
13-th IEEE International Conference on Peer-to-Peer Computing

Through the Wormhole:
Low Cost, Fresh Peer Sampling for the Internet

Roberto Roverso
Peerialism AB

Email: roberto@peerialism.com

Jim Dowling
KTH - Royal Institute of Technology, and

Swedish Institute of Computer Science
Email: jdowling@kth.se

Mark Jelasity
University of Szeged, and

Hungarian Academy of Sciences
Email: jelasity@inf.u-szeged.hu

Abstract—State of the art gossip protocols for the Internet are
based on the assumption that connection establishment between
peers comes at negligible cost. Our experience with commercially
deployed P2P systems has shown that this cost is much higher
than generally assumed. As such, peer sampling services often
cannot provide fresh samples because the service would require
too high a connection establishment rate. In this paper, we present
the wormhole-based peer sampling service (WPSS). WPSS over-
comes the limitations of existing protocols by executing short
random walks over a stable topology and by using shortcuts
(wormholes), thus limiting the rate of connection establishments
and guaranteeing freshness of samples, respectively. We show that
our approach can decrease the connection establishment rate by
one order of magnitude compared to the state of the art while
providing the same levels of freshness of samples. This, without
sacrificing the desirable properties of a PSS for the Internet,
such as robustness to churn and NAT-friendliness. We support
our claims with a thorough measurement study in our deployed
commercial system as well as in simulation.

Keywords-P2P Networks; Peer Sampling; NAT-resilient gossip
protocols;

I. INTRODUCTION

A peer sampling service (PSS) provides nodes in a dis-
tributed system with a uniform random sample of live nodes
from all nodes in the system, where the sample size is typically
much smaller than the system size. PSSes are widely used
by peer-to-peer (P2P) applications to periodically discover
new peers in a system and to calculate system statistics. A
PSS can be implemented as a centralized service [1], using
gossip protocols [2] or random walks [3]. Gossip-based PSSes
have been the most widely adopted solution, as centralized
PSSes are expensive to run reliably, and random walks are
only suitable for stable networks, i.e. with very low levels of
churn [3].

Classical gossip-based PSSes [2] assume that all nodes can
communicate directly with one another, but these protocols
break down on the open Internet [4], where a large majority of
nodes do not support direct connectivity as they reside behind
Network Address Translation Gateways (NATs) and firewalls.
To overcome this problem, a new class of NAT-aware gossip-
based PSSes have appeared that are able to generate uniformly
random node samples even for systems with a high percentage

In: Proc. IEEE P2P 2013, doi:10.1109/P2P.2013.6688707. c© 2013 IEEE.
Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

of private nodes, that is, nodes that reside behind a NAT and/or
firewall [4]–[6].

State of the art NAT-aware gossip protocols, such as
Gozar [4] and Croupier [5], require peers to frequently estab-
lish network connections and exchange messages with public
nodes, nodes that support direct connectivity, in order to build
a view of the overlay network. These designs are based on two
assumptions: i) connection establishment from a private to a
public peer comes at negligible cost, and ii) the connection
setup time is short and predictable. However, these assump-
tions do not hold for many classes of P2P applications. In
particular, in commercial P2P applications such as Spotify [1],
P2P-Skype [7], and Google’s WebRTC [8] establishing a
connection is a relatively complex and costly procedure. This
is primarily because security is a concern. All new connections
require peers to authenticate the other party with a trusted
source, typically a secure server, and to setup an encrypted
channel. Another reason is that establishing a new connection
may involve coordination by a helper service, for instance, to
work around connectivity limitations that are not captured by
NAT detection algorithms or that are caused by faulty network
configurations. To put this in the perspective of our P2P live
streaming system [9], which we believe is representative of
many commercial P2P systems, all these factors combined
produce connection setup times which can range from few
tenths of a second up to a few seconds, depending on network
latencies, congestion, and the complexity of the connection
establishment procedure. In addition to these factors, public
nodes are vulnerable to denial-of-service attacks, as there
exists an upper bound on the rate of new connections that
peers are able to establish in a certain period of time.

It is, therefore, preferable in our application to build a
PSS over a more stable topology than the constantly chang-
ing topologies built by continuous gossiping exchanges. An
instance of such a stable topology might be an overlay
network where connections between peers are maintained over
time and node degree is kept constant by replacing failed
connections. Random walks (RWs) over such a stable overlay
are potentially an alternative to NAT-resilient gossip protocols.
However, we are not aware of any work which addresses the
problem of random walks over the Internet in presence of
NATs. That said, RW methods over other stable networks that
are not the Internet [10] are not practical in our case because
of the high level of churn experienced in P2P systems, which
causes the PSS’ quality of service to degrade by interrupting or
delaying the RWs. Furthermore, RWs are not able to provide
fresh-enough samples because a random walk has to complete

978-1-4799-0521-8/13/$31.00 c©2013 IEEE 1

13-th IEEE International Conference on Peer-to-Peer Computing

a large number of hops (depending on the topology of the
network) to collect or deposit a sample.

In this paper, we present an alternative approach where
the PSS creates enough new connections to ensure the PSS’
quality of service in the face of peer churn, but not too many
as to exceed peers’ upper bounds on connection establishment
rate. We call our system a wormhole-based PSS (WPSS).
WPSS can tune the number of new stable network connections
established per sample to match application-level requirements
and constraints. We show that our system can provide the
same level of freshness of samples as the state of the art in
NAT-aware PSSes [5] but with a connection establishment rate
that is one order of magnitude lower. This, without sacrificing
the desirable properties of a PSS for the Internet, such as
robustness to churn, NAT-friendliness and local randomness
of samples.

The main idea behind WPSS is that we separate the service
into two layers. The bottom layer consists of a stable base
overlay network that should be NAT-friendly, with private
nodes connecting to public nodes, while public nodes connect
to one another. On top of this overlay, every node periodically
connects to a random public node selected from the base
overlay (not necessarily a neighbor in the base overlay).
Using the random public node, each node systematically places
samples of itself on nodes in the neighborhood of this random
public node. We call these links to random public nodes
wormholes. That is, a wormhole is a link to a public node
that is selected uniformly and independently at random. We
do not require hole-punching or relaying to private nodes in
this paper, although those techniques can be used as well if
there are not enough public nodes.

In addition to explaining the WPSS algorithm (Section IV),
our contributions also include a analytical comparison between
WPSS and related work (Section V), and a thorough evaluation
of the protocol in both simulation and our deployed system
(Section VI). The latter experiments include a comparison with
the state of the art NAT-resilient PSS, Croupier.

II. SYSTEM MODEL

We model a distributed system as a network of autonomous
nodes that exchange messages and execute the same protocol.
Nodes join and leave the system continuously. We consider
large-scale networked systems with limited connectivity, for
example, where a large majority of nodes reside behind NAT
devices or firewalls. A public node has a globally reachable
IP address; this includes nodes that use IP addresses allocated
by UPnP Internet Gateway Devices. A private node does not
support direct connectivity, typically, because it is behind a
firewall or a NAT.

Each node discovers its NAT type (public or private) at
bootstrap-time and also when its IP address changes using
a NAT-type identification protocol. We also assume that a
bootstrap service provides newly joined nodes with a small
number of node descriptors for live nodes in the system.
Each node separately maintains open network connections to
a small, bounded number of randomly selected public nodes
in a stable base overlay. The node degree on the base overlay
is kept constant over time by replacing connections to failed
nodes with new ones.

III. BACKGROUND AND RELATED WORK

The first generation of peer sampling services were not
designed to account for NATs [2], [11], [12]. In recent years,
researchers have worked on NAT-aware gossip protocols [13],
and the first NAT-aware PSSes were Nylon [6] and Gozar [4].
They enabled gossiping with a private node by relaying a mes-
sage via an existing node in the system that had already suc-
cessfully communicated with the private node. Nylon routes
packets to a private node using routing tables maintained at
all nodes in the system. In contrast, Gozar routes packets to
a private node using an existing public node in the system.
Gozar does not require routing tables as the address of a private
node includes the addresses of j public nodes that can act as
relays to it. To improve Gozar’s reliability, gossip messages
can be sent to a private node in parallel via its j relays, where
j is a system parameter. Parallelizing relay messages also
reduces the latency of gossip messages, but at the cost of an
increase in protocol overhead. Both Nylon and Gozar require
that private nodes refresh their NAT bindings by periodically
pinging their neighbors. Croupier [5] provided an alternative
NAT-aware PSS that removed the need for relaying gossip
messages to private nodes. Instead of routing gossip messages
to private nodes, gossip requests are only sent to public nodes
that act as croupiers, shuffling node descriptors on behalf
of both public and private nodes. Public nodes are able to
send response messages through a private node’s NAT, as the
shuffle request from the private node created a NAT binding
rule that is subsequently used to forward the response to the
private node. Two similarities between Croupier and WPSS are
that nodes need to know whether they are public or private,
and that the stable topology created by WPSS is similar to
the dynamic topology maintained by Croupier, where both
private and public nodes only connect to public nodes. In
contrast to WPSS, Croupier provides a decentralized NAT-type
identification protocol to discover a node’s NAT type (public or
private), while our system provides an infrastructure-supported
service based on [14].

One general difference between gossip-based approaches
and WPSS is that a gossip message combines both the
advertisement of the source node’s descriptor as well as a
set of other node descriptors for dissemination [2], [11], while
WPSS messages only contain an advertisement of the initiating
node’s descriptor, making the message size somewhat smaller.

PSSes have also been implemented using independent RWs
on stable, and even very slowly changing, dynamic graphs [3].
Intuitively, RWs work by repeatedly injecting randomness at
each step until the initiator node is forgotten. RW sampling can
be classified as either push-based or pull-based. In push-based
RWs, the initiating node advertises its descriptor as a random
sample at the terminating node, where the RW completes. In
pull-based RWs, the final node’s descriptor is advertised as a
random sample at the initiating node. An extension to these
methods allows a new direct link (DL) to be created by the
final node to fetch (pull) or send (push) a fresher sample.
Depending on the network topology, RWs may require a large
number of hops over unreliable links with highly varying
latencies before they reach good mixing and complete, thus
samples can be relatively old on arrival at final nodes. Direct
links provide more recent samples at the cost of creating a
new network connection. However, on the open Internet, DLs

978-1-4799-0521-8/13/$31.00 c©2013 IEEE 2

13-th IEEE International Conference on Peer-to-Peer Computing

WPSS

Wormhole
overlay

Base
overlay

Bootstrap service

Fig. 1: WPSS layered architecture.

will not work if the initiator is a private node and there is
no support for NAT traversal. To the best of our knowledge,
there has been no previous work on making RW-based PSSes
NAT-aware.

IV. WORMHOLE PEER SAMPLING SERVICE

The core of our idea is that nodes disseminate (push)
advertisements of themselves over a stable base overlay using
short walks, that also utilize wormhole links. That is, the node
that initiates the advertisement sends its own descriptor over a
small number of hops in the base overlay and places it at the
node where this (typically short) walk terminates. The short
length of the walks guarantees the freshness of the samples.
However, to be able to provide good random samples, despite
completing only a relatively few hops, our advertisements
always traverse a wormhole link.

A wormhole link (or wormhole, for short) points to a public
node in the system that is selected independently at random.
In our WPSS protocol, every node discovers such a random
public node to act as its wormhole, and every node only
has one wormhole active at any given point in time. The
distribution of the wormholes does not need to be uniform in
the system, for example, we restrict the wormholes to be public
nodes. However, all the nodes must sample their wormhole
from the same distribution independently. This guarantees that
for each node it is true that any other node will pick it as a
wormhole with the same probability.

A new network connection will be created only when a
wormhole is traversed for the first time by an advertisement.
The wormhole is then reused for a few subsequent advertise-
ments from the same initiator node, in which case no new
network connection needs to be established. This makes it
possible to decrease the number of new links we establish.

The very first time an advertisement traverses the wormhole,
it can be considered to have reached a random public node.
Thus, the advertisement can now be placed at the public node
as a new sample. However, if the wormhole has already been
used, or the public node already has a sample from the initiator
node, then the advertisement will start a random walk over
the base overlay until it either (1) reaches a node that does
not already have a sample from the initiator node or (2)
it reaches a given time-to-live (TTL) that guarantees good
quality sampling. Clearly, as a wormhole creates a link to
a public node, advertisements through it will place a sample
first at that public node unless it already has an advertisement
from the initiator. However, the reuse of the wormhole causes
advertisements to continue, allowing them to also finish at
private nodes, as private nodes are connected to public nodes
over the base overlay.

Base Overlay (Stable Random Topology)

Wormhole Overlay

W

Private node

Public node

Stable Link

Wormhole Link

Advertisement

W Wormhole

Fig. 2: The Base Overlay contains stable links between nodes
(bottom layer). Wormholes (the thick line on the upper layer)
are created to public nodes. The upper layer also illustrates a
private node placing two advertisements at neighboring nodes
to the wormhole.

When a wormhole is reused by an advertisement, the
expected number of hops the advertisement will have to take
increases, as it needs to reach a node that does not already
have a sample from the initiator node. To counteract this, new
wormholes are created. WPSS defines a wormhole renewal
period as a parameter for creating new wormholes enabling
users to control how frequently new network connections
will be created. If a new wormhole is created for each
advertisement, then we get a protocol very similar to RW-
push-DL (see Section V). If wormholes are never updated, the
behavior converges to that of RW-push, eventually. In between,
there is a range of interesting protocols some of which—as we
will argue—achieve the goals we set.

We illustrate the interaction between the wormholes and
the base overlay in Figure 2. In the figure, the bottom layer is
the base overlay, while the upper layer shows the wormhole
overlay, containing a single wormhole. The upper layer also
shows two advertisements over the wormhole that follow links
in the base overlay to place samples in the vicinity of the
wormhole.

A. WPSS Architecture
We implemented WPSS in a modular, layered architecture,

illustrated in Figure 1. WPSS requires a stable base overlay
and a set of wormhole links. It is very important that the
wormhole links are drawn independently from an identical
(but not necessarily uniform) distribution. Since the random
samples generated using wormholes do not guarantee inter-
node independence, these samples cannot be used to generate
new wormhole links. So, another PSS is required that pro-
vides independent samples of public nodes. We call this the
bootstrap PSS. The bootstrap PSS will have relatively low
load, since wormholes are refreshed rarely, given that WPSS
is designed to reduce the number of new network connections
created. For this reason, the bootstrap PSS can be implemented
even as a central server. Alternatively, public nodes can
generate independent samples by periodically starting random
walks that continue until they reach their TTL.

978-1-4799-0521-8/13/$31.00 c©2013 IEEE 3

13-th IEEE International Conference on Peer-to-Peer Computing

Algorithm 1 Wormhole peer sampling
1: procedure onWormholeFailure 〈〉
2: wormhole ← getNewWormhole()
3: end procedure
4:
5: procedure onWormholeTimeout 〈〉 . Every ∆wh time units
6: wormhole ← getNewWormhole()
7: end procedure
8:
9: procedure onAdTimeout 〈〉 . Every ∆ time units

10: ad ← createAd()
11: hops ← 1
12: sendAd(wormhole, ad, hops)
13: end procedure
14:
15: procedure onReceiveAd 〈ad, hops〉
16: if hops == getTTL() || acceptAd(ad) then
17: view.addAd(ad)
18: else
19: j ← getMetropolisHastingsNeighbor(baseOverlay)
20: sendAd(j, ad, hops+1)
21: end procedure

In our architecture, the base overlay can be any connected
overlay, as long as the TTL of the advertisements is set to
make sure the random walks are long enough to provide high
quality samples. It is beneficial, however, to maintain a random
base overlay due to its low mixing time [3], [15]. Therefore,
we construct a stable undirected overlay that is random, but
where private nodes are connected to a random set of public
nodes, thus avoiding the need for NAT traversal. This results in
a stable topology with a low clustering coefficient, a constant
degree for private nodes, and a narrow (roughly binomial)
degree distribution for public nodes. This is similar to the
topology maintained by Croupier [5], although Croupier’s
topology is dynamic.

The base overlay also needs a PSS in order to replace broken
links with new random neighbors. The samples used to replace
random links can be obtained either from the bootstrap PSS or
from WPSS itself, with the choice depending on application
requirements. For example, with relatively low churn rates
the bootstrap PSS might be a better choice. However, under
high churn, when many samples are needed, the cheaper
WPSS samples are preferable despite the lack of inter-node
independence that might result in higher clustering. This
potentially higher clustering is not a problem as long as the
network maintains good enough mixing properties.

The base overlay service strives to keep the overlay con-
nected by keeping and repairing in case of failures a fixed
number of outgoing links. In order to detect failures of base
topology links, we implement a simple failure detector based
on timeouts.

B. Wormhole Peer Sampling Skeleton
Algorithm 1 contains the pseudocode of WPSS that imple-

ments the ideas described above. The algorithm contains a
number of abstract methods, implementations of which will
be discussed in the subsequent sections. The algorithm is
formulated as a set of event-handlers that are in place on every
node in the system. The events in the system are classified into
three types: failures, timeouts and advertisements.

Failure events are generated by detecting failing neighboring

nodes in the two topology layers in Figure 1. We deal with
these failure events by picking a new neighbor using the
appropriate PSS through the abstract methods GetNewLink
and GetNewWormhole. Timeout events are generated by two
local timers with a tunable period. The periods of these timers
are protocol parameters that are the same at all nodes. One
of the timers, the wormhole timer, has a period of ∆wh. This
timer triggers the generation of new wormholes.

The other timer defines the rate at which advertisements
are published by all the nodes. Clearly, this rate is the same
as the average rate of receiving new random samples, so the
period of this timer must be ∆ at all nodes. This timer triggers
the sending of one advertisement over the local wormhole.
Finally, the event of receiving an advertisement is handled by
first checking whether the node is willing to add the given
sample to its set of samples or View (that is, whether it will
consume the advertisement).

This check is performed by the AcceptAd method. The
AcceptAd method consumes an advertisement only if its
sample is not already contained in the node’s view, thus
promoting diversity of samples. On top of that, AcceptAd
makes sure that every node consumes advertisements at the
same rate, namely one advertisement in each ∆ time period.
We implement this rate control mechanism only at the public
nodes; if the acceptance rate on the public nodes is 1/∆,
then private nodes are guaranteed to observe the same rate on
average due to the advertisement generation rate being 1/∆ at
all the nodes. To control the rate, we need to approximate the
period of receiving advertisements. To do this, we calculate
the running average and the average deviation of the delays
between consecutive acceptance events. If the approximated
period, increased by mean deviation, is higher than ∆ then the
advertisement is accepted and the approximation of the period
is updated. We show later in Section VI that the AcceptAd
method successfully balances advertisements over public and
private nodes.

If the node does not consume the advertisement, it sends
it on to another node using the Metropolis-Hastings transition
probabilities over the (random, stable) base network which
results in a uniform stationary distribution [16]. Let di denote
the degree of node i, that is, the number of neighbors of
node i. Note that the graph is undirected. The implementation
of GetMetropolisHastingsNeighbor works as follows. First,
we select a neighbor j with uniform probability, that is,
with probability 1/di. Then, we return j with probability
min(di/dj , 1), otherwise we return node i itself, that is, the
advertisement will visit i again.

Note that the node will consume the advertisement also if
the TTL of the advertisement is reached, since at that point
it can be considered a uniform random sample. The TTL
is returned by GetTTL, that can be implemented in many
different ways depending on the system properties. We simply
set a constant TTL in our experiments.

V. ANALYTICAL COMPARISON

Here, we provide an analytical comparison between related
work and WPSS. In order to do that, we develop a number of
metrics and criteria. As a general assumption, we assume that
the considered PSSes provide a continuous stream of random
node descriptors at every node in the network. To be more

978-1-4799-0521-8/13/$31.00 c©2013 IEEE 4

13-th IEEE International Conference on Peer-to-Peer Computing

precise, we require each node to receive one sample every ∆
time units on average, where ∆ is the sampling period.

A. Metrics of Quality of Service and Cost
The minimum that we assume about any PSS is that the

stream of samples at a given fixed node is unbiased (that is,
the samples received by a node are independent of the node)
and that samples are uniform (that is, any fixed individual
sample has a uniform distribution). These properties hold for
WPSS. This is almost trivial and can be formally proven using
the facts that WPSS is blind to the content of node descriptors
and wormholes are random. The technical proof is omitted due
to lack of space.

Apart from this, we characterize the quality of service
using the properties of freshness and independence. Freshness
is the age of the sample, that is, the delay between the
recording of the sample at the source node and its delivery at
the terminating node. Obviously, fresher samples are always
preferable. Independence is a property of the random samples
that states whether the stream of samples generated at any
two nodes are statistically independent of one another or not.
Independence is not a hard requirement for many applications.
Having unbiased and uniform streams (that are not necessarily
independent) is often sufficient.

We focus now on two costs for the PSSes: bandwidth and
link creation rate. Bandwidth is the amount of data transferred
per received sample. The link creation rate is the number of
new network connections (links) that are created (or in other
words, the number of new network connections established)
per sample. This new measure is motivated by our experience
with deployed commercial P2P streaming.

B. Analysis of Existing PSS Algorithms
In Table I, we summarize the quality of service and costs

of the PSS algorithm space for existing RW and gossiping
approaches, where δhop is the average latency for a hop
in a RW. The example given here results in a connection
establishment that is tolerable for our application and good
enough level of freshness for samples.

In the case of RW-push, the initiating node’s descriptor will
be added to the final node’s sample set (the node where the RW
terminates). In the case of RW-pull, the final node’s descriptor
is added to the sample set of the initiating node. In addition, if
the physical network supports efficient routing then after the
RW terminates a new direct link (DL) can be created by the
final node to fetch (push) or send (pull) a fresh sample as well.
Clearly, using direct links one can achieve a higher freshness
at the cost of creating new links.

For the gossip-based protocols, we consider an idealized
gossip protocol that has a view size of 2k, and a gossip period
of k∆. This setting makes sure that a node gets one new
sample per sampling period (∆) on average, since, in a typical
gossip-based PSS, nodes refresh half of their views in each
round. This is an optimistic assumption, because k is an upper
bound on the independent samples.

We consider the two classical gossip protocols: healer and
swapper [2]. Let us provide a quick intuitive analysis of the
freshness for these protocols. In the case of healer, fresher
descriptors always have preference when spreading. This re-
sults in an exponential initial spreading of newly inserted
descriptors, until their age reaches about the logarithm of the

view size. At that point the fresher descriptors take over. This
results in an average age that is equal to O(log k), where age is
measured in gossip rounds. So, freshness equals O(k log k)∆.
In the case of swapper, descriptors perform batched RWs,
during which no descriptor gets replicated. In every round,
every node removes one random descriptor and replaces it
with its own new descriptor. For this reason, the age of a
descriptor follows a geometric distribution, where the expected
age (measured in number of rounds) is proportional to the view
size: O(k). So the average freshness equals O(k2)∆.

Let us now discuss the NAT-aware gossip protocols.
Croupier has the same costs and freshness as swapper (al-
though node-level load is higher at public than private nodes,
as they provide shuffling services). In Gozar, public nodes
create the same number of new links and generate the same
bandwidth as healer. Private nodes, on the other hand, generate
j ∗2 times more bandwidth, as messages are sent over 2 links:
first to the j relays and then to the private nodes. Gozar also
creates and maintains an extra constant number of links to
relays (j ∗N , where N is system size). Nylon has unbounded
costs, as routing paths to private nodes can be arbitrarily long,
and for that reason it is not considered here.

For WPSS, the most important parameter is ∆wh, the
wormhole renewal period. One important value that is de-
termined by ∆wh/∆ is the average number of hops that an
advertisement makes before being accepted by a node. Let
us denote this value by h(∆wh/∆). Now, the freshness of
samples can be calculated using h(∆wh/∆)δhops. The number
of newly created links per sample is ∆/∆wh, since the only
new links are the wormholes. Finally, the bandwidth utilization
per sample is given by h(∆wh/∆) + ∆TTL/∆wh where the
second addend accounts for the cost of the bootstrap PSS,
assuming it is implemented as a RW over the stable random
topology.

Clearly, since ∆ is a constant given by the application
requirements, and ∆wh (and thus ∆/∆wh) is a parameter of
the protocol, the most important component is h(∆wh/∆).
We know from the definition of the protocol that h(1) = 1
(one hop through the wormhole), and limx→∞ h(x) = TTL.
They key question is whether h(∆wh/∆) grows slowly. In
Section VI, we show that this is indeed the case.

We calculate the properties of the different protocols using a
typical practical parameter setting, with the results summarized
in Table I. For this example, we set k = 10, and δhop = 0.1
seconds. We assume that TTL = 100. During the experimen-
tal evaluation in Section VI we apply the same setting, and
we present a justification for it as well.

For WPSS, we set ∆wh = 10∆, which is shown in
Section VI to provide a good trade-off between reducing the
number of new connections created per round and keeping
samples fresh. For ∆wh = 10∆, the freshness is evaluated in
our experiments in Section VI as h(10) ≈ 3, and, thus, this
value is given in the table.

Note that freshness depends on the sampling period ∆ only
in the case of the gossip protocols. Typical settings for ∆
range from 1 to 10 seconds. Besides, it is not meaningful
to set ∆ < δhop , so we can conclude that WPSS provides
samples that are fresher by an order of magnitude than those
provided by the fastest possible gossip protocol.

We would like to point out that gossip protocols will use

978-1-4799-0521-8/13/$31.00 c©2013 IEEE 5

13-th IEEE International Conference on Peer-to-Peer Computing

TABLE I: Comparison of PSS implementations. The example uses k = 10, δhop = 0.1, TTL=100, and ∆wh = 10∆. These
values result in a connection establishment time that is tolerable for our application and provides a good enough level of
freshness for samples.

Quality of service Cost per sample Example
Algorithm Freshness Indep. # New links Bandwidth Freshness # New links Bandwidth
RW-push TTL·δhop yes 0 TTL 10 0 100

RW-push-DL δhop yes 1 TTL+1 0.1 1 101
RW-pull 2·TTL·δhop yes 0 2·TTL 20 0 200

RW-pull-DL δhop yes 1 TTL+1 0.1 1 101
gossip healer O(k log k)∆ no 1/k 1 33∆ 0.1 1

gossip swapper O(k2)∆ no 1/k 1 100∆ 0.1 1
WPSS h(∆wh/∆)δhop no ∆/∆wh h(∆wh/∆) + ∆TTL/∆wh 0.3 0.1 13

a lot less bandwidth compared to the other protocols under
most parameter settings, assuming our invariant (which fixes
the same rate of receiving new samples). If we allow for the
same bandwidth for gossip protocols and WPSS by speeding
up gossip then gossip samples will get proportionally fresher,
besides, proportionally more samples will arrive in a unit time
as well. However, freshness will still depend on the length of
the (now shorter) gossip cycle. In addition, most importantly,
the number of new links will increase proportionally since
all the connections in gossip protocols are new connections.
Reducing the number of new links is one of our main
motivations.

Gossip protocols have a further advantage due to batching
2k advertisements in a single message. This could additionally
reduce bandwidth costs, as the relative amount of meta-
data per packet sent is lower if the network packets from
gossip messages are closer in size to the network’s maximum
transmission unit (MTU) than WPSS messages. However, in
our target application the size of an advertisement can be large,
which justifies our focus on bandwidth as a measure of cost
as opposed to the number of messages sent.

Based on the above cost analysis of existing PSS algorithms,
our main observation is that no single method other than
WPSS offers a combination of three desirable properties for
a PSS: fresh samples, a low number of new links, and low
bandwidth overhead. Apart from being vulnerable to failures,
RW methods can offer fresh samples with an extremely high
number of new links (one per each sample) or relatively old
samples without creating new links; in both cases with a
relatively high bandwidth. Gossip based methods provide even
older samples than RW methods.

VI. EVALUATION

We now evaluate the performance of WPSS in simulation
as well as in our deployed system. The experiments on the
deployed system show that our protocol provides the desirable
PSS properties of fresh samples, randomness, and low cost in
a real environment. The simulation experiments, in contrast,
test robustness in scenarios that are difficult or impossible to
reproduce in deployment, such as different churn levels.

Our implementation follows the structure outlined in Figure
1. The bootstrap service component provides addresses of ran-
dom public nodes that are used by the upper layer to build the
base overlay and to create wormholes. In our implementation,
the bootstrap service initiates RWs from the public nodes in
the base overlay using the same transition probabilities as used
by WPSS. The rate of starting these walks is double the rate
of wormhole renewal to account for failure events in the base
overlay and the wormhole overlay. If the bootstrap service runs

out of local random samples generated by RWs (because of
massive join or failure events), a central bootstrap server is
contacted for random samples.

We set TTL = 100. After a RW of this length, the distri-
bution is very close to uniform in the base overlays we apply
here. More precisely, its total variational distance [15] from
the uniform distribution is less than 10−6 in all base overlays
in this section. In a fully public network—but with the same
number of nodes and random links—the same quality can be
reached with TTL = 16. This means that in our environment,
independent RW methods have a further disadvantage due to
the constrained topology. By increasing the network size, this
difference becomes larger. As we will see, WPSS walks will
always terminate much sooner in most practical settings, so
the TTL is not a critical parameter from that point of view.

The base overlay service strives to keep the overlay con-
nected by identifying and repairing broken links, thus, main-
taining a fixed number of outgoing links at each node. In order
to detect failures of base topology links and the wormhole, we
implement a simple failure detector based on timeouts. Every
node maintains 20 links to random public nodes in the base
overlay. However, these links are bidirectional, so the effective
average degree is 40 as a result.

A. Experimental Setup: Simulation
For simulations, we implemented WPSS on the Kompics

platform [17]. Kompics provides a framework for building
P2P systems and a discrete event simulator for evaluating
those systems under different churn, latency and bandwidth
scenarios. All experiments are averaged over 6 runs. Un-
less stated otherwise, we applied the following settings. The
view size (the number of freshest random samples a node
remembers) was 50 and we set ∆ = 1 second. For all
simulation experiments, we use a scenario of N = 1000 nodes
that join following a Poisson distribution with a mean inter-
arrival time of 100 milliseconds. In all simulations 20% of the
nodes were public and 80% were private, which reflects the
distribution observed in the commercial deployments of our
P2P application.

B. Experimental Setup: Deployment
In order to test WPSS in a real environment, we imple-

mented the protocol using [18], a production-quality frame-
work for building event-based distributed applications. The
framework utilizes a UDP-based transport library that imple-
ments the same reliability and flow control mechanisms as
TCP [19].

We tested WPSS in our test network, where volunteers
give us permission to conduct experiments on their machines

978-1-4799-0521-8/13/$31.00 c©2013 IEEE 6

13-th IEEE International Conference on Peer-to-Peer Computing

Average
Max (99th percentile)
Max (90th percentile)

H
op

 C
ou

nt

0

5

10

15

20

Δwh / Δ
2.5 5 7.5 10 12.5 15 20 25

(a) Average hop count.

0%
0.3%
0.5%

Churn Level

Ti
m

e
(s

ec
on

ds
)

20

50

100

Δwh / Δ
0 10 20 30 40 50

(b) Time to publish 20 ads per peer.

Random Graph
Deployment

Pr
op

or
tio

n
of

 n
od

es
 (r

at
io

)

0

0.05

0.10

0.15

0.20

In-degree
25 30 35 40 45 50 55 60 65 70 75

(c) Converged in-degree distribution.

Av
er

ag
e

in
-d

eg
re

e

0

20

40

60

Time (minutes)
0 2 4 6 8 10 12 14 16 18 20

(d) In-degree evolution over time with error
bars.

20
30

40
50

View Size

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (minutes)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(e) Clustering coefficient evolution for differ-
ent view sizes.

WPSS
Random Graph

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

0

0.05

0.10

View Size
20 30 40 50 60 70 80 90 100

(f) Converged clustering coefficient for in-
creasing view sizes.

Δ=1s
Δ=3s
Δ=6s

Ad
ve

rti
se

m
en

t i
nt

er
-a

rri
va

l t
im

e
(m

s)

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (minutes)
0 2 4 6 8 10 12 14 16 18

(g) Average inter-arrival time for samples
(terminating advertisements) at all peers.

Δ=1s
Δ=3s
Δ=6s

In
te

r-a
rri

va
l d

iff
er

en
ce

 (m
s)

0

500

1000

1500

2000

Time (minutes)
2 4 6 8 10 12 14 16 18

(h) Difference in inter-arrival time between
public and private peers.

Fig. 3: Experiments in our deployed system (except Fig. 3b, which is in simulation).

using a remotely-controlled test agent. The test network con-
tains around 12000 installations. The network included nodes
mostly from Sweden (89%) but also some from Europe (6%)
and USA (4%). For connectivity, 76% of the nodes were
behind NATs or firewalls and 19.2% were public nodes, while
the rest (4.8%) could not be determined by our NAT-type
identification protocol.

Each experiment is run in wall-clock time and thus it
is subject to fluctuations in network conditions and in the
number of nodes involved. In order to keep a good level
of reproducibility, we selected a subset of 2000 of the more
stable nodes, out of an average of 6200 online, which are
representative of both our test network and the Internet in
Sweden, in general. For each data point, the deployment
experiments were repeated a number of times varying from 3
to 10 runs, depending on the variance of the results, and every
run lasted 20 minutes. In all deployment experiments, the
nodes join at a uniform random point in time within the first
2 minutes from the start of the test. Unless stated otherwise,
we set the a view size to 50, and ∆ = 2 seconds.

C. Freshness
In this set of experiments, we measure the freshness of

samples on our deployed system using the average hop count
as well as the 90th and 99th percentiles. As we can see in
Figure 3a, both the average hop count (h(∆wh/∆)) and the
90th percentile grow slowly with increasing ∆wh (wormhole
renewal period), while the TTL is never reached by any
advertisement. The 99th percentile, however, grows more
quickly when ∆wh/∆ exceeds 5 seconds as a small number of
public nodes have under-performing or too few connections,
meaning that advertisements that arrive at them via wormholes
have to take more hops to complete.

In simulation, we now measure the average time required
for a node to publish 20 consecutive advertisements. This
characterizes the average freshness of the advertisements also
taking into account all possible delays, not only hop count.
We examine scenarios with and without churn. The total time
we measure includes the time required for an advertisement
to be accepted by a node (h(∆wh/∆)δhops), and the amount
of time devoted to opening new wormhole links, if applicable.
It also includes the retransmission time in case of failures.

978-1-4799-0521-8/13/$31.00 c©2013 IEEE 7

13-th IEEE International Conference on Peer-to-Peer Computing

50% at time 0, 50% at time 6.5
40% at time 0, 60% at time 6.5
30% at time 0, 70% at time 6.5
20% at time 0, 80% at time 6.5
10% at time 0, 90% at time 6.5

Join Scenario

H
op

 C
ou

nt

2

3

4

5

Time (minutes)
2 4 6 8 10 12 14 16 18 20

(a) Average hop count.

50% at time 0, 50% at time 6.5
40% at time 0, 60% at time 6.5
30% at time 0, 70% at time 6.5
20% at time 0, 80% at time 6.5
10% at time 0, 90% at time 6.5

Join Scenario

C
lu

st
er

in
g

co
ef

fic
ic

en
t

0

0.2

0.4

0.6

0.8

Time (minutes)
2 4 6 8 10 12 14 16 18 20

(b) Average clustering coefficient.

50% at time 0, 50% at time 6.5
40% at time 0, 60% at time 6.5
30% at time 0, 70% at time 6.5
20% at time 0, 80% at time 6.5
10% at time 0, 90% at time 6.5

Join ScenarioIn
-d

eg
re

e

0

10

20

30

40

50

Time (minutes)
2 4 6 8 10 12 14 16 18 20

(c) Average in-degree

Fig. 4: Flash crowd scenario for different sizes of flash crowd.

40 %
50 %
60 %
70 %
80 %

Failure Ratio

H
op

 C
ou

nt

2.0

2.5

3.0

3.5

4.0

4.5

Time (minutes)
2 4 6 8 10 12 14 16 18 20

(a) Average hop count.

40 %
50 %

60 %
70 %

80 %
Failure Ratio

C
lu

st
er

in
g

co
ef

fic
ie

nt

0.1

0.2

0.3

0.4

0.5

Time (minutes)
0 2 4 6 8 10 12 14 16 18 20

(b) Average clustering coefficient.

40 %
50 %
60 %
70 %
80 %

Failure Ratio

D
ea

d
lin

ks

0

10

20

30

40

Time (minutes)
2 4 6 8 10 12 14 16 18 20

(c) Average number of dead links in view.

Fig. 5: Catastrophic failure scenarios in WPSS for different ratios of failed nodes.

We note that the average time required to establish a
network connection to a public node in our system and was
measured to be 1250ms in deployment. In Figure 3b, we can
observe the freshness of advertisements under three different
scenarios: with no churn, and with a churn level of 0.3% or
0.5% of nodes failing and joining every 10 seconds. Recall
that in simulation we had ∆ = 1 second. We consider these
churn figures to be representative of the deployments of our
commercial P2P application. The required time to publish
an advertisement increases with ∆wh/∆, especially in the
scenarios with churn. This is due to both a higher average hop
count, as shown later in the evaluation, and to retransmissions
caused by failures along the advertisement path.

The most interesting result here is that the performance
is optimal for ∆wh/∆ between about 5 and 10 even under
high churn. Given this finding, we set ∆wh = 10∆ for the
remaining experiments, as this value has good freshness (even
considering the 99th percentile), while the number of new
links required is relatively low.

D. Randomness
Similar to [2], [4], [5], we evaluate here the global ran-

domness properties of our deployed system by measuring
properties of the WPSS overlay topology (that is, not the
base overlay, but the overlay that is defined by the samples
stored at nodes). In this set of experiments, we measure
the indegree distribution of the WPSS overlay network, its
convergence time for different view sizes, and finally its
clustering coefficient for different view sizes.

With samples drawn uniformly at random, we expect that
the in-degree to follow the binomial distribution. In Figure 3c,
we can see that WPSS actually results in a distribution that is

even narrower than what is predicted by the uniform random
case, which suggests good load balancing. In Figure 3d we
can also see that the average indegree converges after around 4
minutes and the variance after around 8 minutes, respectively;
an acceptable convergence time for our system. Since in
deployment we had ∆ = 2 seconds, this translates to 120∆
and 240∆, respectively.

In Figure 3e, we can see that the clustering coefficient
converges at roughly the same rate as the indegree distribution.
Figure 3f indicates that the clustering coefficient is higher
than that of the random graph by a constant factor, which
is due to the fact that WPSS does not guarantee independent
samples at nodes that are close in the stable base overlay,
as we explained previously. As we increase the view size, the
clustering coefficient increases simply due to the larger chance
of triangles; this is true for the random graph as well.

E. Inter-arrival Time of Advertisements
These experiments were again conducted in the deployed

system. Figure 3g shows that the average inter-arrival times
for samples (advertisements) converges to the respective ad-
vertisement period after roughly 120∆ seconds. As public
nodes can be wormhole exits, they receive samples at a higher
rate than private nodes. But, as Figure 3h shows, the method
acceptAd (see Section IV) successfully balances samples
(advertisements) across public and private nodes.

F. Robustness to Different Churn Patterns
We experiment with several churn patterns in simulation.

Figure 4 shows our results with flash crowd scenarios, where
we progressively decrease the number of peers that join at the
beginning of the simulation while increasing the number of

978-1-4799-0521-8/13/$31.00 c©2013 IEEE 8

13-th IEEE International Conference on Peer-to-Peer Computing

0.1%
0.5%
1%

Churn level

H
op

 C
ou

nt

2.0

2.5

3.0

3.5

Time (minutes)
0 2 4 6 8 10 12 14 16 18 20

(a) Average hop count.

0.1%
0.5%
1%

Churn Level

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

0.10

0.12

0.14

0.16

Time (minutes)
0 2 4 6 8 10 12 14 16 18 20

(b) Average clustering coefficient.

0.1%
0.5%

1%
Churn Level

D
ea

d
lin

ks
 in

 v
ie

w

0

2

4

6

8

Time (minutes)
2 4 6 8 10 12 14 16 18 20

(c) Average number of dead links in view

Fig. 6: WPSS under churn scenarios with varying levels of churn.

WPSS - 1s
Croupier - 1s
Croupier - 10s

H
op

 c
ou

nt

0

5

10

15

Time (minutes)
0 2 4 6 8 10 12 14 16 18 20

(a) Average hop count.

WPSS - 1s
Croupier - 1s
Croupier - 10s

C
lu

st
er

in
g

C
of

fic
ie

nt

0

0.2

0.4

0.6

0.8

1.0

Time (minutes)
0 2 4 6 8 10 12 14 16 18 20

(b) Average clustering coefficient.

WPSS - 1s
Croupier - 1s
Croupier - 10s

Ag
e

(s
ec

)

10

100

Time (minutes)
0 2 4 6 8 10 12 14 16 18 20

(c) Average age of samples

Fig. 7: Comparison between WPSS and Croupier.

those that join at a later point in time. For instance, for a flash
crowd scenario of 70% of the nodes, 300 nodes start to join
at time 0 and the other 700 nodes start to join the system at
minute 6.5. The number of nodes involved in all experiments
stays constant at 1000. As we can observe in Figure 4a, the
hop count not only stabilizes quickly after the flash crowd
terminates, but it also converges to the same value for all flash
crowd scenarios.

The clustering coefficient exhibits a similar behavior, that
is, it stabilizes quickly after the flash crowd to the same value
for all flash crowd sizes. The converged clustering coefficient
value (0.0975) is almost identical to the converged value
of gossip healer (0.0960) [2] in a scenario with no churn.
Figure 4c shows that the average indegree drops significantly
during the flash crowd but it recovers quickly after that.

In Figure 5, we also show that the protocol is robust to
catastrophic failures, that is, when a large number of peers
leaves the system at a single instant in time. In this scenario,
we wait for the overlay to stabilize after all the nodes have
joined, then we fail a percentage of peers drawn uniformly
from the set of all peers at time 5 minutes. It is important to
note that the overlay remains connected even after the failure
of 80% of the nodes.

As we can observe in Figure 5a, the average hop count
stabilizes more slowly for higher percentages of failed nodes.
This is expected given the large number of broken links to
detect and repair for both the base and wormhole overlays. The
clustering coefficient converges somewhat quicker. Note that
the clustering coefficient stabilizes on higher values, because
the number of remaining nodes is lower after the failure. More
precisely, for both clustering coefficient and hop count, the
converged values after the mass failure are the same as they

would have been in a network that hadn’t experienced mass
failure but had the same size as our system had size after
the mass failure. Two minutes after the mass failures, in all
scenarios, dead links have been expelled from the view, as
shown in Figure 6c.

In Figure 6, we also show that the protocol is robust to
different levels of steady churn, with up to one percent of the
nodes failing and joining every wormhole refresh period (10
seconds). Figure 6a shows that for a level of churn of 0.1%,
the hop count takes a longer time to stabilize compared to a
scenario without churn, but it converges nevertheless to the
same value as in the scenario without churn. For levels of
churn of 0.5% and 1%, the average hop count increases by
7% and 21%, respectively, which is still acceptable in terms
of freshness. Another effect of churn is the steady increase of
the clustering coefficient, as shown in Figure 6b.

In order to measure the extent of damage of continuous
churn, we also show in Figure 6c the average number of dead
links in a node’s view. From the figure, it is clear that it is
proportional to the level of churn.

G. Comparison with Croupier

We conclude our evaluation with a comparison with the
state of the art NAT-aware PSS, Croupier. We use the same
experiment setup in Croupier as in WPSS (the same number of
nodes, ratio of public/private nodes and join distribution) with
a view size of 50 in Croupier. We compare WPSS and Croupier
using well-established properties for good PSSes, and we show
that WPSS has better results for global randomness (through
the network properties of the clustering coefficient, and the
in-degree distribution of graph of samples), the freshness of
samples, and how many hops node descriptors have to traverse

978-1-4799-0521-8/13/$31.00 c©2013 IEEE 9

13-th IEEE International Conference on Peer-to-Peer Computing

WPSS - 1s
Croupier - 1s
Croupier - 10s
Random Graph

pe
er

s

0

50

100

150

200

in-degree
25 30 35 40 45 50 55 60 65 70 75

Fig. 8: Comparison of in-degree distribution between WPSS
and Croupier.

before being placed as a sample.
For a fair comparison with Croupier, we include two set-

tings, one that creates new network connections at the same
rate as WPSS (Croupier-10s) with the Croupier gossip round
time is set to 10 seconds, and another setting that has the
same round time as WPSS (Croupier-1s), but, for this setting,
the network connection establishment rate is 10 times higher
than WPSS. In Figure 7b, we can see that the clustering
coefficient of WPSS converges more quickly than in Croupier-
10s, but at only a slightly faster rate than Croupier-1s. Both
protocols have low clustering coefficients, close to random
graphs. In Figure 8 we can see that WPSS has a much narrower
in-degree distribution than Cropuier around the expected in-
degree, indicating better load balancing of samples around all
the nodes.

In Figure 7a, we can see that average hop count in WPSS
is stable and low over time, while in Croupier the average
hop count increases as node descriptors spread throughout the
system until they finally are expired.

In Figure 7c, we can see the average age (freshness) of
samples generated by WPSS is roughly the same as Croupier-
1s at 11.5 seconds, but much better than Croupier-10s. As
Croupier is based on the swapper policy, from our earlier
Table I, we can see that the average freshness of its samples
are close to Swapper’s expected value of 10s, with the extra
second resulting from the private nodes having to use an
extra hop to public nodes who shuffle descriptors on behalf of
private nodes.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented WPSS, a peer sampling service
to meet the requirements of commercially deployed P2P
systems on the Internet. WPSS executes short random walks
over a stable topology and by using shortcuts (wormholes).
WPSS provides the same level of sample freshness as other
NAT-aware PSSes, but achieves that with a connection estab-
lishment rate that is one order of magnitude lower.

In addition, the connection establishment rate of WPSS can
be tuned from zero per sample to up one per sample, according
to the application requirements on freshness and cost. We
showed in our deployed live-streaming P2P system that the
lowest cost connection creation rate lies between these two
extremes. On top top of that, we experimentally demonstrated
that our system has the randomness properties required of a
peer sampling service, while it is robust to churn and large-
scale failure scenarios.

While we have designed WPSS for the Internet, we believe
it is general enough to work over any type of stable base
overlay (given a high enough TTL for RWs) and any subset
of nodes can act as wormholes. As part of our future work, we
will consider applying WPSS to mobile and sensor networks,
and overlay networks without NATs or firewalls.

ACKNOWLEDGMENT

M. Jelasity was supported by the Bolyai Scholarship of the
Hungarian Academy of Sciences. This work was partially sup-
ported by the European Union and the European Social Fund
through the projects FuturICT.hu (grant no.: TAMOP-4.2.2.C-
11/1/KONV-2012-0013) and Clommunity (FP-317879).

REFERENCES

[1] G. Kreitz and F. Niemela, “Spotify – large scale, low latency, P2P
Music-on-Demand streaming,” in Tenth IEEE Intl. Conf. on Peer-to-Peer
Computing (P2P’10). IEEE, August 2010, pp. 1–10.

[2] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Transactions on Computer
Systems, vol. 25, no. 3, p. 8, August 2007.

[3] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger, “On
unbiased sampling for unstructured peer-to-peer networks,” IEEE/ACM
Transactions on Networking, vol. 17, no. 2, pp. 377–390, April 2009.

[4] A. Payberah, J. Dowling, and S. Haridi, “Gozar: NAT-friendly peer
sampling with one-hop distributed NAT traversal,” in Distributed Ap-
plications and Interoperable Systems, ser. LNCS, vol. 6723. Springer,
2011, pp. 1–14.

[5] J. Dowling and A. H. Payberah, “Shuffling with a croupier: Nat-aware
peer-sampling,” in Proceedings of The 32nd Intl. Conf. on Distributed
Computing Systems (ICDCS 2012). Los Alamitos, CA, USA: IEEE
Comp. Soc., 2012, pp. 102–111.

[6] A.-M. Kermarrec, A. Pace, V. Quema, and V. Schiavoni, “NAT-resilient
gossip peer sampling,” in Proc. 29th IEEE Intl. Conf. on Distributed
Computing Systems. IEEE Comp. Soc., 2009, pp. 360–367.

[7] S. Guha, N. Daswani, and R. Jain, “An Experimental Study of the Skype
Peer-to-Peer VoIP System,” in Proceedings of IPTPS, Santa Barbara,
CA, February 2006, pp. 1–6.

[8] A. Bergkvist, D. Burnett, C. Jennings, and A. Narayanan, “Webrtc 1.0:
Real-time communication between browsers,” in W3C Working Draft 21
August 2012, 2012. [Online]. Available: http://www.w3.org/TR/webrtc/

[9] R. Roverso, S. El-Ansary, and S. Haridi, “Smoothcache: Http-live
streaming goes peer-to-peer,” in NETWORKING 2012, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2012, pp. 29–43.

[10] I. Eyal, I. Keidar, and R. Rom, “Limosense – live monitoring in
dynamic sensor networks,” in Algorithms for Sensor Systems, ser. LNCS.
Springer, 2012, vol. 7111, pp. 72–85.

[11] S. Voulgaris, D. Gavidia, and M. van Steen, “CYCLON: Inexpensive
Membership Management for Unstructured P2P Overlays,” Journal of
Network and Systems Management, vol. 13, no. 2, pp. 197–217, 2005.

[12] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Peer-to-peer mem-
bership management for gossip-based protocols,” IEEE Transactions on
Computers, vol. 52, no. 2, February 2003.

[13] J. Leitão, R. van Renesse, and L. Rodrigues, “Balancing gossip ex-
changes in networks with firewalls.” in Proc. 9th Intl. Workshop on
Peer-to-Peer Systems (IPTPS ’10). USENIX, 2010, p. 7.

[14] R. Roverso, S. El-Ansary, and S. Haridi, “NATCracker: NAT combina-
tions matter,” in Proceedings of 18th Internatonal Conf. on Computer
Communications and Networks (ICCCN), August 2009, pp. 1–7.

[15] L. Lovász and P. Winkler, “Mixing of random walks and other diffusions
on a graph,” in Surveys in Combinatorics, ser. London Math. Soc.
Lecture Notes Series, P. Rowlinson, Ed. Cambridge University Press,
1995, vol. 218, pp. 119–154.

[16] S. Chib and E. Greenberg, “Understanding the metropolis-hastings
algorithm,” The American Statistician, vol. 49, no. 4, pp. 327–335.

[17] C. Arad, J. Dowling, and S. Haridi, “Message-passing concurrency for
scalable, stateful, reconfigurable middleware,” in Middleware 2012, ser.
LNCS. Springer, 2012, vol. 7662, pp. 208–228.

[18] R. Roverso, S. El-Ansary, A. Gkogkas, and S. Haridi, “Mesmerizer:
a effective tool for a complete peer-to-peer software development life-
cycle,” in SIMUTools ’11, 2011.

[19] R. Reale, R. Roverso, S. El-Ansary, and S. Haridi, “DTL: Dynamic
Transport Library for Peer-To-Peer Applications,” in In Proc. of the 12th
Intl. Conf. on Distributed Computing and Networking, ser. ICDCN, Jan
2012.

978-1-4799-0521-8/13/$31.00 c©2013 IEEE 10

