
Chord on Demand∗

Alberto Montresor

University of Bologna, Italy

montresor@cs.unibo.it

Márk Jelasity†

University of Bologna, Italy

jelasity@cs.unibo.it

Ozalp Babaoglu

University of Bologna, Italy

babaoglu@cs.unibo.it

Abstract

Structured peer-to-peer overlay networks are now an es-

tablished paradigm for implementing a wide range of dis-

tributed services. While the problem of maintaining these

networks in the presence of churn and other failures is the

subject of intensive research, the problem of building them

from scratch has not been addressed (apart from individ-

ual nodes joining an already functioning overlay). In this

paper we address the problem of jump-starting a popular

structured overlay, Chord, from scratch. This problem is

of crucial importance in scenarios where one is assigned a

limited time interval in a distributed environment such as

Planet-Lab, or a Grid, and the overlay infrastructure needs

to be set up from the ground up as quickly and efficiently

as possible, or when a temporary overlay has to be gener-

ated to solve a specific task on demand. We introduce T-

CHORD, that can build a Chord network efficiently starting

from a random unstructured overlay. After jump-starting,

the structured overlay can be handed over to the Chord pro-

tocol for further maintenance. We demonstrate through ex-

tensive simulation experiments that the proposed protocol

can create a perfect Chord topology in a logarithmic num-

ber of steps. Furthermore, using a simple extension of the

protocol, we can optimize the network from the point of view

of message latency.

1 Introduction

Structured overlay networks have received considerable

attention recently [5, 17]. A wide range of distributed ser-

vices and applications can efficiently be implemented on

top of structured overlays. The fundamental abstraction

that is the basis of numerous applications is key-based rout-

ing [6]. Key-based routing protocols are based on routing

tables stored at each node and that are used to forward mes-

sages for a specific key towards the destination: the node

∗In Proc. P2P 2005, IEEE, pp. 87–94. This work was partially sup-

ported by the Future & Emerging Technologies unit of the European Com-

mission through Project BISON (IST-2001-38923).
†Also with RGAI, MTA SZTE, Szeged, Hungary.

that is responsible for the given key. The neighborhood

relations specified by the routing tables define the overlay

topology, whose structure depends on the specific imple-

mentation.

While the problem of maintaining these networks in the

presence of churn and other failures is the subject of inten-

sive research, the problem of building them from scratch has

not been addressed apart from handling node joins to an ex-

isting overlay. Yet, in some important scenarios, we face the

problem of jump-starting structured overlays from scratch.

This problem gains particular importance if one is assigned

a limited time interval in a distributed environment such as

PlanetLab [16], or a Grid [7], and the overlay infrastructure

needs to be set up from the ground up as quickly and effi-

ciently as possible, or when a temporary overlay has to be

generated to solve a specific task on demand.

Existing join protocols are not designed to handle the

massive concurrency involved in a jump-starting process,

when all the nodes are trying to join at the same time [5].

On the other hand, naive approaches where nodes are forced

to join the overlay in some specified order results in at least

linear time needed to construct the network (not to mention

the serious problem of synchronizing the operations).

In this paper we propose a solution to the jump-starting

problem called T-CHORD that is simple, scalable, robust,

and efficient. T-CHORD is a protocol for bootstrapping

the Chord topology on demand starting from an unstruc-

tured, uniform random overlay. The purpose of T-CHORD is

purely jump-starting the overlay; the constructed network is

handed over to the Chord protocol for further maintenance.

T-CHORD is based on an existing topology management

protocol called T-MAN [10], a generic mechanism for build-

ing and maintaining a wide range of different topologies,

including rings, grids and trees. The desired topology is de-

scribed using a single ranking function that all nodes can ap-

ply to order any subset of potential neighbors according to

preference for actually being selected as a neighbor. Using

only local gossip messages, T-MAN gradually evolves the

current topology towards the desired target structure with

the help of the ranking function. The resulting protocol is

scalable and fast, with convergence times that grow as the

logarithm of the network size. Furthermore, it is completely

decentralized and extremely robust.

Briefly, T-CHORD works as follows. We assume the ex-

istence of a connected unstructured overlay network char-

acterized by a random topology (such as those produced by

protocols in [11]). Nodes are assigned unique IDs from a

circular ID space. Starting from the initial random over-

lay, T-MAN is used to build the ring to be used by Chord

for consistent routing. At all nodes, as a “side effect” of

its execution (by remembering all the encountered nodes),

T-MAN can also provide a larger set of nodes from which

Chord fingers can be selected. More details are provided in

Section 4.

We have evaluated the topologies obtained by T-CHORD

through simulation. The results, presented in Section 5,

confirm that the obtained topology is equivalent to (in fact,

at times slightly better than) the “optimal” Chord topology

(as defined in the Chord protocol specification) based on

routing performance: loss rate, hop count and latency.

2 System Model

We consider a network consisting of a large collection of

nodes that are assigned unique identifiers and that commu-

nicate through message exchanges. The network is highly

dynamic; new nodes may join at any time, and existing

nodes may leave, either voluntarily or by crashing. Since

voluntary leaves can be trivially managed by simple “lo-

gout” protocols, in the following we limit our discussion to

node crashes, that are much more challenging. Byzantine

failures, with nodes behaving arbitrarily, are excluded from

the present discussion.

We assume that nodes are connected through an existing

routed network, such as the Internet, where every node can

potentially communicate with every other node. To actually

communicate, a node has to know the identifiers of a set

of other nodes (its neighbors). This neighborhood relation

over the nodes defines the topology of the overlay network.

Given the large scale and the dynamism of our envisioned

system, neighborhoods are typically limited to small subsets

of the entire network. The neighbors of a node (and, thus,

the overlay topology) can change dynamically.

3 Chord

We provide a simplified description of the Chord over-

lay, necessary to understand T-CHORD. Nodes are assigned

random t-bit IDs; keys are taken from the same space. The

ID length t must be large enough to make the probability of

two nodes or keys having the same ID negligible.

Node IDs are ordered in an ID space modulo 2t. We say

that ID a follows ID b in the ring if (a− b + 2t) mod 2t <
2t−1; otherwise, a preceeds b. We also define a notion of

distance over the ring as follows: d(a, b) = min(|a−b|, 2t−
|a− b|).

Given an ID a, its successor (denoted succ1(a)) is de-

fined as the nearest node whose ID is equal to a or fol-

lows a in the ring. Furthermore, the jth successor of i
(denoted succj(i)) is defined recursively as the successor

of succj−1(i). Key k is under the responsibility of node

succ1(k). The notion of predecessor is defined in a sym-

metric way.

Each node maintains two sets of neighbors, called leaves

and fingers. Leaves define an l-regular lattice graph,

where each node n is connected to its l nearest successors

succ1(n) . . . succl(n). For each node n, its jth finger is de-

fined as succ(n + 2j), with j ∈ [0, t− 1].
Routing in Chord works by forwarding messages in the

ring following the successor direction: when receiving a

message targeted at key k, a node n forwards it to its fur-

thest leaf or finger n′ that preceeds (or is equal to) succ1(k).
When the message reaches the destination node succ1(k),
it is delivered locally.

Thanks to the fingers, the number of nodes that need to

be traversed to reach a destination node is O(log N) (with

high probability), where N is the size of the network [5].

Leaves, on the other hand, are used to improve the prob-

ability of delivering a message in case of failures, and to

avoid that the ring can be broken into disjoint partitions.

4 Jump-starting Chord

T-CHORD is heavily based on the topology management

facilities offered by T-MAN [10]. For this reason, we first

describe the generic T-MAN algorithm, and then we show

how it can be used to build the Chord topology.

4.1 The T-MAN Algorithm

The task of T-MAN is to build some desirable topology

by connecting all nodes in the network to their appropri-

ate neighbors. The topology can depend on any properties

of the nodes including geographical location, semantic de-

scription of stored content, storage capacity, etc. The de-

sired topology is defined through a ranking function that

nodes can use to sort any subset of nodes according to pref-

erence to be selected as their neighbor.

Let us first define some basic concepts. Nodes maintain

addresses of other nodes through partial views (views for

short), which are sets of node descriptors. A descriptor is a

pair (address, profile), where the address is the information

needed for sending a message to a node (e.g., an IP address

and a port number), while the profile contains those prop-

erties of the nodes that are relevant for defining a topology,

such as ID, geographical location, etc.

We can now define the topology construction problem.

The input to the problem is a setN of N nodes, the number

of nodes d that constitutes the node degree of the desired

overlay topology, and a ranking function R that can order

2

view ← rnd .view ∪ {(myAddress ,myProfile)}

(a) Initialization

do at a random time once in each

consecutive interval of T time units

p← selectPeer(view)
message ← extractMessage(view , p)
sendmessage to p
receivemessagep from p
view ← merge(messagep, view)

(b) Active thread

do forever

receivemessageq from q
message ← extractMessage(view , q)
sendmessage to p
view ← merge(messageq, view)

(c) Passive thread

Figure 1. The T-MAN algorithm.

a list of nodes according to preference from a given node.

The ranking function R takes as parameters a base node n
and a set of nodes {y1, . . . , yk} and outputs a set of order-

ings of these k nodes. The task is to construct the view of all

the nodes such that the view of node n, denoted viewn, con-

tains the first d elements of a “good” ranking of the entire

node set, that is, the first d elements of the ordering returned

by R(n,N −{n}) are identical to the first d elements of the

ordering returned by R(n, viewn). We will call the topol-

ogy defined by these d nodes the target topology. Note that

parameter d defines the node degree of the overlay network

and is uniform for all nodes.

One way of obtaining ranking functions is through a dis-

tance function that defines a metric space over the set of

nodes. The ranking function can simply order the given

set according to increasing distance from the base node. T-

CHORD use a ranking functions that order nodes based on

the successor relation. Other ranking functions, not based

on the concept of distance, are discussed in [10].

The pseudo-code of the T-MAN protocol is shown in Fig-

ure 1. Each node executes two threads: an active one ini-

tiating communication with other nodes, and a passive one

waiting for incoming messages and responding accordingly.

Each request-response pair is called an exchange. The ver-

sion presented here is a slight variation of the original algo-

rithm, where the size of the views maintained by nodes is

fixed. Here, the view size may grow after each exchange, as

the set of received descriptors is merged to the local view.

Let us now describe the three functions called by the pro-

tocol. Function extractMessage(S, q) first ranks the nodes

in set S from the point of view of q (i.e., using a ranking

function R(q, S)), and subsequently returns the first m el-

ements. In other words, it returns the elements that the

selected peer would prefer most from the current view of

the node. Parameter m represents the size of messages

exchanged by nodes. Function selectPeer(S) executed by

node n ranks the nodes in S based on their distance from n
itself, and selects a random node from the first m nodes (the

nearest ones). Finally, merge(S1, S2) returns the union of

the descriptor sets S1 and S2.

It has been shown that this algorithm converges expo-

nentially to the target topology; i.e., the number of cycles to

be executed is O(log N) in a network of N nodes.

4.2 T-CHORD: From T-MAN to Chord

To build a Chord topology, the ring of leaves must be

constructed to guarantee consistency, and fingers must be

discovered to improve performance. The version of T-MAN

presented in this paper makes it possible to solve both prob-

lems in a simple way.

To be able to apply T-MAN each node is assigned a

unique identifier in the Chord ID space ([0, 2t − 1]). Ini-

tially, the T-MAN view is initialized with a random set of

nodes that are obtained from a lightweight membership pro-

tocol such as the ones described in [11].

The ranking function R used by T-CHORD is defined over

the ring, as described in Section 3: the first m nodes of

the ordering returned by R(n, S) (as computed by functions

extractMessage and selectPeer) contain the first m/2 nodes

contained in S that succeed n and the first m/2 nodes con-

tained in S that preceed n. In other words, the preferred

neighbors are the nearest successors and predecessors in the

ID space. T-MAN is executed for a fixed number of cycles at

each node. At each cycle, a node n discovers new nodes (by

merging exchange messages to its view) that are progres-

sively nearer to n itself. Given the logarithmic convergence

time [10], the number of cycles to be executed can be de-

termined in two ways: (i) either by estimating the network

size [12,14]; or by adopting an upper bound (e.g., a value of

30 cycles is sufficient for networks up to one billion nodes,

as extrapolated from Figure 5).

Once T-MAN has completed its execution, node n obtains

the leaves by extracting them from its local view , selecting

the l nearest nodes that succeed n. l is a parameter that de-

fines the size of the Chord leaf set. To select fingers, the fol-

lowing algorithm is used: for each exponent j ∈ [1, t − 1],
select from the view the node nearest to n whose ID belongs

to the interval [n + 2j mod 2t, n + 2j−1 − 1 mod 2t].
In other words, even if we have not been able to discover

succ(n + 2j), which is supposed to be the “ideal” finger

based on the Chord definition, we select a node whose dis-

tance from n has the same order of magnitude. In this way,

the logarithmic routing property of Chord is preserved, as

we demonstrate in Section 5.

3

4.3 T-CHORD-PROX: Network Proximity

Given an exponent j ∈ [1, t − 1], several nodes in the

viewn may belong to the finger range [n+2j mod 2t, n+
2j−1 − 1 mod 2t]. In T-CHORD, the finger nearest to n
with respect to the ID space has been selected among them,

to better approximate the original Chord definition.

An alternative selection mechanism could be based on

communication proximity, i.e. on the latency measured be-

tween nodes [8]. This would enable the construction of low-

latency routing paths between nodes, improving the overall

routing performance of the network.

We propose here T-CHORD-PROX, a variant of T-CHORD

based on proximity. The finger selection algorithm works

as follows: let Sj(n) be the the set of nodes contained in

the view of n whose id is contained in the range [n + 2j

mod 2t, n + 2j−1 − 1 mod 2t]. Node n picks p nodes at

random from Sj (or the entire Sj set, if its size is less or

equal than the parameter p), and measures the latency by

sending distance probes to them. A distance probe can be

implemented as a simple ping-pong exchange, or may be a

more complex protocol involving more exchanges [3].

This simple protocol requires a number of hops similar

to the original Chord, but outperforms it in terms of latency.

5 Experimental Results

We performed extensive simulation experiments in order

to compare the jump-started overlay to the perfect Chord

topology, and to characterize the scalability and robustness

of our protocols. All of the experimental results were ob-

tained using PEERSIM, a simulator developed by us and op-

timized for our gossip-based protocols [13, 15].

5.1 Experimental Settings

In all experiments, all nodes are initialized with a ran-

dom view obtained from the NEWSCAST protocol [11]. Sub-

sequently, T-MAN is run with the ranking function described

in Section 4, to create an ordered ring, and to collect long

range links as well. When T-MAN reaches a pre-specified

number of cycles, each node runs T-CHORD locally to ex-

tract its routing tables from the T-MAN view, creating the

Chord topology.

We focus on the routing performance of the obtained

overlay. Three routing metrics have been taken into consid-

eration. Hop count is the number of nodes that are traversed

by a message to reach its destination. In case of failures,

message timeouts (failed hops) are counted separately. De-

livery delay measures the time needed to reach the destina-

tion. Our latency model is based on the King dataset [9],

that provides end-to-end latency measurements for a set of

1740 routers. Each node is attached through a 1ms link to

a randomly selected router [17]. In case of failures, a time

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20
 2

 3

 4

 5

 6

 7

 8

L
o

s
s
 R

a
te

 (
%

)

H
o

p
 C

o
u

n
t

(n
.)

Cycles

T-Chord (%)
T-Chord-Prox (%)

T-Chord (n.)
T-Chord-Prox (n.)

Figure 2. Loss rate and hop count as a func

tion of the number of T-MAN cycles executed

equal to twice the latency is added to the total delay in order

to simulate timeouts. Loss rate is the fraction of messages

that do not reach the destination node.

Since our goal is to jump-start Chord, the baseline rout-

ing performance is defined by the perfect Chord topology

over the same set of nodes. We construct this topology

off-line, using the specification of the Chord protocol, and

we compare the performance of this ideal topology with the

ones generated by T-CHORD. We emphasize again that our

goal is not to develop a novel routing mechanism or a new

structured overlay: our goal is to create a Chord topology

efficiently from scratch.

Besides routing performance, we also need to measure

communication overhead for building the topology. In case

of T-CHORD without proximity, communication costs are

given just by T-MAN exchanges. Given the periodic nature

of T-MAN, these costs can be easily computed: each T-MAN

node sends one message and receives one message on the

average per cycle, with m descriptors included in each mes-

sage. T-MAN is run for O(log N) cycles. In T-CHORD-PROX,

the cost of latency probes must also be considered.

Unless stated otherwise, all figures are based on the fol-

lowing parameters: network size N = 216 nodes, message

size m = 10, number of successor in the target topology

l = 5, maximum number of probes per routing table entry

p = 5. In all figures, 20 individual experiments were per-

formed. Average values for each of the metrics are shown;

error bars are used to show minimum and maximum val-

ues among the experiments (standard deviation is often too

small to be visualized). To aid the visualization, some of

the bars are shifted horizontally slightly.

5.2 Convergence

The routing performance of the topologies obtained by

T-CHORD depends on the number of T-MAN cycles executed

before the routing tables are built. In particular, the leaf ring

4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

H
o
p
 C

o
u
n
t

Size

Chord
T-Chord

T-Chord-Prox

Figure 3. Hop count as a function of network

size

 200

 300

 400

 500

 600

 700

 800

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

L
a
te

n
c
y
 (

m
s
)

Size

Chord
T-Chord

T-Chord-Prox

Figure 4. Message delay as a function of net

work size

must be completed in order to guarantee the correct deliv-

ery of all messages. This is illustrated in Figure 2, where

the loss rate and the observed hop count for T-CHORD and

T-CHORD-PROX are shown as a function of the number of

T-MAN cycles that have been run. Initially, all messages

are lost: local views contain only random nodes, so the

routing algorithm is unable to deliver messages. The loss

rate rapidly decreases, however, reaching 0 after only 14

cycles. At that point, the leaf ring is completely formed in

all our experiments. Note that the curves for T-CHORD and

T-CHORD-PROX overlap almost completely.

Regarding hop counts, the results confirm that the quality

of the routing tables stabilizes after few cycles, for both ver-

sions of T-CHORD. Latency (not shown for space reasons)

follows a similar behavior. The increasing tendency of the

hop count curves is explained by the fact that in the begin-

ning, in spite of the low quality overlay, a few messages

reach their destination “by chance” in a few hops, while

most of the messages are lost.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

C
y
c
le

s

Size

1-regular lattice
5-regular lattice

Figure 5. Convergence time as a function of

network size

5.3 Scalability

The experiments discussed so far were run in a network

with a fixed size (216 nodes). To assess the scalability of

T-CHORD, Figure 3 plots the average hop count against net-

work size varying in the range [210, 218]. Results for the

ideal Chord topology are also shown. All algorithms scale

logarithmically with size. Quite interestingly, T-CHORD per-

forms slightly better than Chord. This is explained by the

fact that the distance of the longest fingers tend to be larger

in our case (due to not strictly satisfying the Chord specifi-

cation), which speeds up reaching the destination node if it

resides in the most distant half of the ring.

Figure 4 plots the average message delay in the same

settings. As expected, T-CHORD-PROX outperforms both T-

CHORD and Chord, due to its latency-optimized set of fin-

gers. To obtain such performance, T-CHORD-PROX pays a

price in terms of latency probes. In this experimental set-

ting, with parameter p set to 5, we have observed a total

number of probes per node scaling logarithmically from 45

(for N = 210) to 77 (for N = 218). This is expected, as

the number of expected different finger entries per node is

O(log N) [5]. These values are comparable with those re-

ported for other proximity-based protocols like Pastry [3],

and can be tuned by varying the p parameter.

Finally, Figure 5 plots the number of cycles needed to

obtain the 1-regular lattice (the ring), sufficient to guaran-

tee the consistent routing of messages (absence of message

losses) [5], and the l-regular lattice used to provide addi-

tional fault-tolerance. In both cases, the convergence is ob-

tained in a logarithmic number of cycles.

5.4 Parameters

To evaluate the impact of the T-MAN message size (m)

on the routing performance of our algorithm, we performed

the simulations illustrated in Figures 6 and 7. In both fig-

5

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 4 6 8 10 12 14 16 18 20

H
o
p
 c

o
u
n
t

Message size

Chord
T-Chord

T-Chord-Prox

Figure 6. Hop count as a function of message

size m

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 4 6 8 10 12 14 16 18 20

M
e
s
s
a
g
e
 D

e
la

y
 (

m
s
)

Message size

Chord
T-Chord

T-Chord-Prox

Figure 7. Message delay as a function of mes

sage size m

ures, the number of l of successor in the target topology is

equal to m/2; in other words, the message size is matched

against the target topology. The figures show that good re-

sults are obtained even when using small message size, al-

though it must be noted that in the case of m = l = 4,

approximately 0.6% of the messages are not delivered to

their destination.

5.5 Robustness

To test robustness, we have considered two different fail-

ure models: crash and churn. In the former, failures are

catastrophic: a given percentage of nodes are suddenly re-

moved from the completed Chord network. In the latter, the

same percentage of nodes are removed during the execution

of T-CHORD, evenly distributed over time.

The two models play different roles in our analysis. The

crash model is the only one applicable to the ideal Chord

network that we use for comparison, since we build it off-

line, without using the actual Chord maintenance protocol.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50

L
o
s
s
 r

a
te

 (
%

)

Crashed nodes (%)

Chord (crash)
T-Chord (crash)
T-Chord (churn)

T-Chord-Prox (churn)

Figure 8. Loss rate under different failure sce

narios

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0 10 20 30 40 50

H
o
p
 C

o
u
n
t

Crashed nodes (%)

Chord (crash)
T-Chord (crash)
T-Chord (churn)

T-Chord-Prox (churn)

Figure 9. Hop count under different failure

scenarios

We use this model to obtain a lower bound for routing per-

formance. In the churn model, on the other hand, failures in-

fluence the execution of T-MAN; we use this model to show

that our algorithm can indeed survive failures during its ex-

ecution.

It is important to note that a direct comparison between

the results of T-CHORD-PROX and the other results is not

fair. T-CHORD-PROX probes nodes for latency before insert-

ing them in the finger set, which means that only a few fin-

gers (the ones that fail in the period after the probing) are

down when the routing performance is evaluated.

Due to the lack of space, node joins during the bootstrap

phase are not considered in this paper. Nodes starting late

the bootstrap process will not discover all its fingers before

the end of the protocol. After the bootstrap, however, the

finger stabilization mechanism of Chord can locate the re-

maining fingers. Extending this work to actually maintain

(and not just jump-start) a Chord structure will be subject

of a future work.

We have simulated an increasing percentage of nodes re-

6

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

H
o
p
 C

o
u
n
t

Crashed nodes (%)

Chord (crash)
T-Chord (crash)
T-Chord (churn)

T-Chord-Prox (churn)

Figure 10. Failed hops under different failure

scenarios

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50

M
e
s
s
a
g
e
 D

e
la

y
 (

m
s
)

Crashed nodes (%)

Chord (crash)
T-Chord (crash)
T-Chord (churn)

T-Chord-Prox (churn)

Figure 11. Message delay under different fail
ure scenarios

moved in a network of size 216, with T-MAN running for

20 cycles. The results are presented in Figures 8–11. Once

again, our routing metrics show that the topology obtained

by T-CHORD without proximity is comparable to the ideal

Chord topology, in both the crash and the churn models.

It is interesting to compare the simulated churn rate with

the churn rate observed in deployed P2P networks [18]. In

the worst case, the churn rate corresponds to 50% divided

by 20 cycles, i.e. 2.5% per cycle. A cycle length of 2 sec-

onds (a perfectly reasonable choice that enables the con-

struction of a 216 topology in less than a minute) corre-

sponds to 0.0125 failures per node per second, two orders

of magnitude larger than the rates observed in deployed net-

works (around 10−4 failures per node per second ([18])).

5.6 Practical Considerations

First, the actual execution time of the protocol depends

on the length of a cycle, which is a parameter of the proto-

col. Based on our previous experience with large-scale im-

plementations of gossip-based protocols [14], a cycle length

of 1-2 seconds is very reasonable. Considering the logarith-

mic scaling of the execution time, we can conclude that any

practical network can be constructed in less then a minute

(30 cycles).

Second, in our simulation experiments, we have assumed

cycles of the same length at all nodes, and a synchronized

protocol start. The first assumption is very weak and is eas-

ily satisfied in practical networks, since the drift of clocks is

negligible in such a short term. The synchronized start re-

quirement is related to the decision of starting a new struc-

ture on demand. In the worst case, this can be accomplished

by, for example, a gossip-based broadcast protocol, which

requires an additional O(log N) cycles to be performed.

Finally, while running T-MAN, nodes keep merging the

descriptors received in messages to their local view. How-

ever, local views do not grow unbounded: as each node pro-

gressively finds its position in the ring, the number of new

nodes contained in messages eventually reaches zero. In our

simulation experiments, the average amount of descriptors

discovered during the execution ranges from as little as 70

(N = 210) to 140 (N = 218).

6 Related Work

Bootstrapping structured overlays is somewhat under-

emphasized in comparison with other research topics. Ex-

isting proposals have assumed networks that are already

formed, or networks that grow progressively, using the na-

tive join protocol. The discovery of the node to join may be

facilitated either by a central (well-known) node, or through

a universal ring, a shared overlay providing discovery and

deployment services [4].

Join protocols enable a new node to find its position in-

side the structured topology [5,17]. For example, the single-

join protocol of Chord requires a node to locate its position

inside the ring, and then to locate each of its O(log N) dis-

tinct fingers [5]. Since both operations require O(log N)
hops (messages), the cost of a single-join is O(log2 N).

This aggressive protocol is superseded by a light-weight

one that can support concurrent joins. In this case, nodes

just find their position in the ring (with a O(log N) rout-

ing operation), while fingers are updated subsequently by a

stabilization protocol. The protocol is efficient “... unless a

tremendous number of nodes joins the system.” [5], in which

case the updating rate of fingers is not sufficient and rout-

ing requires a linear number of hops. In comparison, our

approach builds the topology in O(log N) cycles, with two

messages sent and two messages received per node per cy-

cle, with each message being a collection of m 128-bit IDs.

The problem of bootstrapping an overlay topology has

started recently to gain interest from the research commu-

nity. Angluin et al. [2] propose an asynchronous algorithm

whose goal is to build a linked list of nodes sorted by their

7

identifiers. Their approach is based on binary search trees

that are built in O(WlogN) time, where W is the length of

node identifiers. On comparison, our approach builds the

ring in O(logN) time, independently from the size of iden-

tifiers. Furthermore, our approach can deal with high level

of churn, while churn has not been considered in [2]. Aberer

et al. [1] propose a mechanism for bootstrapping a P-Grid

topology in O(log2N) time.

Finally, Voulgaris and van Steen [19] propose an epi-

demic protocol with a similar goal: jump-starting Pastry.

However, their proposal is rather expensive: it requires run-

ning O(log K) instances of a modified NEWSCAST proto-

col [11] in parallel (where K is the size of the ID space), and

it does not take latency into account. Besides, it is highly

specific to Pastry, whereas our approach, being based on T-

MAN, that is able to evolve a wide range of topologies, is po-

tentially more generic. Indeed, we already have preliminary

results for building Pastry as well, through an XOR-based

ranking function for T-MAN, with costs similar to T-CHORD.

7 Conclusions and Future Work

We have addressed the problem of jump-starting a pop-

ular structured overlay, Chord, from scratch. The proposed

protocols, T-CHORD and T-CHORD-PROX are scalable, light-

weight and robust, and can be applied to scenarios (such

as Grids [7] and large-scale testbeds like Planet-Lab [16]),

where the overlay infrastructure needs to be built from the

ground up as quickly and efficiently as possible.

Although here we targeted Chord, our approach is more

general, and it can be applied to other overlay protocols as

well. In fact, we have preliminary results with Pastry [17]:

in this case, two concurrent T-MAN instances are needed,

one to build the successor ring, another to build the prefix-

based routing tables.

Future work will include the implementation of proto-

types for both T-CHORD and T-CHORD-PROX, to be tested in

Planet-Lab [16] (this activity has already started). Further-

more, we are considering the possibility of using a gossip-

based approach not only for bootstrapping, but also for

maintaining such topologies in spite of churn.

References

[1] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. Indexing data-

oriented overlay networks. In Proc. of the 31st International Confer-

ence on Very Large Databases (VLDB), Trondheim, Norway, Aug.

2005. ACM.

[2] D. Angluin, J. Aspes, J. Chen, Y. Wu, and Y. Yin. Fast Construction

of Overlay Networks. In Proc. of the SPAA’ 05, Las Vegas, Nevada,

USA, July 2005. ACM.

[3] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Proximity Neighbor

Selection in Tree-Based Structurd P2P Overlays. Technical Report

MSR-TR-2003-52, Microsoft Research, June 2003.

[4] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. One Ring

to Rule Them All: Service Discovery and Binding in Structured P2P

Overlay Networks. In Proc. of the 10th SIGOPS European Workshop,

Saint-Emilion, France, 2002.

[5] F. Dabek et al. Building P2P Systems with Chord, a Distributed

Lookup Service. In Proc. of the 8th Workshop on Hot Topics in Op-

erating Systems (HotOS), Schloss Elmau, Germany, May 2001. IEEE

Computer Society.

[6] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. To-

wards a Common API for Structured P2P Overlays. In Proc. of the

2nd Int. Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley,

CA, USA, Feb. 2003.

[7] I. Foster and C. Kesselman. The Grid: Blueprint for a Future Com-

puting Infrastructure. Morgan Kaufmann, 1999.

[8] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,

and I. Stoica. The impact of DHT routing geometry on resilience

and proximity. In Proc. of SIGCOMM 2003, pages 381–394, New

York, USA, 2003. ACM Press.

[9] K. Gummadi, S. Saroiu, and S. Gribble. King: Estimating Latency

between Arbitrary Internet End Hosts. In Proc. of the SIGCOMM

Internet Measurement Workshop (IMW 2002), pages 5–18, 2002.

[10] M. Jelasity and O. Babaoglu. T-Man: Gossip-based Overlay Topol-

ogy Management. In Proc. of the 3rd Int. Workshop on Engineering

Self-Organising Applications (ESOA’05), 2005.

[11] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.

The Peer Sampling Service: Experimental Evaluation of Unstruc-

tured Gossip-Based Implementations. In Middleware 2004, volume

3231 of Lecture Notes in Computer Science, pages 79–98. Springer-

Verlag, 2004.

[12] M. Jelasity and A. Montresor. Epidemic-Style Proactive Aggregation

in Large Overlay Networks. In Proc. of the 24th Int. Conference on

Distributed Computing Systems (ICDCS’04), pages 102–109, Tokyo,

Japan, Mar. 2004. IEEE Computer Society.

[13] M. Jelasity, A. Montresor, and O. Babaoglu. A Modular Paradigm

for Building Self-Organizing P2P Applications. In Engineering Self-

Organising Systems: Nature-Inspired Approaches to Software En-

gineering, number 2977 in Lecture Notes in Artificial Intelligence,

pages 265–282. Springer-Verlag, Apr. 2004.

[14] A. Montresor, M. Jelasity, and O. Babaoglu. Robust Aggregation

Protocols for Large-Scale Overlay Networks. In Proc. of the 2004

Int. Conference on Dependable Systems and Networks (DSN’04),

pages 19–28, Florence, Italy, June 2004. IEEE Computer Society.

[15] PeerSim. http://peersim.sourceforge.net/.

[16] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint

for Introducing Disruptive Technology into the Internet. In Proc.

of the First ACM Workshop on Hot Topics in Networks (HotNets-I),

Princeton, NJ, Oct. 2002.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Ob-

ject Location and Routing for Large-Scale P2P Systems. In Proc.

of the 18th Int. Conf. on Distributed Systems Platforms, Heidelberg,

Germany, Nov. 2001.

[18] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study

of p2p file sharing systems. In Proc. of the Multimedia Computing

and Networking 2002 (MMCN ’02), San Jose, CA, USA, January

2002.

[19] S. Voulgaris and M. van Steen. An Epidemic Protocol for Man-

aging Routing Tables in Very Large P2P Networks. In Proc. 14th

IFIP/IEEE Int. Workshop on Dist. Sys.: Operations and Manage-

ment, (DSOM 2003), number 2867 in LNCS. Springer-Verlag, 2003.

8

