky discovered that it would be more natural to give a method to
generate the linguistic data collected instead of giving rules that can only filter incorrect forms.
In other words, he discovered that the structure that can be observed within the actual linguistic
data is not the direct target of the research. Instead, it is only a consequence of deeper and more
general structures that are responsible for these surface structures, as he called them. He lifted
the target of linguistic research to an even more abstract level.

This turn placed linguistics into the domain of cognitive science which was founded just
before Chomsky’s first influential works. By suggesting that people perform rather difficult sym-
bolic computations the theory was fresh and interesting at that time. Unfortunately the relatively
strictly defined methodological framework of concentrating only to strictly symbolic computa-
tional problems results in pushing the huge amount of work that aims to involve other aspects
to “interfaces” like socio-, psycho-, computational linguistics, pragmatics, etc. Even though the
generative theory has undergone quite radical modifications during the last decades the basic
methodological approach did not change, only the implementational details. The desirable goal
of unification of knowledge about human cognition certainly requires another approach.

This leads us to the motivation of the present work. My hypothesis is that language is a skill,
in fact very similar to any other skills, like walking, playing chess, playing the piano, etc. This
approach emphasizes that it is something that has to be learned, has to be able to be learned and
its very essence is that it has to be able to be used in certain situations to solve certain problems,
just like any other skill. It is also important that the actual organization of this skill should be
described just like other skills. A theory of language would solve the more general problem of
skills too, and a lot more. A lot more since it is the most distinguished skill that we have which
has an effect on almost everything in our life. This approach does not mean that we have to focus
on Saussure’s parole. This is still langue, the only modification is that the abstraction has to
contain the abstraction of the environment too, in which the language exists, namely the purpose
of the language in the human life and the psychological limitations and capabilities which are ar
least as common between people as words and syntactic structures.

Such an approach will always have to face the rather difficult problem of having to explain
how symbolic capabilities of people come to existence. I must say I do not know the answer to
this question but I am still convinced that if lower level non-symbolic modeling of language is
done right and the important aspects are modeled in sufficient detail—especially consciousness,
and intentional models—it will emerge automatically. But I do not expect this to happen in
the near future. The above argument also implies that trying to combine e.g. artificial neural
networks (that contain a couple of dozens of nodes) with symbolic representation in order to
explain symbolic processing does not seem to be a fruitful approach.

A very important aspect of a skill is its layered organization in which lower level processes
provide input to higher level layers. This organization is very common even in perception in
every modality (Sekuler and Blake, 1994). In this sense vision itself is already a skill: our lower
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level vision system “knows” what is worth to watch and how to adapt to certain situations. And in
fact this skill even has elements that are learned during development based on the input from the
environment. Difficult skills have of course more complex structure. Language can be thought
of as a combination of many different skills that may even develop independently and that are
combined only later. For example language certainly assumes the skill of communication, the
motor control of articulation and perceptual categorization, and certain findings suggest that these
are indeed developing independently. For example (Tomasello, 2000) assumes that modeling of
other people’s minds is a prerequisite for word learning. Other works suggest that phonological
development does not depend on communication (see Section 2.2). The temporal order of the
development of certain aspects of language also involves the emergence of layer structure within
each major component.

The research presented here fits in the above framework. We try to model the very first phase
of phoneme learning, when the continuous input is clustered into discrete categories forming
the very first layer (after perception) needed for the acoustic aspects of language. This makes
it possible to step to the next level of learning words. This involves extracting structure from
the varying and continuous acoustic input. The framework sketched above also suggests that the
learning process and the nature of the learned knowledge is similar in different domains which
gives us hope that investigations in this direction could be useful in other domains as well.

2.2 Early Infant Phonological Development

Due to lack of space only a summary of some important aspects will be given mostly without ref-
erence to the rich literature of the field. The interested reader is kindly asked to refer to (Vihman,
1996, pp. 50-97) for a thorough introduction.

The perceptual capacities of infants are not the same for consonants and vowels. Even though
this work is concerned with (an abstraction of) vowels a summary on consonants is also included.

2.2.1 Consonants

With this respect we have a relatively clear picture of the capabilities of infants. The two most im-
portant properties of infant perception here are categorical perception and perceptual constancy
(which also occur in other modalities like color vision).

Categorical perception. It is widely accepted that infants are not sensitive to within-category
differences but they are sensitive to between category differences. For example they can differen-
tiate between /pa/ and /ba/ but they cannot between /pa/; and /pa/s even if the acoustic difference
between the stimuli is the same for both pairs. Another very important fact is that this effect is
observable with practically all known phonological contrasts, not only with those of the infant’s
ambient language. This means that “within-category” should be understood in this universal
sense since a category in a given language is often composed of more “natural categories”.
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Perceptual constancy. Another striking property of infant perception is perceptual constancy.
Infants can be trained to perform some action as a function of the linguistic quality of a stimulus.
That means that they perceive the category of a sound independently of the person who produced
it.

It is very likely that the above two properties are language independent and they are conse-
quences of the more general properties of the auditory system, i.e. the physical structure of the
ear and probably further neural information processing (feature extraction). It is supported by
findings about different mammalian species which showed the same categorical perception and
perceptual constancy effects. This results tell us that it is the sound structure of language that is
adapted to the auditory system and not vice versa. Given that in automatic speech recognition
the “normalization” of the rough acoustic input signal (i.e. the extraction of speaker and noise
independent linguistic features) is still lacking a satisfying solution we can learn to respect the
(innate) auditory system.

Moving on to learning we find that the infants gradually start to loose their sensitivity for the
phonological contrasts that do not exist in the ambient language during their first year of life.
With this respect their performance is getting close to adults who have problems with perceiving
the difference between sounds that are not contrastive in their language (but belong to one of
the phonemes) even if they are contrastive in another language. We can conclude that w.r.t.
consonants the learning is more like forgetting, i.e. becoming insensitive to contrasts that are not
present in the ambient language.

2.2.2 Vowels

The case of vowels is similar to the consonants, the difference is that here we cannot observe the
perceptual categorical perception effect. Even adults can discriminate different samples taken
from a vowel of their language quite easily. The perceptual constancy effect can be observed
however.

The exact way of learning is less clear. One strong hypothesis is that categories are defined by
prototypes and if a sample is close to this prototype then it is perceived as belonging to the given
category. An influential work is (Kuhl, 1991) where the author suggests that the prototype vowels
work like a “perceptual magnet” warping the perceptual space around them. Thus differentiation
between samples with equal acoustic distance would be gradually harder as they are getting
closer to a prototype. Adults show a stronger and infants a weaker effect. Monkeys show no
effect. It has to be noted though that this theory is the subject of ongoing debates.

The general properties of the auditory system have another influence on vowels by determin-
ing the perceptual distance between the members of the continuous vowel space. The regularities
of existing vowel inventories support this observation (Boé et al., 1995). All the vowel inven-
tories are such that the vowels are distributed evenly over the vowel space with respect to this
perceptual distance.
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2.2.3 Babbling

So far only perception has been discussed. The infant’s sound production capabilities turn out to
be much less developed than their perception. By the end of the first year the infant already shows
clear perceptual adaptation to the ambient language while the speech production still does not
show language specific effects. According to neuropsychological results about general motor
control (Whiting, 1984) and its application to phonological development (Kornev, 2000) the
infant is not able to control the speech production organs voluntarily until up to 8 months of age.
After that voluntary control is possible but no patterns (engrams) are created for storage in long
term memory. The memorization and recall of motor-sequences begins even later. However the
babbling of 12 month old infants already shows weak perceivable effects, i.e. adults are able to
recognize the child’s ambient language above chance (Engstrand et al., 1998). We can conclude
that the motor functions (e.g. imitation) play no role in the early development of perceptual
categories, at least not in the first 8 months.

2.3 Sound Change

Sound change can provide an excellent possibility for testing models of phonological develop-
ment if they are sufficiently global to account for perception and production as well. It is possible
to simply iterate the model, i.e. after the acquisition of a phoneme set it can be used as input to
a new learning step. But care should be taken when applying this tool because sound change
can happen for many different reasons and for testing purposes only the so called organic sound
change is appropriate when no external factors like social layers, prestige, etc. are present. On
the possible non-organic reasons of sound change see (Wardhaugh, 1992).

An example of connecting sound change and speech perception in one theory is (Ohala,
1993). The author suggests that sound change is a result of errors in speech perception. Errors
may happen because speech sounds always vary to some extent either randomly or due to their
context. Normally we can correct these errors using categorical perception or some other way
of categorization. When there is a situation in a language that the possibility of misunderstand-
ing is large, sooner or later the misunderstandings are built in the phonological structure of the
language.

Independently of the reason of sound change there are different theories about the exact
way the change takes place. We can identify two quite radically different views. The first is
represented by Saussure and also by Labov (Labov, 1980). They basically say that the structure
of a language (including phonological structure) is always a consistent system at every time step
even if changes are going on. This means that e.g. if a phoneme changes then it changes in
every word that contains it. However some results suggest that this is not the case and changes
“diffuse” into the language. That is first only a few words contain the change and the lexical
diffusion speeds up occupying almost all the words then slows down again before the process is
completed (Bailey, 1973). The latter view gives us a rather different and much more complicated
picture. It becomes virtually impossible to describe a grammar without reference to ongoing
diffusions.
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2.4 Related work

This section summarizes three recent works (actually all of them are PhD thesis). they offer a
model of phonological development from rather different perspectives using different methodol-
ogy. Although it is impossible to reconstruct these models here in sufficient detail this summary
still helps the reader put the present work in a somewhat broader perspective.

2.4.1 Functional Phonology (Boersma, 1998)

In his thesis Boersma works within the framework of optimality theory (Prince and Smolensky,
1993). Genetically optimality theory belongs to the branch of generative linguistics. Its aim is to
give a formal model that is able to generate correct surface forms but does not generate incorrect
ones. The theory moves one step closer to psychological reality by giving a large emphasis to the
learnability of the grammars (Boersma and Hayes, 2001). In the case of phonology it means that
if we are given a set of underlying representations with the corresponding correct surface form
then the grammar should be able to be learnt iteratively. Iterative learning means that we show
the learner every example one by one. Each example results in a correction step in the grammar,
and after iterating trough the complete teaching set a number of times the grammar should be
correct.

The basic structure of a grammar in optimality theory is a set of constraints which are partially
ordered. That means that for every pair ¢y, ¢y of constraints either ¢; dominates (outranks) ¢, or
the other way round or they can be freely ranked (free variation). The grammar also assumes
a generator that generates candidate surface forms based on a given underlying form. Every
surface form will violate a constraint. For every candidate we determine the maximal rank of
the violated constraints and the candidate with the minimal maximal rank is the winner, i.e.
the generated surface form. Table 2.1 gives a somewhat more visual version of the explanation
above. Of course when making a decision we have to produce a linear ordering of the constraints.
The table representation already assumes such a linear ordering.

/underlying form/ || ¢; | ¢ca | c3 | ca | C5 | C
candidate 1 x| % * | %
candidate 2 x | k% | ok | % *

— candidate 3 x | ok | ok | %

Table 2.1: The scheme of surface form generation in optimality theory. A * in the column of a
constraint indicates violation. Candidate 3 is the winner, i.e. the generated surface form.

In his thesis Boersma suggests a differentiation between perception and production. In the
case of production the constraints are indeed related to speech production and there is another
grammar that describes speech perception. We can only agree with such a decision as far as sepa-
ration of perception and production is concerned but let us make a remark about a methodological
issue.
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As already mentioned is Section 2.1 generative schools work with models of sentence gener-
ation. In fact they don’t care about the psychological reality of their models in that they examine
sentences when suggesting the models and never people. But interestingly enough they care
about the actual structure of the model. This latter concern is supported neither by practice nor
by theory. A generative grammar is simply an algorithm in a mathematical sense. Turing ma-
chines and unrestricted grammars are equivalent. That means that for generation in fact every
algorithm that generates sentences is equally acceptable from a theoretical point of view if we
take the structuralist principles seriously and we are prepared to ignore psychological and soci-
ological relevance (degrading psycho-, and sociolinguistics to a verification of already existing
models).

For the above reasons Boersma’s effort for creating a grammar along the lines of optimality
theory for perception is a very good example of the “magnet effect” of a paradigm. While reading
the rather absurd discussion of expressing perception using an infinite number of constraints like
*CATEG(400) (which actually expresses that the perceived input does not belong to a category
with a center with an F1 formant of 400Hz) we can get a fresh feeling about the similar absurdity
of generation, the above mentioned philosophy of generative linguistics of putting the cart before
the horse.

Boersma does not suggest a workable learning algorithm for the perception grammar, only
for the production grammar. He assumes that learning the perception grammar precedes learning
the production grammar (this is supported by empirical evidence, see Section 2.2) and refers to
other works that suggest an actual solution.

2.4.2 Emergence of Vowel Systems (de Boer, 1999)

This thesis represents a rather different point of view. The author was Luc Steel’s student and
since Steels has rather original and ambitious ideas about language it is worth to devote a para-
graph or two to him.

His background is artificial life, a field which seeks to understand the self-organizing behavior
of complex systems. Steels applies the conceptual framework of this field—which was originally
developed to model complex systems like societies, ant colonies, co-evolution of species, etc.—
for modeling language. This framework among other things involves the frequent application
of the so called multi-agent systems. The common property of these systems is that they are
composed of entities (agents) that can make their own decisions, can interact with each other,
and can learn. A simulation with a multi-agent system usually involves designing agents, i.e.
determining the way they can interact, designing the algorithm that they use for planning their
actions and the learning method. After this agents are put in a virtual world, and left alone. The
results of the simulation are the (hopefully) emerging patterns, and organization.

Steels’ idea is that language can be looked at as a pattern of organization that is emerging
in such multi-agent systems (Steels, 1998). (Furthermore he thinks the nature of intelligence
in general can be described this way (Steels, 1996)). The basic method he applies to develop
e.g. emergent common vocabularies and phoneme systems is the so called language game. The
behavior of agents consists of a series of games that they play with randomly chosen other agents.
One possible game for example is the discrimination game where the goal is to differentiate a
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topic object (seen by both parties) form a set of other objects, the context (also seen by both
parties). The initiator tries to create a description for the topic based on its available features and
then communicates this description based on its vocabulary that assigns words to these features.
The set of features and the vocabulary are both emergent, not a priory fixed. The other agent
then tries to understand the description using its own vocabulary and based on the success of the
game they both update their knowledge.

Of course the whole approach is extremely sloppy and uses many unrealistic assumptions as
admitted by Steels. But the point is that in such a decentralized multi-agent framework we can
see emerging vocabularies trough which agents can “understand” each other (or they develop a
common phoneme repository, as we will see soon) is in itself worth a look. A model that tries to
capture language (and intelligence) as a whole putting it into a unified framework is useful even
if it is far from modeling the exact linguistic data. Especially in the present world of scattered,
isolated and incompatible models of different specific phenomena.

Another important hypothesis is that according to Steels learning the language is not essen-
tially different from the emergence of language. As he puts it

... no separate mechanism for language acquisition is necessary because the mech-
anisms that explain the origin of language also explain how it is acquired be new
agents entering the community. (Steels, 1996)

Thus the model of the emergence of language and language evolution is also a model of language
acquisition. Keeping this in mind let us take a look at how de Boer applies Steels’ approach for
phoneme acquisition.

First of all we have to note that de Boer uses only standalone vowels. His decision was
based on preliminary simulation with more difficult words but it proved to be too complex to
get conclusive results. Nevertheless de Boer intended to keep pronunciation and recognition as
realistic as possible to achieve realistic phoneme inventories. Thus the phonemes are internally
represented as feature vectors with the features position, height and rounding. Note however that
these were continuous valued features. A synthesizer was applied to produce formants based
on the feature vector. Perception was implemented based on the already known vowels. When
hearing a vowel the agent finds the vowel from its repository that is closest (when pronounced)
according to a realistic distance measure.

The multi-agent framework is the same as described above, so we have to give only the kind
of language game that the agents are playing. This game is the imitation game. This involves two
agents, the initiator and the imitator. The initiator chooses one of its phonemes and pronounces
it (with a little noise added). The imitator analyses the vowel and pronounces its closest match.
The initiator then analyses the answer and if the closest match is the original vowel then the game
is successful. Otherwise it is a failure.

In case of success the imitator moves its closest match closer to the input to help convergence
in the population. In case of failure the agent adds a new vowel that matches the input closely
if the closest match was used many times successfully in other games (since shifting the closest
match would probably ruin performance in future games). Otherwise the bad vowel is shifted
towards the input. In a simulation every agent starts with an empty inventory and fills it in trough
playing games.
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Figure 2.1: Vowel system in de Boer’s simulation after 20, 200, 1000, 2000 games, 10% noise.

Finally let us show the result of de Boer’s system with 20 agents in Figure 2.1. All vowels of
all agents are plotted on top of each other. As a result of using a realistic distance function in the
perceptual space the emerging vowel system is realistic without any central intervention.

2.4.3 Acquisition of Vowel Systems (Behnke, 1998)

Behnke’s work represents a third completely different approach. He applies machine learning,
in particular artificial neural networks for modeling phoneme acquisition.

The field of artificial neural networks is large and only loosely defined. Behnke’s thesis
applies self-organizing maps which form a subfield within artificial neural networks (Kohonen,
1989). The most important characteristic of a self-organizing map is that the learning happens
completely without feedback. Thus the types of problems where these networks can be applied
is limited. Normally they are used to learn some kind of mapping between the input space (the
space where the learning examples come from) and the output space which is the neural network
itself. The output space has structure too since the neurons are normally connected to each other
which defines neighborhood relations and also a kind of distance. The input space must also
have a structure in terms of a distance function.

The point is that this structure of the input space is unknown and we want to learn it. So
we apply a self-organizing map, teach it the input space and then we look at the resulting map
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to learn something about the structure of the input space. Structure often means two things:
clusters and topology. Clusters are spots in the input space where the elements are particularly
dense, i.e. they form a sort of grain. In this context topology is the relation between the elements.
For example three elements in the input space may form a specific kind of triangle. We can talk
about topology preserving maps which guarantee that (if some assumptions about the input space
hold) the topology of the resulting map will reflect the topology of the input space. Other maps
form only clusters without preserving topology, these kind of methods are usually referred to as
vector quantization methods.

Behnke developed a model for phoneme acquisition which contains a phoneme map as a
filter for higher level processing. In his thesis he concentrated only on the phoneme map. His
motivation was to develop a model which is not necessarily topology preserving but which has
local representations. Locality means that once a representation is developed it is not disturbed
by newly emerging representations. Behnke’s greatest problem with Kohonen’s algorithm is that
there representations are not stable trough the learning process since it is topology preserving so
new clusters result in the reorganization of the map. This way the map cannot act as a filter that
provides the same output for already learned categories for higher level processing. To solve this
he suggests a vector quantization method.

For testing only Dutch long vowels were used. The data was preprocessed to make sure that
only continuous vowel segments are input to the map. According to the final result

e The system did not work if non-preprocessed input was presented to it.
e Overlapping vowels like /u/ and /o/ are mapped onto the same cluster.

As mentioned above, the interaction of the phoneme map with higher level processing like
lexicalization was not examined.

2.5 Summary

After comments on my methodological point of view a brief overview of early phonological
development in infants was given. We have seen that the mammalian auditory system is probably
responsible for the infant’s categorical perception of consonants, thus that language is adapted to
the auditory system and not the other way round. During the first year, infants start to “forget”
contrasts that are not present in their ambient language. Vowels do not show the categorical
perception effect, instead they are probably organized according to a prototype structure where
prototypes work as “perceptual magnets”.

Sound change was mentioned emphasizing the complexity of using it for validating phoneme
acquisition models. Nevertheless if done with care sound change data may offer a good possibil-
ity for such tests.

Three recent relevant works were also briefly discussed to illustrate the existing method-
ological diversity of tackling the same problem, phoneme acquisition. The first example used
an optimality theory approach which in fact belongs to the more general category of generative
approaches. It is based on a formal grammar that is build according to the optimality theory



CHAPTER 2. BACKGROUND 14

standards. We saw that probably this approach is the least satisfying as nor learning nor repre-
sentation is especially effective. I have to admit that the author’s main efforts are devoted to the
generation grammar, not perception.

The second approach used a multi agent architecture and emphasized the role of emergence
in both the origins of language and language acquisition. It suggests that acquisition and the
origins of language should be explained on the same grounds. The third approach used machine
leaning techniques, in particular self-organizing feature maps to model phoneme learning. They
all attempted to model realistic sound features and as a result they had to make strong simplifying
assumptions on the nature of input which turned out to be crutial in each case.



3 The Model

This chapter describes the model that was used to perform the simulations in Chapter 4. First the
conceptual model is described in Section 3.2 then we discuss implementational decisions that are
based on preliminary experiments with earlier versions of the model in Section 3.3.

3.1 Overview

The actual outline of the model (Figures 3.1 and 3.2) and its implementation are based on several
assumptions that are enumerated here.

Simplification. It is unrealistic to expect a phoneme acquisition and lexicalization model that
uses realistic sound data. Such a model has to account for not only phoneme learning but au-
ditory perception, motor organization, the development of these and their effect on each other.
Any mistake in any of these sub-models makes learning of phoneme representations unrealistic.
Furthermore having too many variables in a model makes it very hard to separate the effects of
the individual parameters. On top of that a correct model would provide us with a perfect speech
recognizer and synthesizer. Yet research in machine learning and machine pattern recognition
shows us that both tasks are extremely hard. And apparently the most successful pattern recog-
nizers have little psychological relevance (although not much research is devoted to explore this
possibility).

The above arguments lead us to the conclusion that it might be a luckier choice to introduce
simplifications to smooth out the details to get a bird’s eye view of the overall picture. Note that
there is the another possibility of focusing on little isolated subfields and keeping as many details
as possible. Our choice here is closer to the “nothing about everything” than to the “everything
about nothing” approach. That means the sound is a continuous one dimensional curve. One can
think of it as having only one feature with a continuous value.

Self-organization. For the development of phoneme learning the principle of self organization
seems to be more appropriate then supervised learning. There are many reason for this. First
of all perceptual capabilities of infants develop earlier than their motor capabilities so there is
no way to reinforce successful encodings as they remain latent until the child is actually able to
control the speech organs. Beside of this, it is well known that the early development of other
perceptual modalities also happens in a self-organizing way, vision for example.
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According to this the model is based on a map that adaptively creates clusters based on
observed frequencies of its components. The map eventually converges to a phoneme set.

Layer structure. [ assume that the layer of words is one layer above phonemic organization
as words are basically fixed recurring sequences of phonemes. This means that we can not
expect a lexicon until the phonemic layer is sufficiently stable for providing a basis for lexicon
buildup. In other words first the phonemic layer is formed without storing things in long term
memory then—when the stable phonemic layer makes it possible to detect stable sequences—
lexicon building gradually begins. This layer structure is present everywhere around us from
living organizations trough knowledge representations and science to culture. Thus this feature
is not language specific either. Rather it is a property of complex self-organization.

In the model this situation is simplified by separating two phases: phoneme learning and
lexicalization which happen disjunctly one after the other. Actually modeling the emergence of
new layers is out of the scope of the present work.

Compression. My assumption is that storage in the short term memory involves quite serious
preprocessing or encoding. It is not the rough input that is stored, since it would need too
much resources. For an effective storage modeling of the input is necessary to compress it
appropriately. This is a general feature in every modality for every kind of perception and I
assume that in the case of language this is the precursor for phoneme formation. That would mean
that—just like with the categorical perception of certain consonant features—it is our mammalian
heritage that determines the properties and organization of language, phonemes in this case.

I also assume that in the motor side similar compression is taking place and the perceptual
model of a sound sample is not perfectly dissimilar from the motor representation of the given
sound (if the sound is a human sound of course) in terms of its organization and units.

3.2 The Conceptual Model

The model consists of two phases, the first is phoneme acquisition and the second is the building
of the lexicon.

3.2.1 Phoneme acquisition

The schematic model of one step of phoneme acquisition is shown in Figure 3.1. The process of
phoneme acquisition is repeating this step until the child’s representations converge. The main
motivation was to develop a framework with which we can discover the underlying structure of
a continuous environment, sound in this case. Let us proceed according to the model compo-
nent by component. Only the function of the components will be described, the details of the
implementation are in Section 3.3.
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Figure 3.1: The schematic model of phoneme learning before the beginning of lexicon building.

Adult and child. In the framework we have one adult (the teacher) and one child (the learner).
Unlike in the case of de Boer’s multi-agent approach we assume that these roles are asymmetric
and do not change during learning. Observe that there is no feedback for the child to evaluate
performance. The infant can rely on unsupervised learning methods only as mentioned previ-
ously.

Adult lexicon. We assume that the child is born into an already existing language environment
so we assume the existence of a lexicon. This lexicon is basically a set of words only, so no
other information is stored there. A word is a list of phonemes. A phoneme is defined by one
continuous value and a length. That means that the actual quality of the phoneme is determined
only by one number which is far from a realistic feature vector, but this simplification allows us
to concentrate on other issues like self organization and the historical dynamics of the frame-
work (sound change). Length introduces an interesting new dimension compared to the other
approaches discussed earlier.
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Pronunciation. The learning step begins by selecting a word from the adult dictionary and
pronouncing it. Since the words are stored in the lexicon as phoneme sequences it is necessary
to convert this representation to a sound form which is a continuous signal. The learner can hear
only this form, not the underlying representation. (About the implementation of this process see
Section 3.3.)

Decoder. This is the key procedure of the learning. As shown in the figure the decoder has
two inputs. The first is the continuous signal and the second is the developing phoneme map.
The role of the phoneme map is to assign weights to every possible phoneme, i.e. every possible
value-length combination (both features are continuous so the number of possibilities is infinite
in principle). The decoder tries to find an underlying representation that sounds the same as the
input sound if pronounced. More frequent phonemes (as determined by the phoneme map) have
a higher chance to make it into the representation but in principle every possible phoneme can
get there.

The resulting representation is such that it contains the fewest phonemes that can represent the
given pronunciation within a given error threshold. This conforms to the principle of economy,
i.e. we want to use as little amount of resources as possible and we want to keep things as simple
as possible.

We have to admit that the notion of perceptual encoding and motor encoding is confused
and the child has of course no way to check how would a given pronunciation sound like since
the motor capabilities are not at that level. However (as mentioned in Section 3.1) one of the
assumptions was that motor and perceptual encodings have isomorph structure. Furthermore the
child is assumed to be able to “play back™ a perceptual (compressed) representation which is a
similar process to actually pronouncing a word from our point of view. Thus the confusion of
motor and perceptual encodings becomes a further simplification our model makes.

Learning. Learning takes place when the decoder has created its output representation. The
phoneme map is modified in such a way that the weights (or frequencies) of the phonemes that
are present in the representation are slightly increased.

3.2.2 Lexicon building

The schematic model of lexicon building is shown in Figure 3.2. As clearly seen, it is very similar
to the model of phoneme acquisition. What is changed is that the phoneme map is converged to
a phoneme set and there is no more learning anymore. Otherwise the decoder does exactly the
same as before. Let us see the changed parts in what more detail.

Fixed phoneme set. The fixed phoneme set is almost identical to the converged phoneme map
(i.e. the phoneme map where the frequency difference between the frequent and rare phonemes
is already so large that the rare phonemes are practically never used). The only difference is that
a little “cleanup” is done which is in fact a clustering algorithm that creates clusters around the
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Figure 3.2: The schematic model of lexicalization after phoneme learning is finished.

most frequent candidates. This ensures that we do not get phonemes that are perceptually too

close to each other.

Child lexicon. The lexicon will contain the words that the decoder outputs. Note that all the
words use the learned phoneme set (which might slightly differ from the original adult set) and
every adult word maps to exactly one child word.

3.2.3 Organic Sound Change

The learning model sketched above can be iterated. This means we start from an adult lexicon.
The child learns first the phonemes then the lexicon. Then the child becomes an adult and the
same process starts with a new child. This iteration allows us to explore the long term dynamics

and implications of our model.
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time
Figure 3.3: Illustration of the pronunciation model.

3.3 Implementational Issues

In this section we describe the implementational decisions that have a serious effect of the be-
havior of the model.

3.3.1 Pronunciation

As already mentioned, pronunciation generates a continuous curve based on a phoneme se-
quence. A phoneme is defined by a continuous value and a length. Strictly speaking the set of
all possible phonemes was defined as [—1, 1] x [0, o], the second component being the length.
The implementation that was chosen is illustrated in Figure 3.3.

One point of the curve represents the place of the hypothetical one dimensional speech organ.
The acceleration of the speech organ is always ¢ or —c, no intermediate values are taken. When
we enter into the area of a phoneme along the time dimension, the phoneme value starts to attract
the organ which changes its acceleration to ¢ or—c if necessary depending on its position. The
acceleration is adjusted in such a way that no oscillation happens when reaching the phoneme
value, the organ stops smoothly. The resulting curve is smooth (i.e. its first derivative exists). It
is also very similar to the movement of the formants in a spectrogram of a pronounced word that
consists of only vowels.
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Figure 3.4: Examples for pronunciations. All plots were created with ¢ = 0.15 except the lower
left one which was created with ¢ = 0.04.

Figure 3.4 gives examples of interesting effects of such a model. The upper left pronunciation
is the typical case to give a point of reference. The lower left one is the same phoneme sequence
but it was pronounced with a slower speech organ. Of course we get the same effect with the same
speech organ and faster speech (shorter phonemes). In spectrograms we can see similar effects
when the person who speaks is drunk, sleepy or speaks fast. It is very interesting to experiment
with slowing down sound samples keeping the pitch. We get a quite clear “drunk-effect”.

The upper right plot shows the case when a short phoneme gets into a context which would
require very fast movement to reach the correct value. In such cases the pronunciation results in
different phoneme qualities depending on the length of the phoneme. Another interesting remark
is that in such cases pronouncing the word which has a lower short phoneme results in the same
pronunciation. When decoding the pronunciation there is no way to tell where was the original
phoneme based only on this sample. This makes learning of phoneme systems a nontrivial task.

Another tricky case is the “invisible” phoneme in the lower right plot. Completely removing
the short phoneme results in almost no change in the pronunciation. The only resulting difference
would be that the new pronunciation becomes a little bit shorter. Again, in such contexts it is
hopeless to decode the invisible phoneme based only on this sample.
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3.3.2 Phoneme Map

The function of the phoneme map is to assign weights (proportional to frequency) to every pos-
sible phoneme. It could be implemented many ways, for example it could provide values for
every continuous value and length pair if it was defined by a parametrized function. In the
current model I chose the simpler solution of representing it the brute-force way, i.e. by a two
dimensional grid, which involves discretization. In the map there is no connection between the
phonemes; nor inhibitory nor excitatory. Note however that a set of phonemes is still automati-
cally selected due to the decoding mechanism (see Section 3.3.3) and learning.

The clustering that outputs the actual learned phoneme set is done only at the end of phoneme
learning by a separate algorithm (see Section 3.3.4). Note that it would have been possible
to implement a map that automatically maintains and outputs a clustering without a separate
clustering algorithm but again: from an implementational point of view this approach is more
effective.

3.3.3 Decoder

The decoder uses the pronunciation of the adult and the developing phoneme map as input as
shown in Figure 3.1. The problem is finding an underlying representation that results in a pro-
nunciation that is closer to the original than a given threshold. (The distance function that defines
closeness is discussed later.) This problem is a very hard search problem if one wants to find an
exact solution. For this reason a simple yet effective heuristic was developed with a satisfactory
performance.

We have to emphasize that at this point the implementation is not intended to be psychologi-
cally realistic at the implementational level. The reason is that computers have a rather different
hardware than humans. For example in a highly parallel environment completely different algo-
rithms can be designed which would probably be closer to reality.

In the first step it produces a rough underlying form that contains phonemes only with the
smallest possible length. After that there is a “cleanup” phase which outputs the final result. The
result of these two phases is illustrated in Figure 3.5. In the following these phases are discussed
in detail.

Rough Approximation

In this phase an underlying form is created using only phonemes of a fixed length, the minimal
possible length. This minimal length is a parameter of the algorithm. This underlying form
is built starting with an empty word and appending newer and newer short phonemes until the
length of the original pronunciation is reached.

For deciding which phoneme to append next the penalty is calculated for each possible value.
It is possible because we work with a discrete set of values, not the whole continuous [—1 : 1]
range. Then those which fall within a given threshold are selected into a sampling pool. From this
pool one phoneme is drawn randomly according to a probability distribution which is calculated
based on the phoneme map which holds the frequency of every phoneme.
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original ——— original -~
approximation approximation

Figure 3.5: The phases of finding an underlying representation.

Distance Function

Penalty is defined by a distance function which is defined over pairs of pronunciations. In the
present implementation this function is the average of square distances at equidistant time sam-
ples. It is interesting to mention that another penalty term must be added for the algorithm to
work. At the end of the compared interval the difference of the derivatives of the two curves.
Without this term we get into problems because the limited moving capability of the speech or-
gan results in the accumulation of differences and for longer words the end of the word becomes
completely different. Thus we need to keep not only the place but also the moving direction
close to the original.

Cleanup

This algorithm works on the rough approximation which contain phonemes only of the minimal
length. First neighboring phonemes with the same value are fused into one phoneme using the
sum of the length of the fused phonemes as the new length.

Then we try to reduce the number of phonemes further by trying to change the value of every
phoneme to either the value of the preceding phoneme or the next phoneme. If this can be done
without getting out of the penalty threshold then it is done. This process is iterated until no more
movements can be done within the error threshold.

Learning

The output of the cleanup is used to update the weights in the phoneme map. This process is very
straightforward: the weight of phonemes which are included in the perceived word are multiplied
by a constant which is a parameter of the algorithm. The constant is normally close to one, say
1.05. Due to this method the increase is first slow the it becomes fast. This results in an initial
exploration phase followed by the sharpening of the contrasts.
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4 Simulations

The detailed description of the experiments discussed in this chapter can be found in Appendix A.
Here we shall concentrate on a short illustration of phoneme learning and a somewhat longer
discussion of a couple of interesting observed phenomena.

4.1 Phoneme Learning

Before going on to sound change maybe it is worth to give a little illustration of phoneme learn-
ing itself. The algorithm has been discussed in detail so let us see what is actually happening
during phoneme learning. Figure 4.1 shows the development of the phoneme map during the
first iteration trough the dictionary. As it can be seen clearly the overall structure of the phoneme
system becomes quite clear by the end as the relative weight of low frequency candidates become
less and less.

4.2 Sound Change

This section is concerned with commenting on some phenomena that can be seen on the fig-
ures showing the results of the simulations in the Appendix. Let us begin with some general
comments over these figures. The first observable fact is that for larger acceleration and smaller
thresholds the phoneme learning is very accurate. In fact those settings that have zero deviance in
Figure A.3 resulted in an exact learning of the dictionary trough 100 generations. In other words
the dictionary of the 100th generation is the same as the original. These cases can be thought
of as control cases which show that the phoneme learning model is accurate if the level of noise
is low, and changing effects are indeed due to the increased noise and not the inaccuracy of the
learning model. Many types of effects that represent a deviation from this correct case will be
mentioned in the following.

Finally I have to mention that it is a pity that it is not possible to include animations on paper
because the plots in Figure A.2 are especially useful when animated. However in this form they
still provide us with a rather holistic view of what happened during the experiment as every
relevant aspect is represented in the plots.
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Figure 4.1: Acceleration is 0.04, error threshold is 0.002, the rest of the parameters is the same
as in all other experiments. The phoneme map is shown after learning 3, 10, 20, 30, 40 and 50
words respectively. In a plot the horizontal dimension is the interval of phoneme values [—1, 1],
the vertical dimension is length, [0, 4] with 0 being the bottom line. The size of points indicates
frequency (the smaller the less frequent).

Figure 4.2: Three different encodings of a word for an acceleration of 0.01 and threshold 0.0005.

4.2.1 Random Fluctuation

Under some circumstances it is possible that some phonemes are not uniquely defined even if
the threshold is very small. One example is the setting (0.01,0.0005) (see Figure A.1). In the
diagram it can be seen that the left side is noisy. This can happen because most of the phonemes
have a positive value so the only phoneme with a negative value (—0.5, 0.5) which is rather short
can not be found based on the pronunciations. Several equivalent encodings exist. Figure 4.2
illustrates this effect. As a result the encoding that is found by the learner is random within the
allowed range while the pronunciation itself remains the same.

Note that it is not the error of the learning algorithm; it is an inherent property of the model
which is based on pronunciation. The representations of an individual can be different as long as
the resulting behavior is the same.
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4.2.2 Fusion

Another effect is the fusion of phonemes. From Figure A.3 it is clear that in many cases the
average length of the words decreased and even if not, there was some deviation which means
that in almost all cases shorter words appeared. This obviously means fusion.

There is a different type of fusion however which does not change word size. One example
can be seen for the setting (0.02,0.002). Taking a good look at Figures A.1 and A.2 we can see
that the two phonemes (0.3,0.5) and (0.5, 1.4) united their values while the lengths remained
the same. In Figure A.2 we can also see a phoneme which is quite long (in fact 1.9) with the
same value. This indicates that in some of the words the sequence (0.3, 0.5)(0.5, 1.4) might have
fused. Closer inspection shows that a few words show the signs of such a fusion although not all
such sequences fused in this way. Depending on context other changes could take place.

4.2.3 Insertion

In the experiments insertion is common as can be seen from Figure A.3. One example of in-
sertion can be seen in Figure 4.3 in the first three steps. Although the pumping effect does not
seem realistic, its first step, when the step is created seems to be acceptable. For instance in
Hungarian a similar effect can be observed in the pronunciation of “fid” which sounds like [fiju:].

A common spelling error is “fiji”” which suggests the underlying form /fiju:/ at least in a part of
the population.

4.3 Side-Effects of Implementational Decisions

This section discusses effects that can be explained by a particular ad hoc implementational
decision and which are therefore not predictive. To explore these problems is especially useful
for the further improvement of the model.

4.3.1 Jumping

This effect can be seen only with a threshold of 0.005. First let us note that (as mentioned earlier)
the distance function applied for calculating the difference between pronunciations includes the
average of the squares of differences in sample points (which are dense enough). Since we set
the minimal phoneme value distance at 0.05 (see the Appendix) we can see that with thresholds
smaller that 0.0025 every phoneme is outside the threshold except the correct one. A threshold
of 0.005 already allows matching different phonemes.

The distance function also includes a term which measures the difference of the derivatives of
the curves which is in fact essential for successful matching. However these settings cause an in-
teresting jumping effect which means that a phoneme never remains the same in two consecutive
iterations (see e.g. setting (0.01, 0.005)).

The exact reason is that if the approximation is close to the original then the penalty term
allows larger deviations in the derivative which makes it very likely that the approximation gets
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further away from the original. On the other hand if the curve is already far from the original
then it remains so for the very same reason.

Note that for the setting (0.04,0.005) the two phonemes that actually emerge move com-
pletely together while producing the jumping effect as well. This is due to the same problem.
Once we are e.g. over the first phoneme of a word it becomes very hard to turn back (and if
we re under it the same holds). That means that the phonemes tend to be above or below their
respective originals together.

4.3.2 Drifting

For the setting (0.01, 0.002) a very clear tendency to drift towards the value 1 can be seen. Closer
inspection reveals that the reason is the following. If the value of the first phoneme is larger than
0 then the pronunciation starts with an S-shape curve. When the approximation follows it exactly
there is no problem. Drift upwards can happen only after the inflection point since we allow only
two accelerations: ¢ or —c. But if we drift upwards we can never go under the original curve
until the S-shape finishes for the same reason. And once we are over the constant part of the
original it is hard to go downwards because of the derivative penalty. This is not a problem with
drifting downwards (it can happen only before the inflection point) since we can always go over
the curve again. This results in a tendency of overshooting.

4.3.3 Length Pumping

Probably the most interesting observation is the “length pump” mechanism that can be observed
only in the case of (0.15,0.005). All the other settings result in a relatively conservative lexicon
size while in this case the lexicon simply explodes.

After investing some work in analyzing the data in greater detail the reason turned out to be
the length pump illustrated in Figure 4.3. The pump works as follows. We start with a word that
has at least one wave-like part like in the first plot. Very soon the inner approximation of this
word becomes something like the one in the second plot. Recall that inner representation is not
connected to any phoneme system. The whole phoneme map is used (taking frequencies into
account of course).

It is only in the lexicon building phase when the phoneme set is chosen and the words are
encoded using only this phoneme set. Since this set is much more restrictive than the phoneme
map (even if weights are highly converged) it always results in some quality degradation. We
can think of it as the first half of the U curve that can be observed in many domains, including
phoneme learning. This quality degradation can be seen in the third plot. As a result a step is
introduced in one of the peaks.

After this phase another type of insertion takes place. If the value of the phoneme that forms
the step disappears or simply less frequent than the values of the top and bottom phonemes then
the step gets approximated in the pretty surprising way which is shown in the fourth plot. Observe
that again the inner representation is correct in the sense that the pronunciation is approximated
perfectly just like in the first case. The difference is that in this case the performance degradation
is much more drastic. So much so that the resulting pronunciation includes one more peaks.
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Figure 4.3: The pumping effect. The plots show in time order the first lexical form, its inner
approximation (which is correct w.r.t. pronunciation), its lexicalization after length standardiza-
tion (which is not correct anymore) the next approximation and finally a lexical form after length
standardization. The overall result is one more peak.

Compared to the very first form we arrived in a very similar situation only with more pos-
sibilities to applying the length pump. In the first generations the growth of length is almost
exponential.

4.4 Summary

We can conclude that if there is little noise than model is capable of perfectly learning the lex-
icon through many generations. This means that the deviation from perfection are due to the
increasing amount of noise which is introduced by the slower speech organs (by smoothing out
the words) and increasing error threshold (by allowing the acceptance of lower quality underly-
ing representations). We could observe phenomena that naturally occur in natural languages like
insertion and fusion. We could observe other phenomena which are caused by ad hoc implemen-
tational decisions.

Finally let us recall that the original goal was not to give an exact model of phoneme learning
or sound change. Rather I wanted to introduce a model which gives us a bird’s eye view of
the process and allows us to experiment with the dynamics of such an adaptive unsupervised
computational approach in the hope that in the future a more complete theory of language can be
built along similar lines.



5 Conclusions

In this thesis it was emphasized that modeling language phenomena should be psychologically
grounded. Structural approaches fail to fulfill this goal concentrating only on modeling surface
forms using rather ad hoc model frameworks and hoping (if at all) that their theory will someday
meet with the other fields. As Boersma puts it in his thesis:

This book treats the explanation and description of phonological phenomena, but has
little to say about their mental implementation. In other words, the what and why are
accounted for but the how is not. (original emphasis) (Boersma, 1998, pp. 465)

However such an approach makes it hard to see the connections between seemingly different
fields and—more importantly—it ignores the possibility that what is pushed into the territory of
implementation might turn out to be the model itself.

In this work a model was developed with this in mind. Another assumption was that it is
worth to try to model as much as possible in a simplified setting because this way we can avoid
the problem of having to deal with isolated and often incompatible models of different aspects
of the world. The prize to pay is of course the loss of fine grain detail.

5.1 Future Work

As mentioned in previous chapters the actual implementations of model components are not cru-
cial from my point of view. This means that it would be interesting to replace some of them,
especially phoneme learning. In earlier phases of this work I experimented with a continuous ap-
proach, i.e. the phoneme map was indeed infinite. The results were quite insufficient. The reason
is that in that case finding an underlying representation is indeed a multi-constraint continuous
global optimization problem. Maybe further exploration of some of the methods for solving the
problem would help us see what change does a new learning method introduce in the system.

The simpler possibility of increasing the phoneme value resolution would also be interesting
since as we have seen some of the properties of the output can be explained by using the particular
phoneme resolution.

Fixing the drifting and the pumping effect is also possible using another interpretation of the
threshold value. In the present model every phoneme value within the threshold has an equal
probability to make it into the solution. By using a more sophisticated distribution that favors
lower error values the results would have probably been different.
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In the long run letting the lexicon develop automatically seems to be a very interesting pos-
sibility to explore. In the present model it is built after an explicit phoneme clustering so the
phoneme learning and lexicon building are strictly sequential (although the phoneme learning is
done on the basis of the lexicon of the adult). This solution suffices as a rough approximation but
one of the really interesting aspects of human skill (and language) learning is the emergence of
new layers on top of older ones. Modeling such an emerging layer would be useful also because
it would introduce a new constraint on the formation of the first layer and the overall represen-
tation of knowledge so the model of phoneme learning itself could be expected to improve as
well.



A Appendix

A.1 Configuration Parameters

The model has a number of configuration parameters that have an effect on the behavior of
the simulations. For the sake of completeness the names used in the configuration file of the
actual implementation are also included in typewriter font. However completely technical
configuration parameters like random seed, etc. are not included.

acceleration capability of speech organs (a) Described in Section 3.3.1. The notation ¢ was
used in the text for this value.

recognition threshold (rth) Described in Section 3.3.3.

weight growth ratio (wgrowthratio) Described in Section 3.3.3 in connection with learn-
ing.

phoneme value resolution (valres) See Section 3.3.2. This defines how many equidistant
phoneme values are defined in the interval [—1, 1]. The values -1 and 1 are always included
thus this value is at least 2.

phoneme length resolution (1enres) See Section 3.3.2. This defines the step size of the
lengths of possible phonemes.

minimal phoneme distance (minphd) See Section 3.3.2. This defines the minimal distance
between the values of any pairs of phonemes from a phoneme system.

minimal phoneme length distance (ninphlend) See Section 3.3.2. This defines the minimal
distance between the lengths of pairs of phonemes with the same value.

initial phoneme system (ph1list) This gives a set of phonemes to start with.

initial word list size (vordlistsize) This gives the initial size of the lexicon. This makes
sense if no previous lexicon exists. In that case words of length 5 are generated.

iterations (iterations) This gives the number of iteration steps to learn a phoneme system.
An iteration step is defined by going through the lexicon completely.

generations (generations) Used in sound change experiments. It gives the number of times
a new lexicon is learned based on the previous one.
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A.2 Settings and Complete Output of Experiments

The varying parameters of the experiments discussed in Chapter 4 were acceleration (a) and
recognition threshold (rth). The values of a were taken from

{0.01,0.02,0.04,0.08,0.15,0.30}

and the values of rth from
{0.005, 0.002,0.001, 0.0005}

All combinations were tested in 6 X 4 = 24 experiments.

The fixed parameters were the following. The step size for phoneme values was 0.05, for
lengths 0.1 with a maximal length of 4. Thus a phoneme map of size 41 x 40 was used. the
initial phoneme set was

{(0.5,1.4),(0.3,0.5), (0, 1), (—0.5,0.5)}

with the first value being the phoneme value and the second the length in the pairs. The first
generation started with a randomly generated lexicon of size 50. The words contained different
neighboring phonemes only. The rest of the parameter values were wgrowthratio=1.05,
minphd=0.12, minphdlen=0.5, iterations=20, generations=100.

Figures A.1, A.2 and A.3 contain different visualizations of all the experiments.
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Figure A.1: The plots correspond to combinations of acceleration of speech organ (0.01 — 0.30)
and error threshold (0.005 — 0.0005). In a plot time goes from top to bottom. The horizontal
dimension is the interval of phoneme values [—1, 1]. Every time slide of a plot corresponds to the
phoneme values present at the given time point. In these plots length and frequency information
is ignored. However the development of the value system can be clearly followed.
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Figure A.2: The plots correspond to combinations of acceleration of speech organ (0.01 — 0.30)
and error threshold (0.005—0.0005). In a plot the horizontal dimension is the interval of phoneme
values [—1, 1], the vertical dimension is length, [0, 4] with 0 being the bottom line. The shade
of points indicates time (the lighter the older) and size indicates frequency (the smaller the less
frequent). In these plots every information about the development of the phoneme system is
represented.
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Figure A.3: The plots correspond to combinations of acceleration of speech organ (0.01 — 0.30)
and error threshold (0.005 — 0.0005). In a plot time goes from top to bottom. The horizontal
dimension is the average word size ([0, 10]). Error bars show the empirical variance of word size
in the lexicon. The curve in the plot corresponding to the setting (0.15,0.005) is out of range
(actually it reaches 65) so only the beginning can be seen.
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