
Ordered Slicing of Very Large-Scale Overlay Networks∗

Márk Jelasity†

University of Bologna, Italy
jelasity@cs.unibo.it

Anne-Marie Kermarrec
INRIA/IRISA, Rennes, France

akermarr@irisa.fr

Abstract

Recently there has been an increasing interest to har-

ness the potential of P2P technology to design and build

rich environments where services are provided and mul-

tiple applications can be supported in a flexible and

dynamic manner. In such a context, resource assign-

ment to services and applications is crucial. Current

approaches require significant “manual-mode” opera-

tions and/or rely on centralized servers to maintain re-

source availability. Such approaches are neither scal-

able nor robust enough. Our contribution towards the

solution of this problem is proposing and evaluating

a gossip-based protocol to automatically partition the

available nodes into “slices”, also taking into account

specific attributes of the nodes. These slices can be as-

signed to run services or applications in a fully self-

organizing but controlled manner. The main advantages

of the proposed protocol are extreme scalability and ro-

bustness. We present approximative theoretical models

and extensive empirical analysis of the proposed proto-

col.

1. Introduction

Following the scale shift in distributed systems and
their increasing dynamism, peer-to-peer overlay net-
works have imposed themselves as the key to build and

maintain large-scale dynamic distributed systems. One
important problem in the field of overlay networks is the
design of infrastructures on which several applications

might run together and share resources. Examples of
such applications are Desktop-grid like computing plat-
forms [1], and testbed platforms such as PlanetLab [2].

One key sub-problem is such environments is re-
source assignment to services and applications, and the
definition of the resource itself. For example, in Plan-

etLab, the core concept is a slice, which refers to a vir-
tualized network running over multiple physical nodes,

∗in IEEE P2P, pp. 117–124, 2006. This work was partially sup-
ported by the Future and Emerging Technologies unit of the European
Commission through Project DELIS (IST-2002-001907).

†Also with RGAI, MTA SZTE, Szeged, Hungary.

and where each node can participate in multiple slices.

Such slices are assigned to specific applications, sharing
the platform. However, existing approaches are mostly
manual and/or centralized. In contrast to this, we are

interested in massively large scale and extremely dy-
namic networks, in which centralized slice assignment
is not an option and where slices need not only to be

assigned, but also maintained, to face constant churn.

In this paper, as a step towards a full self-organizing

architecture, we focus on a well-defined problem: or-

dered slicing. Our objective is to create and maintain a
partitioning of the network (we call the partitions slices

in the remaining of the paper). This implies that slices
are defined as subsets of the network, that is, each node
belongs to exactly one slice at any given point in time.

However, several such partitionings can be maintained
in parallel. The ordered nature of the slicing means that
specific attributes can be taken into account to partition

the network: the partitioning is done along a fixed at-
tribute of the nodes. For example, a service might re-
quire a slice composed of the top 20% of the nodes pro-

viding the largest bandwidth. Besides, we need to pro-
vide this top 20% constantly, even if the nodes in the top
20% constantly change due to churn or changing node

properties.

Many metrics may be used to sort the nodes such

as available resources (memory, bandwidth, computing
power) or some specific behavioral pattern such as up-
time. Note that slicing the network at random, and fo-

cusing only on the size of the slices is a special case of
our ordered slicing protocol. We also note that the slice
sizes are expressed as a percentage of the network, that

is, if the network grows, slices grow accordingly.

We base our approach on a class of gossip-based

protocols, that have been proven to be able to main-
tain connectivity in large-scale dynamic systems in the
presence of high churn and other extreme failure sce-

narios [3]. This is achieved through maintaining a dy-
namic, pseudo-random overlay network. Due to their
low cost, simplicity, scalability and robustness, these

networks represent an ideal foundation to build our pro-
tocol upon.

The rest of the paper is organized as follows. In
Section 2 we provide the problem statement and the sys-



tem model. In Section 3 we describe our gossip-based
slicing protocol. An approximative theoretical model of

our approach is presented in Section 4 and an extensive
empirical analysis is presented in Section 5.

2. Problem Definition

2.1. System Model

We consider a network consisting of a large collec-
tion of nodes that are assigned unique identifiers (typi-

cally IP addresses) and that communicate through mes-
sage exchanges. The network is highly dynamic; new
nodes may join at any time, and existing nodes may

leave, either voluntarily or by crashing. In the follow-
ing, we limit our discussion to node crashes. Voluntary
leaves are implemented as crashes: our protocols will

not require a dedicated leave procedure, nor any fail-
ure detection. Successful delivery of messages happens
without delay, however, messages may be dropped.

Byzantine failures, with nodes behaving arbitrarily, are
excluded from the present discussion.

We assume that nodes are connected through an
existing physical routed network, such as the Internet,
where every node can potentially communicate with ev-

ery other node. To actually communicate, a node has to
know the identifiers of a set of other nodes (its neigh-

bors), for example, the IP address in the case of an IP

network. This neighborhood relation over the nodes de-
fines the topology of the overlay network. Given the

large scale and the dynamism of our envisioned sys-
tem, neighborhoods are typically limited to small sub-
sets of the entire network. The neighbors of a node

(and, thus, the overlay topology) may change dynam-
ically over time.

2.2. The Ordered Slicing Problem

Intuitively, the ordered slicing problem asks for a
partitioning of the nodes in the overlay network into
groups (slices) in such a way, that the groups are or-

dered with respect to some given metric, such as the
availability of a resource, or some other relevant prop-

erty. For example, we might be interested in creat-
ing and maintaining a slice composed of the top 10%
nodes according to available bandwidth, expected up-

time, and so on. Note that creating a slice of a given
size, populated with random nodes, is a special case
where the metric is not taken into account, or, equiv-

alently, assuming all nodes have the same value of the
metric. Slice sizes are expressed as a percentage of the
network size.

To define this problem, let N denote the network
size and let each node i have an attribute, xi. This value

will typically measure the availability of some resource
at node i. We assume that there exists a total order-

ing over the domain of the attributes values, so that the
values in the network (x1, . . . ,xN) can be ordered. Let us

also assume that there is a slice specification that defines
an ordered partitioning of the nodes. That is, the slice
specification is a list of positive real numbers s1, . . . ,sk

such that ∑ si = 1, that define slices S1, . . . ,Sk, where the
size of Si is siN and for all i < j, a ∈ Si and b ∈ S j we
have xa≤ xb. We also assume that the slice specification

is known at each node locally.

The problem is to automatically assign each node
to slices in such a way that satisfies the slice specifica-
tion, using only local message exchange with currently

known neighbors. That is, we want each node to find
out, which slice it belongs to, and, as a function of con-
tinuous changes in the network, maintain this assign-

ment up-to-date.

The difficulty lies in the fact that the correct solu-

tion needs global information in that each nodes needs
to calculate the number of nodes that preceed them in
the total order according to the x attribute, and break

ties whenever the number of preceeding nodes in not
well defined (for example, if there are many identical

attribute values in the network). Furthermore, the dy-
namism and failures in the system add extra difficulty,
as this assignment needs to be continuously maintained

in the face of a changing set of nodes.

As opposed to most traditional approaches that re-

quire eventual correctness provided there is no failure
or change in the system for a sufficiently long time, we
focus on a best effort approximation which is as close to

the optimal solution as possible. In other words, instead
of focusing on the worst case, we focus on optimizing
the performance under normal dynamic operation.

Note that the solution we present in this paper can

easily be extended to more general cases, such as when
more independent attributes are involved, or when over-
lapping groups need to be maintained, and so on. How-

ever, the problem definition above allows us to keep the
focus on the analysis of the key novel contributions in-
troduced in this paper. We only sketch the possibilities

of extensions in the conclusion.

3. A Gossip-based Approach

As mentioned previously, to let nodes decide lo-

cally whether they belong to a certain slice or not (ex-
pressed at a percentage of the whole size which is not
known either), the key issue is to enable a node to ap-

proximate what percentage of nodes preceed it in the
ordering according to the attribute value. There are at
least two natural choices to implement this functional-

ity. The first is through the application of protocols to
calculate the ranking of the nodes in the ordering [6, 7].
However, known protocols are expensive and they are

not suitable to maintain ranking information cheaply in
the face of large scale and dynamism. The second is



to approximate the distribution of the attribute values
and use this information to map any attribute value to

an approximate ranking [9]. This approach however is
not robust to skewed distributions and does not provide
a sufficiently accurate information for the present pur-

poses.

To deal with dynamism and large scale, we follow

a third approach, which is based on the sorting of ran-
domly generated numbers. The basic idea is that each
node generates one uniform random number from a

fixed interval, and subsequently the set of these random
numbers are sorted “along the attribute values” with the
help of the protocol we describe below. Sorting along

the attribute values means that—via swapping the ran-
dom numbers among a suitable sequence of pairs of
nodes—we would like to achieve that the order of the

random numbers reflects the order of the attribute val-
ues over the nodes.

After sorting, the node is able to make a judgment
about its position in the sorting of the attribute values
based on the random number it currently holds, because

the distribution of the random numbers is known (that
is, uniform from a fixed interval) and because the order
of the random numbers reflect the order of the attribute

values. For example, if the random numbers are drawn
from [0,1], then a node decides that it is in the first half
of the sorting if, after sorting along the attribute val-

ues, it holds a value less than 0.5. Apart from being
simple, this approach supports dynamism well, as all

joining nodes can locally initialize their random num-
ber and subsequently participate in the sorting. Further-
more, the approach works independently of the distri-

bution of the attribute values: they can even be identical
at all nodes, in which case only the sizes of the slices
are determined, but the nodes will be assigned to slices

at random.

However, the sorting problem might seem equally

difficult to our original problem. Our main
contribution—apart from proposing the application of
sorting—is a gossip-based sorting protocol that is sim-

ple to implement, incurs minimal costs and is efficient
enough for the purposes of ordered slicing. The basic
idea relies on a simple swapping of the random num-

bers between nodes. For example, let nodes i and j have
attribute values xi = 10 and x j = 20, and random num-
bers ri = 0.8 and r j = 0.1. These nodes simply swap

their random numbers in order to make them reflect the
ordering of the attribute value. In order to make such
pairs of nodes discover each other, we rely on a gossip-

based algorithm.

Gossip-based algorithms have proven very effi-

cient to create large-scale overlay networks that are ex-
tremely robust to failure and churn [3]. These algo-
rithms are very simple: periodically, each node chooses

a gossip target among its neighbors to exchange infor-
mation with. The topology of the resulting overlay net-

1: loop

2: wait(∆r)

3: p← random element from view
4: buffer← view ∪ {(myAddress,timestamp,xq,rq)}
5: send buffer to p

6: receive bufferp from p

7: view← youngest c entries of bufferp∪ view

8: i← peer from view such that (xi−xq)(ri− rq) < 0
9: send (xq,rq) to i

10: rq← get ri from i

11: end loop
(a) active thread at node q

1: loop

2: receive bufferq from q

3: buffer← view ∪ {(myAddress,timestamp,xp,rp)}
4: send buffer to q

5: view← youngest c entries of bufferq∪ view
6: end loop

(b) passive thread at node p

Figure 1. The NEWSCAST sorting protocol. At
node i, ri is the currently held random value
and xi is the attribute value.

work depends on the target selection and the way the

information exchange is processed.

Specifically, our sorting protocol is based on the
NEWSCAST protocol [5]. The purpose of NEWSCAST is

to maintain a connected random overlay network in the
face of dynamism, to implement the peer sampling ser-

vice [3]. In addition, NEWSCAST can be used to spread

“news”, that is, information about participating nodes,
that is useful only for a limited amount of time.

The basic idea behind the sorting algorithm is that

each node will passively look for candidate peers to
swap its random value with, in order to improve the
sorting. These candidates are discovered using the con-

stantly changing set of neighbors provided by the NEWS-

CAST protocol and the information (news) that is avail-
able over these neighbors.

The sorting protocol, derived from the NEWSCAST

protocol and executed at each node, is shown in Fig-
ure 1. The VIEW is a set that contains the neighbors the

node currently knows about. The size of the view is
limited by parameter c. The view is composed of node

descriptors, that contain, among other information, a
timestamp of the creation of the descriptor. This times-
tamp is used to make decisions on which items to keep

or throw away. Each node can have at most one descrip-
tor in any view. When unifying two views, the freshest
descriptor is kept for all nodes.

In the descriptor of node i, we store the attribute xi

and the random number ri that was held by node i at the
time of the creation of the descriptor. In line 8, the peer

to exchange the random value with is selected based on
this information. More specifically, in an attempt to in-



crease the probability of encountering a potential can-
didate for swapping, the node is looking for a peer that

has a higher attribute value but a lower random value or
vice versa. The rationale is that if this is not the case,
it is guaranteed that the sorting cannot be improved by

performing an exchange with the given peer.

Note that it is not guaranteed that a suitable peer ex-

ists in the view. In that case, no exchange is performed.
Besides—since the information in the descriptor might
be slightly outdated—it is possible that although the

peer seems to be a suitable one for doing an exchange,
in the meantime its random value has changed and is

not actually suitable. In this case no exchange happens
either.

Finally, although the protocol is not synchronous,
it is often convenient to refer to cycles of the protocol.
We define a cycle to be a time interval of ∆ time units

where ∆ is the parameter of the protocol in Figure 1.
Note that during a cycle, each node is updated twice on
average: once when it sends its own message, and once

on average when it receives a message.

4. Theoretical Models of the Basic Protocol

In this section, we present qualitative models of the
protocol described in Figure 1. To qualitatively charac-

terize its convergence speed, we will also apply theoret-
ical results from a seemingly unrelated field: distributed
gossip-based average calculation [4].

4.1. Basic Definitions

To simplify the notations (without restricting gen-

erality), we think of the network as a vector, ordered
according to the attribute values xi. We also assume
here that the attribute values are stable (do not change)

and that the set of nodes does not change either. That is,
the order of the nodes in the imaginary sorted vector re-
mains the same during the execution of the protocol. Fi-

nally, we also assume that the set of random numbers ri

held by the nodes does not change either. The assump-
tions above allow us to describe the state of the network

simply by a permutation of the random values. Let this
permutation at time t be denoted as ri1(t), . . . ,riN(t), ex-
pressing the fact that value ri j(t) can be found at node

i j(t) at time t. Furthermore, let the specific permuta-

tion r1, . . . ,rN .denote an ordering of the values, that is,
if i≤ j then ri ≤ r j.

Clearly, in these notations, the goal of the proto-
col is to sort the values ri through applying a series of
binary permutations (swapping pairs of values). Let us

assume that there is only one good sorting, that is, all
the values are unique. Note that if some of the values
are not unique, then the problem becomes easier; for

example, if all the values ri or xi are the same, then
all permutations are sorted and there is no problem to

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

 0  20  40  60  80  100

d
is

o
rd

e
r 

(σ
)

cycles

c=20, N=30000, 100000 and 300000
c=40, N=30000, 100000 and 300000
c=80, N=30000, 100000 and 300000

Figure 2. Disorder as a function of cycles.
Curves for a fixed c completely overlap when
normalized by N2.

solve.
Using these notations and assumptions, we can in-

troduce our measure of disorder to characterize the con-

vergence of the protocol:

σ(t,ri1(t), . . . ,riN (t)) = σ(t) =
1

N

N

∑
j=1

( j− i j(t))
2, (1)

which measures the average squared difference of the

current index of random values from the correct index.
This measure is minimized when the sorting is perfect,
when it takes the value of zero.

The value of this measure is shown in Figure 2.
Note that the figure indicates that less than 20 cycles

are sufficient to reduce the average error to 1% of the
network size, which means that nodes are N/100 posi-
tions away from their correct position on average, inde-

pendently of network size. With c = 80, 40 cycles are
enough to reach 0.1% precision.

4.2. Analogy with Average Calculation

In the average calculation problem, all nodes have
a numeric value, and the goal is to calculate the aver-

age of these values. The protocol presented in [4] has
a striking similarity with our sorting protocol. In that

case, in each cycle each node picks a random peer us-
ing the peer sampling service (for example, NEWSCAST),
and performs an averaging step with the selected peer,

during which both nodes replace their value with the av-
erage of their two old values. The performance measure
for the averaging is defined as

σavg(t) =
1

N

N

∑
j=1

(w−w j(t))
2. (2)

where w j(t) is the value at node j at time t, and w is the
average of the values.



The local update step is analogous to the swapping
of values in the present sorting protocol. The difference

is that in the case of sorting, swapping can be performed
only with suitable nodes, while in the case of averaging
there is no such restriction. In the case of both proto-

cols, we can talk about a weight conserving property.
In the case of averaging, the local averaging step keeps
the global average identical while reducing σavg. In the

case of sorting, it can be seen that

1

N

N

∑
j=1

j− i j(t) =
1

N

N

∑
j=1

j− 1

N

N

∑
j=1

i j(t) = 0 (3)

for all permutations. Just like in the case of averaging,
a swapping step does not change the value above (it re-

mains zero), while—as it can also be easily proven—it
always reduces σ .

4.3. Exponential Convergence

In the case of averaging, it has been proven that
σavg decreases exponentially fast, as a function of the

number of local exchanges performed. In particular, it
was proven that

E(σavg(t + δ ))≈ E(2−φ )E(σavg(t)) (4)

where random variable φ counts the number of local av-
eraging steps a random node in the network participates

in during a time interval of length δ .
Motivated by the analogy described above, we pro-

pose a similar simplified deterministic model for the
sorting protocol:

σ(t + δ ) = k−φ σ(t), (5)

where k > 1 is a constant and φ is the number of swaps
one node participated in on average. As can be seen in

Figure 3, the qualitative prediction of exponential be-
havior is very accurate. We emphasize that this is an
empirical (and not an analytical) model that is otherwise

motivated by analytical models of analogous protocols.

4.4. The Number of Successful Swaps

It is remarkable that the prediction of the conver-
gence speed as described above depends only on the
number of swaps, no matter how fast the number of suc-

cessful swaps are performed. This allows us to separate
the analysis of the protocol into two independent parts:

the speed at which successful swaps are performed and
convergence as a function of the number of swaps.

Peers to swap values with are found via unbiased

random sampling from the entire network. First of all,
the probability that in a certain point in time t a random
sample from the entire network is a suitable peer is pro-

portional to the error
√

σ(t). Using this observation,

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

 0  2  4  6  8  10

d
is

o
rd

e
r 

(σ
)

number of successful swaps / network size

N=30000, c=20, 40, 80
N=100000, c=20, 40, 80
N=300000, c=20, 40, 80

Figure 3. The exponential decrease of the dis-
order as a function of number of successful
swaps (normalized by the network size), for dif-
ferent values of parameter c (view size) and net-
work sizes. Lines that belong to the same net-
work size fully overlap.

we derive a model to predict the number of successful
swaps. Let a(t) denote the number of successful swaps

at time t. We can define a recursive equation as follows:

a(t + 1) = a(t)

√

σ(t + 1)
√

σ(t)
= a(t)(k

1
2 )−a(t) (6)

where we applied (5).

It can be easily verified, that for large t, the solution

is a(t)∼ t−1. To see this, let logx denote the logarithm

of base
√

k. Then,

loga(t +1) = loga(t)−a(t) = loga(1)−
t

∑
i=1

a(t). (7)

After substituting a(t) = bt−1, the equation remains a

good approximation if t is large:

log(t + 1)≈C2 + b
t

∑
i=1

i−1 (8)

where C is a constant. The right hand side of the equa-

tion is a good approximation of the left hand side for a
suitable constant b, due to the fact that d logt/dt ∼ t−1.

As shown in Figure 4, the number of swaps de-
pends on the view size parameter c, but in all cases it

has a power-law tail, with exactly the predicted coeffi-
cient: x−1. In the first cycles however, the number of
exchanges remain approximately constant. This is due

to the fact that the algorithm uses c > 1 candidates to
eventually select a peer. If p is the probability that a
random peer is a suitable peer, then in each selection

step, the algorithm selects a suitable peer with proba-
bility 1− (1− p)c. While p is large (that is, while t is



10
2

10
3

10
4

10
5

 1  10  100

s
u

c
c
e

s
s
fu

l 
s
w

a
p

s

cycles

N=300000

N=100000

N=30000

c=20
c=40
c=80

slope of 1/x

Figure 4. Swaps as a function of cycles.
Curves completely overlap when normalized
by N.

small), this probability remains close to one, and as a re-
sult σ decreases exponentially fast. However, when p is
small, 1− (1− p)c ≈ cp, that makes our predictions for

the tail valid, since in this case the probability of suc-
cess is proportional to p which is in turn proportional to
the actual error.

This analysis tells us that, depending on c, there is

an initial phase in which the convergence of the squared
error is exponential, followed by a phase when conver-
gence slows down. Most importantly, this result is in-

dependent of network size which allows for a scalable
and robust setting of parameters.

5. Experimental Analysis

We have performed extensive simulation experi-
ments in order to study the behavior of the protocol
in the presence of message drop and node dynamism

(churn). The experiments were performed using the
PEERSIM simulator [8]. All scenarios were run with
three network sizes (N = 30000, 100000 and 300000)

and three view size settings (c = 20, 40 and 80).

5.1. Message Drop

The protocol generates a large number of indepen-
dent message exchanges (a request and an answer) at
all nodes. In the implementation, the messages are as-

sumed to be sent using an unreliable channel, such as
UDP, and there is no failure detection mechanism.

If the message carrying the request is dropped, the
exchange is dropped as a whole. These cases simply

slow down the convergence proportionally to the num-
ber of failures, without changing its characteristics.

If the answer is dropped (after the contacted peer

has updated its value) then the value originally held by
the contacted peer is lost, since the requestor peer will

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 10  20  30  40  50  60  70  80  90  100

d
is

o
rd

e
r 

(σ
)

cycles

c=20, drop rate 10%
c=40, drop rate 10%
c=80, drop rate 10%

c=20, no message drop
c=40, no message drop
c=80, no message drop

Figure 5. Disorder as a function of cycles, with
and without message drop, for N = 100000.

keep holding its original value. In other words, one of

the values gets duplicated and the other gets lost. This
however has no dramatic effect, as long as there are still
a sufficient number of different values, since the dis-

tribution of the set of all values is still uniform (since
no bias is involved in the message failures). Indeed, as
shown in Figure 5, we can only observe a proportional

slowdown, under 10% uniform message drop, that can
be considered a rather significant drop rate. For other
network sizes we obtain identical results. We can con-

clude that the quality of ordering is highly robust to
message drop failures.

However, diversity of the values is important, be-

cause the “resolution” of the system (the number and
size of the groups it can order) depends on this diver-
sity. The dynamics of the number of unique values is

interesting and complex, that we cannot address here
due to lack of space. Very briefly, if there is no churn,
then there will be fewer and fewer swaps as the sys-

tem converges to the ordered state, as described in Sec-
tion 4. Besides, when each value still represented has
a small number of copies, it becomes very unlikely that

all copies of a specific value are completely removed.
Due to these two properties, diversity practically stops
decreasing very soon. In addition, in the presence of

extreme failure rates, we can add a simple technique
to further fight the lack of diversity: whenever a node
sees another node in its view that holds the same ran-

dom value, it replaces its own value with a random one.
This technique in effect introduces a very low rate ar-
tificial churn, that is dealt with just like real churn (see

Section 5.2). We also note that if there is natural churn,
then diversity is maintained by the churn itself.

5.2. Churn

To examine the effect of churn, we define an arti-
ficial scenario in which a given proportion of the nodes



10
5

10
6

10
7

10
8

10
9

10
10

 0  10  20  30  40  50

d
is

o
rd

e
r 

(σ
)

cycles

0.1% churn in each cycle

N=300000, c=20, 40 and 80
N=100000, c=20, 40 and 80

N=30000, c=20, 40 and 80

10
5

10
6

10
7

10
8

10
9

10
10

 0  10  20  30  40  50

d
is

o
rd

e
r 

(σ
)

cycles

1% churn in each cycle

N=300000, c=20, 40 and 80
N=100000, c=20, 40 and 80

N=30000, c=20, 40 and 80

Figure 6. Disorder as a function of cycles, for churn rates 0.1% and 1% per cycle. Curves completely
overlap when normalized by N2.

crash and are subsequently replaced by new nodes in
each cycle. This scenario is a worst case scenario be-
cause the new nodes are assumed to join the system for

the first time (their random value ri is independent of
their attribute value xi) and the crashed nodes are as-
sumed never to join the system again. The view of join-

ing nodes is initialized with descriptors of randomly se-
lected nodes.

Churn rate defines the number of nodes that are re-
placed by new nodes in each cycle. We consider the

churn rates 0.1% and 1%. Since churn is defined in
terms of cycles, in order to validate how realistic these
settings are, we need to define the cycle length. With the

very conservative setting of 10 seconds, which results in
a very low load at each node, the trace described in [10]

corresponds to 0.2% churn in each cycle. In this light,
we consider 1% a comfortable upper bound of realistic
churn, given also that the cycle length can easily be de-

creased as well to deal with even higher levels of churn.

The results of the experiments are shown in Fig-
ure 6. The ordering effort of the protocol and the contin-
uously introduced disorder reaches an equilibrium after

a few cycles, after which the level of order remains sta-
ble. Even with a 1% churn rate in each cycle, the proto-
col manages to keep the average distance from the cor-

rect position by approximately an order of magnitude
less than that in a random permutation. Note that in this
scenario, during the 50 cycles shown, almost half of the

network gets replaced at least once.

We can further improve the performance of the pro-
tocol using techniques that take the age (time spent in
the network) into account. One technique is called age

bias; when using this technique, a node, when selecting
the neighbor to swap with, chooses the one among the
candidates which has the most similar age. This can be

easily implemented without extra communication steps,
if the node descriptors in the view also contain node age.

4.0x10
6

6.0x10
6

8.0x10
6

1.0x10
7

1.2x10
7

1.4x10
7

1.6x10
7

1.8x10
7

2.0x10
7

2.2x10
7

2.4x10
7

2.6x10
7

 0  10  20  30  40  50

d
is

o
rd

e
r 

(σ
)

maturity age in cycles

c=20

c=40,80

c=20

c=40

c=80

no age bias
with age bias

Figure 7. Effects of age-based techniques. The
converged value of σ is shown. Network size
is 100000, error bars show standard deviation
over 50 cycles (cycles 50–100).

As a result, only the younger nodes tend to be disor-
dered, while they can still converge and while the older

nodes that have already converged remain protected. In-
deed, as shown in Figure 7, we obtain a considerable
improvement using the age bias technique, if, in addi-

tion to the age bias, we also require a certain maturity
(that is, minimal age) to be considered as part of any

slice. In other words, the order among the nodes that
have a certain minimal age improves significantly.

5.3. An Illustrative Example

To illustrate how well our approach copes well with

highly dynamic environments, Figure 8 provides a visu-
alization of three slices that are maintained in a network
of size 1000, over 1200 cycles, using age bias and a

maturity level of 20 cycle. The slice specification is
(1/3,1/3,1/3), we have three slices of equal size. The



Figure 8. Visualization of groups in extreme
failure scenarios.

view size is c = 20. After the start of churn the net-

work seems to shrink. This is due to the fact that we
consider only mature nodes, that is, those that are older
than 20 cycles.. The scenario we applied includes churn

(1% in each cycle), removal of a random half of the
network and subsequently duplicating network size in
one cycle. We observe that the slices remain relatively

well defined, especially if we consider that the entire
network gets replaced several times during the period
shown. We also observe that as soon as the churn stops,

the slices get stabilized as well. Note that our goal can-
not be to eliminate churn within a slice completely, but
only to make sure it is similar to the churn the entire

network is experiencing.

Finally, the fault tolerance of the underlying NEWS-

CAST protocol in similar scenarios has been discussed
elsewhere [3], where it was shown to be extremely ro-
bust.

6. Conclusions

In this paper, we have described a solution to auto-
matically partition a highly dynamic network according

to a given metric as well as to maintain such a partition-
ing in the presence of churn. In our approach to the or-
dered slicing problem, each node has to identify which

section of the network it belongs to, ordered along an
attribute xi, using only local information. Our solution
relies on a robust and scalable gossip-based sorting pro-

tocol. We have presented approximative theoretical re-
sults based on an analogy with average calculation and

demonstrated the robustness of the protocol in simula-
tion experiments.

In this paper we focused only on the identifica-
tion of the slices, which is in itself a challenging prob-
lem. However, to be practically useful, these slices

have to be presented to users and applications as groups.
We are currently working on this issue. In a nutshell,
our solution to this problem is to execute a slice spe-

cific NEWSCAST protocol inside each slice, which im-
plements the peer sampling service (providing samples
from the slice). Users of a slice will simply be part of

the slice and access it through the peer sampling ser-
vice. Nodes (and users) can join a slice-specific NEWS-

CAST via a random contact from the slice. Such contacts
can be stored (and continuously updated) together with
the slice specification, which, as we mentioned previ-

ously, can be thought of as a very small database stored
at each node and maintained cheaply using anti-entropy
gossip.

References

[1] D. P. Anderson. BOINC: A system for public-resource

computing and storage. In 5th IEEE/ACM International

Workshop on Grid Computing, 2004.

[2] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Kar-

lin, S. Muir, L. Peterson, T. Roscoe, T. Spalink,

and M. Wawrzoniak. Operating system support for

planetary-scale network services. In Proc. NSDI, pages

253–266, 2004.

[3] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van

Steen. The peer sampling service: Experimental evalu-

ation of unstructured gossip-based implementations. In

H.-A. Jacobsen, editor, Middleware 2004, volume 3231

of LNCS, pages 79–98. Springer, 2004.

[4] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-

based aggregation in large dynamic networks. ACM

Transactions on Computer Systems, 23(3):219–252, Au-

gust 2005.

[5] M. Jelasity and M. van Steen. Large-scale newscast

computing on the Internet. Technical Report IR-503,

Vrije Universiteit Amsterdam, Department of Computer

Science, Amsterdam, The Netherlands, October 2002.

[6] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based com-

putation of aggregate information. In Proc. FOCS’03,

pages 482–491. IEEE Computer Society, 2003.

[7] A. Montresor, M. Jelasity, and O. Babaoglu. Decentral-

ized ranking in large-scale overlay networks. Technical

Report UBLCS-2004-18, University of Bologna, Dept.

Comp. Sci., December 2004.

[8] PeerSim. http://peersim.sourceforge.net/.

[9] J. Sacha, J. Dowling, R. Cunningham, and R. Meier. Us-

ing aggregation for adaptive super-peer discovery on the

gradient topology. In Proc. SelfMan 2006. Springer.

[10] S. Saroiu, P. K. Gummadi, and S. D. Gribble. Mea-

suring and analyzing the characteristics of Napster and

Gnutella hosts. Multimedia Systems Journal, 9(2):170–

184, August 2003.


