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Abstract

The emergence of the Internet as a computing platform
increases the demand for new classes of algorithms that
combine massive distributed processing and complete de-
centralization. Moreover, these algorithms should be able
to execute in an environment that is heterogeneous, changes
almost continuously, and consists of millions of nodes. An
important class of algorithms that can play an important
role in such environments is aggregate computing: comput-
ing the aggregation of attributes such as extremal values,
mean, and variance. These algorithms typically find their
application in distributed data mining and systems manage-
ment. We present novel, massively scalable and fully decen-
tralized algorithms for computing aggregates, and substan-
tiate our scalability claims through simulations and theo-
retical analysis.

1. Introduction

With the emergence of the Internet as a computing plat-
form, we are seeing the need for a new class of algorithms
that combine massive parallelism and inherent decentraliza-
tion. This need is exemplified by the recently proposed in-
tegration of Grid technology and peer-to-peer networks [3].
This proposal recognizes the fact that massive parallel com-
puting on the Internet will not only require a highly de-
centralized approach, but also demands a degree of self-
organization.
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In our own research, we are seeking solutions to mas-
sively distributed processing in which centralized coordi-
nation is not possible. Such situations typically occur in
modern peer-to-peer networks [5] in which coordination is,
if possible at all, handled through dynamically selected spe-
cial nodes known as superpeers [8]. Given this situation, the
research question we address is: What useful massively par-
allel computations can actually be executed on large-scale
peer-to-peer overlay networks?

One promising research area for these goals is to find
efficient implementations of computing aggregates over at-
tribute values or data items that can be found distributed
over a peer-to-peer network [6, 1]. Examples of aggregate
computing include finding extremal values, mean, variance,
etc. Aggregate computing as a primitive functional building
block is interesting because efficient and robust implemen-
tations can be given on fully distributed large peer-to-peer
overlay networks while the applications of these aggregates
include important areas such as distributed data mining and
systems management (maintenance, control, monitoring).

Our main contribution consists of algorithms for ex-
tremal value and average calculations. These algorithms
are fully decentralized and can be executed on extremely
large networks consisting of millions of nodes that commu-
nicate only through message passing. The algorithms are
based on a relatively simple protocol for information dis-
semination and group membership management, called the
newscast protocol [4]. We provide experimental analyses
and suggest a theoretical framework for the analysis of our
averaging algorithms.

In the following, we first briefly explain the newscasting
protocol in Section 2. In Section 3 we describe our algo-
rithms, followed by theoretical and empirical results about



our averaging approach in Section 4. We finish with a short
cost analysis, discussion of related work, and conclusions.

2. The Newscast Protocol

We shall call the basic entities that form the distributed sys-
tem agents to emphasize their possible autonomy and com-
plexity (in other works the terms process and node are also
used in similar contexts).

The newscast protocol is responsible for two functions
at the same time: membership management, i.e., taking
care of subscriptions and failures of a possibly very large
group of agents, and information dissemination among the
group members, which we call newscasting. The protocol
is extremely simple: each agent knows only a (continuously
changing) small set of peers of which one is randomly cho-
sen to exchange information. There are no special agents,
the newscast protocol is fully distributed and symmetric:
each agent performs the same operations. In this section,
we explain how the protocol works and summarize its key
properties which are relevant for our present goal of apply-
ing it to implement aggregation.

1. Principal Operation

To understand how the protocol works it is useful to in-
troduce a virtual concept, which has no corresponding im-
plementation or location in a working newscast group, but
helps grasping the underlying design philosophy. This con-
cept is the news agency. The basic idea is that the news
agency asks all agents regularly for news by means of a
callback function getNews(). In addition, the news agency
provides each agent with news about the other agents in
the collective, again through a callback function newsUp-
date(news[]). The architecture is illustrated in Figure 1.

The definition of what counts as news is application de-
pendent. The agents simply live their lives (perform com-
putations, listen to sensors and the news, etc.) and based on
the computations they have completed and the information
they have collected they must provide the news agency with
news when asked.

Each agent has an associated correspondent that runs
on the same machine that hosts the agent. The newscast
protocol is implemented by the correspondent. The cor-
respondents jointly form the distributed implementation of
the news agency. Each correspondent maintains a cache of
c news items, where an integer c > 0 is a global protocol
parameter. Whenever an agent passes a news item to its
correspondent, the latter timestamps the item, adds its own
network address, and subsequently caches the item. A news
item itself consists of an agent identifier and the actual news
as provided by the agent, as shown in Figure 2.

News agency

receiveCache

sendCache

WAN node WAN node

getNews newsUpdate

Correspondent

Agent

getNews newsUpdate

Correspondent

Agent

cache cache

Figure 1. The conceptual organization of a
newscast application.
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Cache entry
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Figure 2. The format of news items and cache
entries.



Correspondents regularly exchange caches as follows.
Omitting some trivial technical details (which can be found
in [4]), each correspondent executes the following five steps
once every ∆T time units:

1. Request a fresh news item from the local agent by call-
ing getNews(). Merge the item into the cache.

2. Randomly select a peer correspondent by considering
the network address of other (and available) correspon-
dents as found in the cache.

3. Send all cache entries to the selected peer, and, in turn,
receive all the peer’s cache entries (c items). Merge the
received entries into the local cache.

4. Pass the received cache entries from the peer agent to
the local agent by calling newsUpdate().

5. The correspondent now has at most 2c + 1 cache en-
tries; it subsequently throws away the oldest ones to
keep the c freshest ones.

The merge operation of the cache ensures that from one
agent there is at most one item in the cache. The selected
peer correspondent executes the last three steps as well, so
after the exchange the caches of both correspondents are
identical. Note, however, that as soon as any of these two
correspondents executes the protocol again, its cache will
most likely be different again.

We call ∆T the cycle length. Even though the system is
not synchronized, it is often convenient to talk about cycles
of the protocol, which are simply consecutive wall clock
time intervals of length ∆T counted from some convenient
starting point.

The protocol does not require that the clocks of corre-
spondents are synchronized, but only that the timestamps of
news items in a single cache are mutually consistent. This
can be achieved as follows. When a correspondent A passes
its cache to B, it also sends along its current local time, TA.
When B receives the cache entries, it subsequently adjusts
the timestamp of each entry with a value TA − TB, effec-
tively normalizing the time of each new entry to those al-
ready cached. We assume that the communication time be-
tween two correspondents is smaller than ∆T which must
be true anyway since in each cycle at least one communica-
tion has to be completed according to the protocol.

2. Membership Management

The newscasting protocol disseminates correspondent ad-
dresses together with news items submitted by the agents.
This automatically provides us with a simple membership
management functionality.

Subscriptions do not need any special sequence of com-
munications, the new correspondent simply has to initialize

its cache with at least one known correspondent which is
already a member of the group, and start to execute the pro-
tocol. Our experiments showed that the system is not sen-
sitive to subscription patterns and tolerates the worst case
when each new member subscribes through the same fixed
correspondent [4].

Unsubscriptions are treated as failures. An unsubscrib-
ing correspondent simply has to stop communicating. Out-
dated information is quickly removed from the system so
if a correspondent does not keep communicating, it will be
forgotten.

3. Newscasting is not Broadcasting

It is important to note that newscasting is different from
broadcasting, a difference that is easily overlooked and
which may lead to confusion. A first observation is that
newscasting is proactive, that is, it is not initiated by a sin-
gle node, nor will it ever end. Second, unlike broadcasting,
newscasting disseminates a given news item only to a ran-
dom, relatively small group of peers. This limited dissemi-
nation is caused by the fact that, eventually, a news item is
removed from a cache in favor of a fresher item.

These observations do not imply that newscasting can-
not be deployed for broadcasting purposes. For example,
a naive broadcasting scheme is to have an agent repeatedly
return the same news when it is called back through get-
News(). This scheme, however, will only slowly propagate
news to all agents. A much better scheme is to let other
agents store, and subsequently forward an incoming news
item when requested for fresh news. This store-and-forward
scheme effectively mimics a flooding algorithm. A more so-
phisticated solution is to deploy constrained forwarding in
order to prevent nodes to receive too many duplicates.

These examples illustrate the flexibility of newscasting
which allows the implementation of a wide range of com-
munication mechanisms and computations; a flexibility we
use for computing aggregates as we explain next.

4. Some Properties of the Protocol

Without proof, we list some important properties of the
newscast protocol which are relevant for the present paper.
For more details, please consult [4].

The correspondents and their cache entries at any time
define a communication graph: the correspondents are the
nodes and the cache entries define directed edges. This
graph is constantly changing with time. We have shown
that this graph has a very low diameter and is very close to
a random graph with out-degree c. According to our results,
choosing c = 20 is already sufficient for very stable connec-
tivity through time, i.e., the newscast group stays constantly
connected.



We have also shown that, within a single cycle, the num-
ber of cache exchanges for each correspondent can be mod-
elled by a random variable 1 + Poisson(1). In other words,
on average there are two exchanges per cycle (one is initi-
ated by the local correspondent and the other one is coming
in from a peer) and the variance of this estimate is 1.

3. Calculating Basic Statistics

Let us consider a system of n agents that form a newscast
group, and let each agent i store one number ai—its own
value. Our objective is to program these agents in such a
way, that they will collectively find, within very few cycles
of the protocol, some aggregation of all values (or a good
approximation of it). In this section we will illustrate the de-
sign philosophy through an algorithm for finding extremal
values as a special case of aggregation and then we will fo-
cus on approximating the mean of the values, which poses
a greater challenge. Using the idea presented in the mean
approximation algorithm it is relatively straightforward to
develop algorithms for other aggregates like variance.

1. Maximum

To shed some more light on how to develop applications for
the model, we present a relatively simple example. The task
is to find the maximum a∗ = maxn

i=1 ai. The following
algorithm, which is common to all agents, will solve this
problem.

void newsUpdate(news[]) {
myMax =
max(myMax,a,news[1],...,news[c])

}

NewsItem getNews() { return myMax; }

where a = ai for agent i.
Although there is no signal that informs the agents that

the value is found, using the theory of epidemic algo-
rithms [2] it can be proven that all agents will hear about
the final solution very quickly. From the point of view of
a true maximum value the algorithm is in fact an effective
broadcasting mechanism, since all agents will keep return-
ing it after they have seen it at least once. So the maxi-
mum value spreads exactly like an epidemic, “infecting” a
quickly growing number of agents. Let us assume that pi is
the probability that a given agent is not infected in cycle i.
Let us assume further that we have only a pull protocol, not
push-pull like newscast, that is, let us assume that informa-
tion goes only one way from the passive peer to the active
peer that initiates the communication. Clearly, this way we
have a lower bound on speed. The probability that a given

agent is not infected in cycle i + 1 is given by

pi+1 = pipi

since it had to be uninfected in cycle i and the node it
contacted has to be uninfected as well. The initial value
p0 = (1 − 1/n). It is clear that pi decreases extremely fast.

2. Mean

Due to space limitations—to keep our discussion clear—
we chose for presenting and analyzing the simplest possible
mean approximation algorithm which needs to be started
synchronously (but runs asynchronously afterwards). We
have also developed, implemented and tested a restarting
mechanism for making this specific algorithm adaptive. We
will briefly sketch this solution at the end of this section but
will not discuss it here any further.

The algorithm we propose is the following:

void newsUpdate(news[]) {
if ( counter < K ) {

myNews = a
counter <- counter+1

}
else {

myNews =
average of items in news[]

}
}

NewsItem getNews() { return myNews; }

where a = ai for agent i, K is a common parameter
which is at least 1 and the variable counter is initialized
to 0. During the first K activations each agent publishes
its own value, thus, if K is big enough, after this initial
phase there are about c copies of each value and they are
evenly spread over caches of other agents. In the second
phase these values are collectively averaged. Convergence
is guaranteed since in each step the overall variance of the
numbers in the caches of all the correspondents is decreased
with a positive probability (provided the variance is non-
zero) and increased with zero probability. Let us note that
due to the random nature of the newscast protocol it is es-
sential to chose K to be relatively big (say, K > c). Oth-
erwise,(e.g., when K = 1) some values could be lost or be
over-represented and that could lead to relatively big errors.

We can also expect fast convergence. Intuitively, in the
system the influence of a single value is broadcasted at the
same speed that we have seen in the maximum finding ex-
ample. And this property is true for all values, because a
single value can carry the influence of arbitrarily many in-
dividual original values. This is of course only an intuitive



explanation, but in the next section we will validate these
claims experimentally.

Finally, over many runs, we can expect (in a probabilistic
sense) convergence to the true mean because of symmetry
considerations. That is, there is no systematic bias in the
system towards any agent or any value. We will take a closer
look at the issue of error estimation and its relation to the
distribution of the values a1, . . . , an in the next section.

Automatic Restarting

For the sake of completeness but without rigorous analysis
or validation we mention that it is possible to extend this
algorithm in a way that after the approximation process is
converged a new cycle is always started automatically, with
a new dissemination phase and convergence phase.

The idea is that each agent keeps track of the cycle
counter. When the approximation of an agent has converged
according to some criterion, it makes a local decision to
switch to the next cycle, and publishes this by attaching
the new cycle number to its news item. Each agent also
switches to a new cycle if it sees that someone else has al-
ready done so.

This mechanism, taking also into account that each agent
will sense the same convergence rate throughout the system
so they will not necessarily wait for someone else to start the
cycle change, will change the cycle counter throughout the
whole system within a couple of cycles. This way one can
apply this algorithm to continuously monitor the average.

4. Performance on the Peak Distribution

We define the peak distribution as a1 = n and ai = 0, i =
2, . . . , n. The peak distribution is of special interest for ex-
perimentation and theoretical analysis, because of two rea-
sons. First, the peak distribution is the worst case when the
system is maximally sensitive to initial fluctuations. Sec-
ond, the performance on the peak distribution includes all
information necessary to predict performance on any other
distribution. This statement is rather important, we devote
the following paragraphs to proving it.

First of all, observe that the algorithm uses only linear
operations on the data so any approximation at any time
at any agent is a linear combination of the original values.
Furthermore, the outcome is independent of the way a given
value set is assigned to the agents, that is, any agent can
be assigned any of the values. This latter property follows
from the complete symmetry of the protocol. Therefore,
the output of the algorithm, that is, the estimation m of the
mean, can be described as

m =

n
∑

i=1

wiai,

n
∑

i=1

wi = 1 (1)

being the value of an arbitrarily selected agent at termina-
tion (i.e. when the value has converged). The weights wi

(i ∈ {1, . . . , n}) stand for the relative impact of agent i and
they are clearly independent from the value set ai. In case
of perfect averaging the weights should be equal. Because
of the stochastic nature of our algorithms they are random
variables but with identical distribution, again, due to sym-
metry.

Therefore, it is sufficient to consider one of these weights
to gain information on how well the algorithm calculates
averages. To obtain samples on one single weight consider
the peak distribution. In this case we get

m =

n
∑

i=1

wiai = w1a1 (2)

This observation proves the special role of the peak distribu-
tion, and the fact that the statistical properties of the output
of the averaging protocol on the peak distribution can be
used to predict the outcome on any other distribution.

In other words, this allows us to draw general conclu-
sions on the “averaging power” of our algorithms solely
based on experiments with the peak data set. Furthermore, it
is possible to determine the statistical behavior on all other
value sets by Equation (1). For example, for an even n the
values a1 = 0, . . . , an/2 = 0, an/2+1 = 1, . . . , an = 1 we
have the following formula.

m =

n
∑

i=1

wiai =

n
∑

i=n/2+1

w1 (3)

Here the mean m = 1/2 and standard deviation σ/
√

n/2
where σ is the standard deviation of the common weight
distribution.

1. Experimental Setup

To gain experimental data on the behavior of our system
we performed runs with various number of agents (10000,
20000, and 50000) using a simulator of the newscast proto-
col. For each case we executed 100 independent runs with
cache size 20 and terminated after 50 cycles. All runs in
this section were run on the peak distribution, in accordance
with the observations discussed above.

The only parameter of the algorithm, K, the length of
the dissemination phase was set to K = 20. Using the
result which says that in each newscast cycle there are
1+Poisson(1) calls to getNews() (see Section 4) this means
that the dissemination phase is approximately 10 cycles
long.

2. Experimental Results

Figure 3 shows the distribution of the approximation of the
mean in the 50th cycle, over many runs. The correct mean
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Figure 3. Histogram of the converged output
in the 50th cycle collected from 100 indepen-
dent runs with 10000 agents. The empirical
mean and the standard deviation are 0.935
and 0.656, respectively.

is 1. The distribution in the figure shows the approximation
in a fixed agent. This is acceptable because in a single run,
the approximation in the 50th cycle is practically identical
in each agent (see also Figure 5).

Because we use the peak distribution, as was shown in
equation (2), the shape of the distribution in Figure 3 is
identical to that of the common weight distribution, only
in the case of the weights the mean is 1/n so the x axis
must be scaled accordingly to get the weight distribution.
Recall also, that the peak distribution is the worst case, so
the variance of the mean approximations over many runs is
the largest. For smoother distributions the variance is much
smaller as exemplified by equation (3).

Figure 4 shows the mean and the standard deviation of
the approximation of the average as a function of time (that
is, newscast cycles). Deviation is also shown as a function
of n, the number of agents. As previously, these statistics
are collected at a single agent, over many runs. We can see
that in cycle 30 the algorithm stabilizes at the final approx-
imation and before stabilization the deviation is decreasing
very rapidly. We can also see that the speed of convergence
is highly insensitive to system size which indicates good
scalability.

All the results mentioned so far describe statistics over
multiple runs from the point of view of a fixed agent which
holds a1 = n. Figure 5 shows statistics of the approxi-
mations of the agents during a single run, as a function of

time. It can be seen that the standard deviation over the
approximations of the agents within the same system de-
creases exponentially in the convergence phase of the aver-
aging algorithm (i.e., after the first 10 cycles which form the
dissemination phase).

5. Cost Analysis

Figure 5 gives an indication of the convergence speed of the
algorithm, in terms of the number of newscast cycles. For
a more detailed analysis significantly more empirical evi-
dence would be necessary which is outside of the scope of
this paper, but the observed exponentially decreasing vari-
ance is promising and indicates good scaling properties. For
the above reason, and also because the algorithm is intended
to be running continuously, from this point we focus on the
cost of one newscast cycle.

The cycle length, ∆T , defines the wall clock time of one
newscast cycle. The communication cost of one cycle for
the overall system depends on the cache parameter c (see
Section 2). In each ∆T time units each correspondent ini-
tiates exactly one information exchange session which in-
volves the transfer of 2c cache entries. The size of a cache
entry can be seen from Figure 2. It has a fixed-sized com-
ponent and a news item, which is application dependent. In
our case, a news item is a single floating point number.

Another constraint on communication cost is that c has
to be at least 20 as we mentioned previously to allow a
connected newscast group, but, since the newscast proto-
col requires only weak connectivity, c does not have to be
increased with the system size (see Section 4) which is an
advantage for good scaling.

The communication costs of one cycle grow linearly
when considering the whole system, but stay constant from
the point of view of one node. This latter property allows
good scaling together with the property of 1 + Poisson(1)
communications per correspondent per cycle, which guar-
antees that independently of system size, a single corre-
spondent will experience the same predictable load without
peaks.

Finally, to avoid potential misunderstanding, let us recall
that there is no cost related to the initial distribution of the
values to be averaged, because the protocol is targeted to
applications in which the values are inherently distributed,
like storage capacity of nodes in a peer-to-peer network, etc.

6. Related Work

The topic of calculating aggregates in large scale fully
distributed systems is relatively new. A prominent ap-
proach is Astrolabe [7] which is a hierarchical architec-
ture for aggregation in large distributed systems. Our ap-
proach is substantially different in that it is extremely sim-
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ple, lightweight, and targeted to unstructured, highly dy-
namic environments.

Another recent work is [1]. The authors discuss many
approaches, based on spanning tree induction and using
other, more redundant topologies. The main difference with
our approach is that the protocols described in [1] are reac-
tive: aggregation is initialized from a certain point and the
result is known by only that node, whereas in our case the
aggregate is proactive: available at all nodes continuously
and (in the restarted case) also follows dynamic changes in
the environment. Both approaches have their advantages in
different applications.

7. Conclusions

In this paper we presented a method for finding the max-
imum and the mean of values that are distributed over a
large fully distributed network based on the newscast proto-
col. Our experimental results suggest that the convergence
of the method is fast and theoretical considerations based
on the observed performance on the peak distribution re-
veal that for realistic distributions the expected error of the
estimations is very small. Due to a proactive nature of our
approach an estimate of the mean is available continuously
at all the nodes, and the cost of finding it is constant (does
not depend on the network size).

Work on other algorithms and possible applications of
the aggregates is under way, mainly in the data mining field.
Our present and future work is focused on improving the
quality of the estimate and extending the approach to other
aggregates like quantiles and network size.
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