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Abstract

Domain knowledge is essential for successful problem solving and optimiza-

tion. This paper introduces a framework in which a form of automatic domain

knowledge extraction can be implemented using concepts from the field of ma-

chine learning. The result is an encoding of the type used in most evolutionary

computation (EC) algorithms. The approach focuses on whole problem domains

instead of single problems. After the theoretical validation of the algorithm the

main idea is given impetus by showing that on different subdomains of linear

functions the method finds different encodings which result in different problem

complexities.

1 Introduction and Motivation

Domain knowledge plays a key part in today’s machine learning applications. Though

in many cases relatively simple heuristics combined with the brute force of available

fast processors and millions of test samples seems to be the best available solution —

like hidden Markov models used in speech recognition systems rather than an expert

knowledge of phonemes [11], or simple Bayesian models employed in natural language

processing applications instead of knowledge of grammar [6] — it is now generally

accepted that for instance the performance of evolutionary heuristics depends heavily

on the applied encoding and operators. In fact this is consistent with what the “no free

lunch” theorems [12] tell us: there are no algorithms that are the best in each domain,

so for the best performance in each domain one has to find the best algorithm for each

separately. Hence the extraction of domain knowledge is essential.

Our previous research into the question also supports this view [4, 2, 3]. We have

shown that the usual practice of simply characterizing domains by giving them labels
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such as “NP-hard” or “subset-sum problem” is not necessarily useful or even mislead-

ing. The actual structure and complexity of a domain (i.e. a set of functions defined

over a common search space) depends on the source of these functions. For example a

domain containing subset sum problems (i.e. “NP-complete” combinatorial optimiza-

tion problems) may turn out to be a trivial domain due to the structure of the parameters

of the particular functions in the domain. So even when a characterization is available

(the function is not a black-box) the extraction of domain knowledge is still essential.

In Section 4 it will be shown that even when we know that a domain contains only linear

functions the performance can still be significantly improved using domain analysis.

The problem is that extracting domain knowledge in general is quite a difficult

problem; scientific researchers and engineers do this for a living and it is not one of

the easiest jobs available. However, in systems where knowledge is explicitly and

separately represented, it is possible to perform some kind of meta optimization over

the domain of possible knowledge content. Evolutionary heuristics are good examples

since knowledge is expressed in the encoding and operators while the basic algorithm

remains the same. A lot of methods can be found in the literature that tackle the prob-

lem of dynamic problem structure analysis. A survey of methods using probabilistic

models can be found in [8]. Other approaches concentrate on linkage detection [7].

A common feature of these methods is that they concentrate on single functions. Our

goal here is different in that we would like to extract knowledge that characterizes a

whole domain and is reusable and interchangeable. One area of research is relevant

from this point of view, namely the work of Radcliffe [10]. Their basic ideas on the

nature of knowledge to be extracted are not unlike those presented here (the differences

being emphasized later on) but they did not tackle the problem of extracting knowledge

automatically in a systematic way.

This paper introduces a framework in which automatic domain knowledge extrac-

tion is possible. In our case domain knowledge means the representation or encoding

of the search space. Here, binary representations will be generated that are optimal in a

sense to be described later. A binary representation is a mapping of the search space to

a set of the binary strings {0, 1}n. Though it is now widely accepted that an arbitrary

binary representation is not necessarily better than an arbitrary non-binary encoding,

our problem is a little different here. We are looking for the optimal binary representa-

tion in the space of all binary representations of a search space. Note that e.g. a search

space of size 2n has 2n! different n-bit binary representations which is an enormous

number. It is still possible that the optimal binary representation is not optimal in the

space of all representations but here we do not tackle this problem.

In a binary representation every position of this string contains a 0 or a 1 which

means that every position defines a concept over the search space. The term concept is

used as in machine learning, i.e. a concept over a space is a subset of the space. Very

briefly, our method is based on finding such concepts with the help of a measure over

the concept space.

The outline of the paper is as follows. In Section 2 the basic concepts of the frame-

work are defined. In Section 3 a useful property of the method is proved which supports

applicability. Section 4 provides an illustrative but interesting example of the possible

advantages of the approach on the class of linear functions. In Section 5 it will be

shown that this method is in fact a generalization of some probabilistic methods used

to model the distribution of good solutions of a function (see [8]). Finally, Section 6

discusses the possibilities and limitations of implementation of the framework in real-

world, large-scale problems.
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2 Framework

It is important to emphasize that this section will define only a general framework

which may have many implementations depending on problem size, available time and

data, etc. These details will be discussed in the following sections.

2.1 Basic Terms

Let us first define a problem. A problem is given by its search space, and a real valued

objective function defined over it. The notation of the search space is S. The notation

of the function is f : S −→ IR. In other words f ∈ IRS . In evolutionary computation

the objective function is usually called the fitness function. In this paper I will adopt

this convention.

The problem domain is a subset of all possible fitness functions. The problem do-

main will be denoted by D = {f1, f2, . . .} ⊆ IRS . This notion is crucial from our

point of view. In practice the problem domain is given by the problem situation, e.g. a

university which needs schedules for organizing its activity. The particular variables of

the particular university — i.e. the number of employers, students, rooms, the sizes of

rooms, the habits of each lecturer (who get up early/late, work at home/in their office

etc.) and so on — will make the scheduling task special. The fitness functions in the

domain will probably have a lot of features in common. At the same time, the schedul-

ing task is an NP-complete combinatorial optimization problem in general. But this

mathematical definition includes many more functions which are very diverse com-

pared to the ones actually encountered at our university. To handle problem domains

as an actual sample of functions and trying to describe them instead of using a given

definition is therefore a main constituent of the philosophy of the present approach (see

also [4, 2, 3]).

A concept over S is a subset of S. The notation will be C ⊆ S while C = S \ C.

In other words, using a function notation C ∈ {0, 1}S. An encoding of S is given by

an ordered list of concepts. The encoding will be denoted by C = (C1, . . . , Cn). Using

this notation, the code of a solution x ∈ S is given by C(x) = (C1(x), . . . , Cn(x)) ∈
{0, 1}n. For the sake of simplicity these binary codes will be used throughout the paper

noting that generalization is possible to other kinds of codes.

Next let us define two properties of encodings. The first is very important from

a practical point of view: an encoding has to be invertible, i.e. given a code c of a

solution, we should be able to effectively compute solutions x ∈ S for which C(x) = c.
Note that it is possible that x is not unique. The second is related to the efficiency of the

encoding. We want as few concepts as possible. To express this we call an encoding

independent if its concepts are stochastically completely independent, i.e.

∀k, i1, . . . , ik Pr(x ∈ Ci1 , . . . , x ∈ Cik) = Pr(x ∈ Ci1 ) . . . P r(x ∈ Cik)

This seemingly contradicts other results from the GA literature, which report that non-

coding segments (introns) may improve the search (e.g. [5]). This may be true under

the assumption that the encoding is not optimal and so the genetic drift introduced

by the small population-size has a larger impact. With optimal encodings which will

be defined later on the genetic drift is a smaller problem while with few concepts the

search space size reduces significantly.
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2.2 Automatic Generation of Codes

The task is to generate the optimal encoding for a problem domain. If we define the

notion of optimality then the problem reduces to a search problem over the possible

encodings.

First let us define the optimality of a concept over a domain. We need a concept

that separates good and bad solutions as clearly as possible in all of the functions in

the domain. Good (or bad) solutions are defined as being in the upper half (or the

lower half) of the search space with respect to a given fitness function. Let us denote

the concept representing exactly the good solutions for the fitness function f by Gf .

Clearly every fitness function will define a different notion of good and bad solutions.

For measuring the separation of good and bad solutions over a given fitness function

information gain is an ideal choice. Information gain is a measure of “goodness” of

cutting a space. Before cutting the space, the entropy of the space tells us how many

bits are needed on average to encode if a random solution is good or bad. In the worst

case one bit is needed (if the number of good solutions equals the number of bad ones)

and in the best case no information is needed (0 bits) if all the solutions are good or

bad. After cutting the entropy of the two resulting subspaces can be calculated. If the

cut is good, these entropies will be smaller than the original entropy of the whole space.

The difference of the average of the entropies of the two half spaces and the original

entropy is the gain.

We use information gain as defined in the classical ID3 algorithm [9]. For a given

fitness function f from the domain the information gain of a concept C is defined as

follows:

gain(Gf , C) = E(
|Gf |

S
)−
|C|

|S|
E(
|Gf ∩ C|

|C|
)−
|C|

|S|
E(
|Gf ∩C|

|C|
)

where function E is the entropy defined by E(p) = −p ln p− (1 − p) ln(1− p). Here

p is the proportion of a given concept over the space under consideration. The natural

logarithm was chosen because natural logarithm is equivalent to log2 as a measure

of information according to information theory but our formulas will become simpler

using ln. E(0) = E(1) = 0 while E(0.5) is maximal. This means that the information

gain is maximal if C = Gf or C = Gf , and minimal (0) if C and Gf are independent.

The measure we are seeking will be the average information gain of the concept over

the functions in the domain. This measure is denoted by gain(C). This means that a

concept is an optimal concept of the domainD if it maximizes the average information

gain over D.

Since a useful encoding contains several concepts we need a method for finding

additional concepts while preserving the mutual independence between the concepts.

A good heuristic for doing this is to find the concepts iteratively, one by one, and then

applying the definition of optimality to the subdomains defined by the inverse sets of

the possible codes determined so far. For example two concepts define four possible

codes. The inverse sets of these codes yield a classification of the search space defining

four subsets. These subsets define four subdomains by restricting the functions of the

original domain. An optimal concept can be found in each of these subdomains. Now

let the third concept of the encoding be the union of these four optimal concepts. The

rationale behind this heuristic is that this recursive construction ensures independence

if the optimal concepts divide the search space in two equal parts. Of course this will

not be true in general.
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C1 = argmax gain(C)
g = gain(C1)
i = 1
while(g > random gain)

Ci = argmaxC gain(C | C1, . . . , Ci−1)
g = gain(Ci | C1, . . . , Ci−1)
i←− i+ 1

Figure 1: The algorithm for finding the optimal encoding.

This method provides us with a definition of the information gain of the concept

Ci+1 given that C1, . . . , Ci are known (denoted by gain(Ci+1 | C1, . . . , Ci)). For

this let us take the information gain values of Ci+1 restricted to each of the subspaces

defined by the known concepts as described above and let the information gain of Ci+1

be the weighted average of these gains where the weights are proportional to the sizes

of the corresponding subspaces. The algorithm for finding the optimal encoding is

given in Figure 1. The algorithm stops when the gain of the new concept is not greater

than the optimal information gain over a domain containing only random functions.

3 Theoretical Foundations

In this section I will show that the algorithm described in Section 2 is optimal in an im-

portant sense: random domains are never divided by any concept if some assumptions

hold. This means that the subdomains of the original domain defined by the inverses

of the codes are either random or empty. We say that a subdomain is random if it con-

tains only random functions i.e. the values of the functions are drawn from the same

distribution. Besides this the random subdomains are maximal i.e. every larger do-

main becomes non-random. In other words it is impossible to gain more information

from the space by refining the encoding and the information contained in the encoding

cannot be expressed using fewer random classes.

According to our algorithm we have to find the optimal concept on a domain, the

concept with the maximal information gain. Let as assume that our domain with search

space S contains a random subdomain S2 (see Figure 2 for an illustration). I will show

that for every concept that splits this random space there exists another concept which

has a larger gain and which does not split S2.

Now let us choose an arbitrary concept C. The dotted line in Figure 2 is the bound-

ary of the concept. The subspace S1 = C \ S2 is the non-random part of C and

S3 = C \ S2 is the non-random part of C. The sizes of the classes are |Si| = Ni,

i = 1, 2, 3. π1 is the value for which

E(π1) =
1

|D|

∑

f∈D

E(
|Gf ∩C|

|C|
)

There are two such values since E(p) = E(1 − p). Let π1 be the smaller one. With a

similar definition of π3 the gain of C now can be written as

gain(C) = K −
|C|

|S|
E(π1)−

|C|

|S|
E(π3)
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N1 N3

area: S1 area: S3

random
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N2d

S

π1 π3

Figure 2: Illustration of the notations.

where K is a constant independent of C. Using this value we introduce a simplification

assumption:

gain(Cd) = K −
|Cd|

|S|
E(p1(d)) −

|Cd|

|S|
E(p2(d)) (1)

where

p1(d) =
π1N1 + 0.5d

N1 + d
, p2(d) =

0.5(N2 − d) + π3N3

N2 − d+N3

and Cd is any concept that was created from C by adding d elements from S2. The

point is that we replace the average of the entropies with the entropy of the average of

|Gf ∩C|/|C| over the domain. This introduces some error since it is possible only for

linear functions of probability variables and entropy is not linear. This error depends

on the actual distribution of |Gf ∩C|/|C| over the domain. The lower the variance the

higher the accuracy of the approximation. Furthermore, recall that we have chosen the

smaller values for π1 and π3 so we use only the first half of the entropy function (over

the interval [0, 0.5]) and here (apart from the neighborhood of the ends of the interval)

it is not very far from linearity, so the accuracy depends also on the actual values of π1

and π2.

Now we can prove the following theorem:

Theorem 1. Using the assumption in (1)

Ci = arg max
C∈{C0,...,CN2

}
gain(C)

holds only for i = 0 or i = N2.

Proof. We are looking for the maximum of the information gain

gain(Cd) = K −
(N1 + d)E(p1(d)) + (N2 − d+N3)E(p2(d))

N1 +N2 +N3

The problem is equivalent to finding the minima of the counter of the fraction, the

average entropy. I will show that this function is concave on the interval [0, N2] which

directly proves the theorem. It is sufficient to show that the first term (N1+d)E(p1(d))
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is concave, the other term has a symmetrical structure and the sum of concave functions

remains concave. The second derivative of the first term is

−1

2(1− π1)N1 + d
+

−1

π1N1 + 0.5d

which is negative so the proof is complete.

This theorem means that either S2 is included in the optimal concept or it is ex-

cluded completely. Applying this to every subdomain that arises during the running

of the algorithm we get the result mentioned in the introduction of this section. It is

very interesting to briefly relate this finding to Radcliffe’s notion of a good encoding

[10]. According to his model, the equivalence classes of the encoding should have a

low fitness variance. This can be applied not only to single functions but to domains

as well since it is possible to take e.g. the average of the variances of the functions of

the domain. This is a special case of our approach since if the low variance property

holds over a subdomain then according to our approach it will be a good candidate for

being an optimal concept since all the solutions will tend to be good or bad due to low

variance and therefore the entropy will tend to be low. However in the case of random

domains the variance is not necessarily low.

4 Structure in the Linear Domain

For illustration of the potentials of the approach let us take a closer look at a domain of

special significance: the linear functions over the binary search space S = {0, 1}n. A

function f : S −→ IR is linear with the coefficient vector a ∈ IRn if

f(x) = a
⊤
x =

n∑

i=1

aixi

In this section three subdomains of the general linear functions will be studied.

Every subdomain will have prototypical functions, but the definitions are intended to

be fuzzy. The closer examination of these subdomains is useful for two reasons. The

first is that we will see that on certain subdomains the efficiency of the search can

be significantly improved. The second is that this discussion will illustrate a major

point of this work: different domains may have dramatically different structure and

thus different optimal encodings even if the mathematical description of the functions

of the domains have the same form.

Some claims of the section are based on experimental data. In all the experiments

8 bit domains were used and a concept was implemented as an explicit characteristic

function (i.e. a list of 256 truth values). The concepts were optimized using a simple

multistart hillclimber run until 10000 evaluations restarted when no one-bit change

resulted in improvement. The other specific details are given in the subsections.

4.1 Orderable Problems

The coefficient vector of an orderable function contains numbers that differ in their

order of magnitude significantly. In other words the coefficients (and thus the bits of

a solution) can be ordered according to dominance. Prototypical examples are vectors

with |ai| = 2i, (i = 1, . . . , n). It is easy to see that for orderable domains the optimal

encoding will be the collection of schemata of length 1. As an additional benefit, the

dominance order is also given by the algorithm.
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4.2 Counting Problems

Here the coefficients do not differ in magnitude and they have the same sign. The

coefficients of the prototypes of such problems are equal to a given constant: ai = c,
(i = 1, . . . , n). We have run experiments with domains containing 100 functions where

the coefficients of a particular function were drawn from [100, 120] (or [−120,−100])
to introduce some noise. Note that the value of solutions which have the same number

of 1s is similar. Thus they generate random subdomains in the sense of Section 3.

The experiments confirmed our theoretical assumptions in that the concepts found

during search never divided such a subdomain in any single run, only when the whole

domain to divide was random. Surprisingly (to me), when trying to divide such a ran-

dom domain the algorithm did find structure consistently. Closer analysis showed that

this structure is due to the noise we introduced and can approximately be translated

into an additional heuristic which says that in a space of solutions containing the same

number of 1s divide the space using the bit which has the smallest coefficient on aver-

age.

Note that the length of the optimal encoding is proportional to log n so a significant

reduction of the search space can be achieved while the fitness variance of the inverse

sets of the codes is low therefore this subdomain with the optimal encoding is much

easier than the general linear domain.

4.3 Hamming Problems

Here the coefficients do not differ in magnitude but they may have different signs. A

prototypical example could be ai = (−1)n, (i = 1, . . . , n). The value of a Hamming

function depends on the Hamming distance from a given binary vector.

Experiments were run using a 100 function domain where the coefficients of a par-

ticular function were drawn from [100, 120] and their sign was random. The maximal

information gain of the first concept that was found by the hillclimber was 0.048 with

a variance of 0.003 (from 10 experiments). This value is quite low given that on com-

pletely random domains the expected maximal gain is around 0.01 according to our

simulations, and in the case of counting problems this value is 0.39 on average. Ana-

lyzing the optimal first concepts we can define the following heuristic: divide the space

according to a one bit schema. Applying this heuristic explicitly we get a gain of 0.046
on average with a variance of 0.002 (10 experiments).

The conclusion is that the optimal encoding is the natural encoding as in the case

of orderable problems but the information gain is significantly lower. This indicates

that Hamming problems are harder then orderable problems since the fitness variance

is much larger and the problems are much more sensitive to sampling error and genetic

drift.

5 Probabilistic Models

The approach presented here can be considered as a generalization of search techniques

that use dynamic probabilistic models to generate good solutions [8]. A probabilistic

model of the good region of the space has a close relationship to our notion of concept.

As mentioned earlier, a concept has to be invertible; we have to be able to generate

solutions that satisfy a given concept. A probabilistic model is in fact a fuzzy concept

which is of course invertible.
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A practical implementation of the algorithm applied to a domain containing only

a single function may be very similar to algorithms using probabilistic models since

during the recursive building of the optimal encoding the gain of new concepts can be

evaluated on solutions generated using the inverses of available codes. Furthermore —

as a trivial extension — every subdomain can be labeled positive if the functions over

it contain good solutions consistently (recall that large information gain requires only

homogeneity), and emphasis can be moved to explore those regions further, even if the

domain contains several functions.

6 Conclusions and Future Work

The purpose of this paper was to motivate, to theoretically ground and to illustrate an

automatic encoding generation technique. We have seen that the method cuts search

spaces along their “natural joints” in the sense that random domains are never cut in

half. This also means — considering the structure of the algorithm as well — that the

non-empty inverses of the optimal codes define either random domains or low fitness

variance domains. It was demonstrated that even in the case of the linear functions

three subdomains can be defined that have significantly different complexity. This

also implies that similar or identical mathematical structure is not necessarily sufficient

to characterize a domain: the distribution of the parameters of the functions is also

essential [4, 2, 3].

Here I would like to touch on some problems of practical, real world applications

and its limitations. One main problem to solve when implementing the system is to

chose the actual representations of the abstract notion of concept. In the case of big

spaces this representation is naturally a function class. The literature on machine learn-

ing provides us with an endless number of opportunities, the class of feedforward arti-

ficial neural networks (ANNs) is a good example. The only important constraint is the

invertibility condition of the encoding.

Another important issue is the bias introduced by the chosen representation. When

restricting ourselves to a specific function class we risk the possibility that we cannot

describe the structure of the domain under consideration. For example if parity of

bits plays an important role in a binary domain then there is practically no chance to

capture this using feedforward ANNs. However this is not a specific problem of the

present approach: it is the problem of machine learning in general.

Finally, for finding good concepts samples of the functions in the domain are

needed. Two natural approaches seem to be reasonable. The first is to use the tra-

jectories that were produced by search algorithms on the functions of the domain. The

other is to recursively generate new solutions based on the available concepts and to

evaluate them. Both methods assume a larger time-scale than ordinary optimization

methods but the output, the interchangeable and reusable knowledge about important

problem domains may pay off in the long term.
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