
Firefly-inspired Heartbeat Synchronization in Overlay Networks∗

Ozalp Babaoglu

Univ. Bologna, Italy

babaoglu@cs.unibo.it

Toni Binci

Univ. Bologna, Italy

bincit@cs.unibo.it

Márk Jelasity

HAS & Univ. Szeged, Hungary

jelasity@inf.u-szeged.hu

Alberto Montresor

Univ. Trento, Italy

montresor@dit.unitn.it

Abstract

Heartbeat synchronization strives to have nodes in a

distributed system generate periodic, local “heartbeat”

events approximately at the same time. Many useful dis-

tributed protocols rely on the existence of such heart-

beats for driving their cycle-based execution. Yet, solv-

ing the problem in environments where nodes are unre-

liable and messages are subject to delays and failures

is non-trivial. We present a heartbeat synchronization

protocol for overlay networks inspired by mathemati-

cal models of flash synchronization in certain species of

fireflies. In our protocol, nodes send flash messages to

their neighbors when a local heartbeat triggers. They

adjust the phase of their next heartbeat based on in-

coming flash messages using an algorithm inspired by

mathematical models of firefly synchronization. We re-

port simulation results of the protocol in various real-

istic failure scenarios typical in overlay networks and

show that synchronization emerges even when messages

can have significant delay subject to large jitter.

1. Introduction

In cycle- or round-based distributed protocols (such

as gossip protocols), it is often necessary that all nodes

agree on when a new cycle starts. In other words, the lo-

cal perceptions at nodes as to when cycles begin and end

∗In: IEEE SASO 2007, pp. 77–86, DOI: 10.1109/SASO.2007.25

Authors are listed in alphabetical order. Partial support for this work

was provided by the European Union within the 6th Framework Pro-

gramme under contracts 001907 (DELIS) and 27748 (BIONETS).

need to be synchronized so that we can talk about “cy-

cles” of the system as a whole. For example, if the pro-

tocol requires periodic restarts (that is, all nodes need to

be re-initialized), it is important that this event be syn-

chronized [7, 9].

Heartbeat synchronization strives to have nodes in

a distributed system generate periodic, local “heartbeat”

events approximately at the same time. It differs from

classical clock synchronization in that nodes are not in-

terested in counting cycles and agreeing on the ID of

the current cycle. Furthermore, there is no requirement

regarding the length of a cycle with respect to real time

as long as the length is bounded and all nodes agree on

it eventually. What we are interested in guaranteeing is

that all nodes start and end their cycles at the same time,

with an error that is at least one, but preferably more, or-

ders of magnitude smaller than the chosen cycle length.

This problem is rather difficult to solve in peer-to-

peer overlay networks due to dynamism, failures and

scale. In overlay networks, message delay can vary

over a wide range [10] and churn can be significant with

nodes leaving and joining the network continuously. In

addition, overlay networks can be extremely large, con-

taining millions of nodes. This implies that any pro-

posed solution must be highly scalable. And finally, the

solution needs to be decentralized for it to be usable in

overlay networks where nodes have only partial infor-

mation regarding the system as a whole.

Our approach to achieving robust, scalable and de-

centralized heartbeat synchronization is based on bio-

logical inspiration drawn from the flashing of fireflies.

It is well know that in certain firefly species, male mem-

bers gather in large numbers at dusk and are able to

synchronize their flashes such that eventually the en-

tire swarm flashes in unison. What is surprising is

that global synchronization emerges despite the fact that

each member can observe only some small neighbor-

hood of the swarm and can modifies its own flashing

behavior based on this limited local information. Sev-

eral mathematical models have been proposed to ex-

plain this phenomenon (see for example [13] and refer-

ences therein). Decentralized synchronization protocols

based on such models have been suggested before in the

context of wireless sensor networks [16]. To our knowl-

edge, mathematical models of firefly synchronization

have not been applied to solve problems in large scale

overlay networks.

The main contribution of the paper is twofold.

First, in Section 3 we introduce a novel protocol for

heartbeat synchronization in overlay networks that is

based on an adaptive mathematical model of emergent

synchronization of firefly flashing [3]. Second, in Sec-

tion 4 we present extensive large-scale event-based sim-

ulation studies of the protocol in realistic scenarios in-

volving message loss and delay, and demonstrate that

the protocol can indeed achieve synchronization to a

sufficient degree.

2. System Model

We assume that nodes are connected through an ex-

isting routed network, such as the Internet, where ev-

ery node can potentially communicate with every other

node. To actually communicate, a node has to know

the address of another node. This is achieved by main-

taining a partial view (view for short) at each node that

contains a set of node descriptors. Views can be inter-

preted as sets of edges between nodes, naturally defin-

ing a directed graph over the nodes that determines the

topology of an overlay network.

The network is highly dynamic; new nodes may

join at any time, and existing nodes may leave, ei-

ther voluntarily or by crashing. Our approach does

not require any mechanism specific to leaves: spon-

taneous crashes and voluntary leaves are treated uni-

formly. Thus, in the following, we limit our discussion

to node crashes. Byzantine failures, with nodes behav-

ing arbitrarily, are excluded from the present discussion.

Communication incurs unpredictable delays and is

subject to failures. Single messages may be lost, links

between pairs of nodes may break. Nodes have access

1: loop

2: wait until φ = 1

3: P← selectPeerList()

4: send flash to all peers in P

5: end loop
(a) active thread

1: loop

2: receive flash

3: processFlash()

4: end loop
(b) passive thread

Figure 1. The skeleton of the heartbeat syn-

chronization protocol.

to local clocks that can measure the passage of real time

with reasonable accuracy, that is, with small short-term

drift.

3. The Synchronization Protocol

In this section we present an abstract protocol

skeleton for firefly-inspired heartbeat synchronization

and overview some of its possible instantiations based

on different mathematical models of firefly flashing be-

havior. We briefly discuss the behavior of each model

and argue that the most promising one is the adaptive

model described in [3]. This model will be analyzed

experimentally in Section 4.

3.1. The Protocol Skeleton

The protocol skeleton is shown in Figure 1. We

assume that each node is an oscillator that can be char-

acterized by its phase, φ , and the cycle length, ∆. The

phase is a variable in the interval [0,1] and its dynam-

ics are defined by a sawtooth function of time t, where

we have ∂φ/∂ t = 1/∆, such that the phase increases

linearly from 0 to 1 in ∆ time units. When the phase

reaches 1, the node emits a “flash”, which results in a

ping message being sent to a set of peer nodes. Sub-

sequently, the phase is reset to 0. The cycle length ∆

can be initially different (or identical) at all nodes, de-

pending on the implementation of PROCESSFLASH under

consideration.

When the node receives a flash, method PROCESS-

FLASH is executed. This method is the heart of the syn-

chronization algorithm. It is responsible for updating φ

and possibly also ∆. That is, it can delay or advance the

phase (and thereby the next flash), possibly as a function

of the current phase, and it can adjust the cycle length as

well. We will examine different implementations later

in the section.

Method SELECTPEERLIST relies on an underlying

overlay network which is used to return a list of neigh-

bors. In our experimental analyses, we will assume

that this overlay network is random and dynamic with

a small, constant number of neighbors for each node.

As such, SELECTPEERLIST returns a small, random set

of peer nodes. More details on the practical implemen-

tation of this random overlay will be given in Section 4.

We now move on to describe three possible imple-

mentations of method PROCESSFLASH.

3.2. Phase-Advance and Phase-Delay

The simplest possible implementation of PROCESS-

FLASH sets φ = 0 (phase-delay model) or φ = 1 (phase-

advance model). If we assume instant message delivery

without failures, both choices result in the pairwise syn-

chronization of the peers that sent and received the flash

message. The only difference between the two choices

is that in the case of phase-advance, a flash message

is also emitted alongside the pairwise synchronization

step.

This model assumes that all nodes have exactly the

same fixed cycle length ∆. Obviously, since the model

does not involve the adjustment of the cycle length, if

we start with heterogeneous values at the nodes, or if

the skew of the clocks is significant, the model is not

guaranteed to converge.

Furthermore, the phase-advance model is highly

impractical because of the cascading flash messages

that are generated in the initial phase of the synchro-

nization: advanced flash messages trigger more and

more advanced flashes which quickly overloads the net-

work.

We note that if one can guarantee that the cycle

lengths are indeed identical at all nodes, then the phase

delay model performs rather well according to our pre-

liminary experiments. However, due to lack of space,

we do not pursue this model further in this paper, in or-

der to be able to fully focus on the Ermentrout model

described in Section 3.4.

3.3. The Mirollo-Strogatz Model

The model of Mirollo and Strogatz [13] general-

izes the simplistic phase-advance model in the follow-

ing way. It introduces a third variable x, that we will

call “voltage” to illustrate the intuition behind it. Volt-

age is defined by a non-linear function f : [0,1]→ [0,1]

as x = f (φ), where f is smooth, monotone increasing,

and concave down (in other words, the first two deriva-

tives of f are continuous and satisfy f ′ > 0 and f ′′ < 0).

The model also requires f (0) = 0 and f (1) = 1.

The reason for introducing this nonlinearity

through the new voltage variable is that it offers us an

easy way to adjust the sensitivity of the phase adjust-

ment depending on the actual phase. We advance the

voltage by a fixed amount: x′= min(x+ε,1) and set the

phase to reflect the new voltage: φ ′ = f−1(x′), where x′

and φ ′ is the new state after the update.

If the phase is close to zero, then this update rule

will change the phase relatively little, while towards the

end of the cycle the node will become more and more

sensitive to incoming flash messages. Note that if ε ≥ 1

then the model becomes identical to the phase-advance

model.

Theoretical results in [13] indicate that if the un-

derlying overlay network is a clique (all nodes are con-

nected to all other nodes), and messages are delivered

instantly and without failures, then the model guaran-

tees convergence. Recently, the assumption about full

connectivity has been relaxed in [11].

Our preliminary experimental results confirm that,

apart from flooding problems similar to the phase-

advance approach, the model is very sensitive to mes-

sage delay and message loss.

3.4. The Adaptive Ermentrout Model

In the model of Ermentrout, the nodes have a vari-

able cycle length [3]. This model was motivated by

the fact that fireflies indeed cannot have identical cycle

lengths initially.

In this model, the actual cycle length of node i be-

comes a variable δi which is bounded above and below:

∆l < δi < ∆u. In addition to the new global parameters

∆l and ∆u, each node has a parameter ∆ (∆l < ∆ < ∆u)

as well: its natural cycle length. A node will flash once

in each ∆ time units in the lack of interaction with other

nodes. The model is expressed in terms of the frequen-

cies Ωl = 1/∆u, Ωu = 1/∆l, Ω = 1/∆ and ωi = 1/δi.

Previous implementations of PROCESSFLASH up-

dated the phase variable φ thereby adjusting the time

of the next flash. The interesting feature of the model

of Ermentrout is that PROCESSFLASH updates the vari-

able ω instead of variable φ . If a flash arrives “too late”

(that is, when φ < 1/2), then the frequency is decreased

(that is, cycle length is lengthened) while the phase re-

mains unchanged. This increases the time until the next

flash, so that it is more likely to be aligned with the next

flash from the source of the received flash. Similarly, if

the flash is “too early” (φ > 1/2), then the frequency is

increased towards Ωu.

According to [3], the update formula applied by

PROCESSFLASH becomes

ω ′ = ω +ε(Ω−ω)+g+(φ)(Ωl−ω)+g−(φ)(Ωu−ω)

(1)

where ω ′ is the new frequency, and the phase φ remains

unchanged. The coefficients of the terms are ε , a pa-

rameter that controls the tendency of the frequency to

move towards the common natural frequency Ω, and

two functions g+ and g− defined as

g+(φ) = max(
sin2πφ

2π
,0) (2)

g−(φ) = −min(
sin2πφ

2π
,0). (3)

Function g+ is positive when φ < 1/2, otherwise 0,

while g− is positive when φ > 1/2, otherwise 0. This

way, (1) formally captures the frequency adjustments

that belong to “late” and “early” received flashes, as ex-

plained in the intuitive discussion above, by moving the

frequency towards the upper or lower bound, respec-

tively.

The model has fewer assumptions (most impor-

tantly, it does not assume identical cycle lengths) which

leads us to believe that it might be more appropriate in

the typical overlay network scenarios we are interested

in. Thus, from now on, we focus on this model only.

4. Experimental Results

The goal of this section is to evaluate the adaptive

Ermentrout model in large overlay networks. Each node

is running our heartbeat synchronization protocol on top

of a peer sampling service which provides functionality

for implementing the SELECTPEERLIST() method.

Peer sampling layer. The peer sampling service pro-

vides each node with a continously up-to-date random

sample from the entire network. In this paper, we con-

sider an instantiation of the peer sampling service based

on the NEWSCAST protocol [8], which is attractive for its

low cost, extreme robustness and minimal assumptions.

The basic idea of NEWSCAST is that each node main-

tains a local set of random node addresses: the (partial)

view. Periodically, each node sends its view to a ran-

dom member of the view itself. When receiving such

a message, a node keeps a fixed number of freshest ad-

dresses (based on timestamps), selected from those lo-

cally available in the view and those contained in the

message. The protocol provides high quality (i.e., suffi-

ciently random) samples not only during normal opera-

tion (with relatively low churn), but also during massive

churn and even after catastrophic failures (up to 70%

nodes may fail), quickly removing failed nodes from

the local views of correct nodes.

In the following experiments, each node starts a

NEWSCAST exchange every 10 seconds and messages

contain 30 entries composed of IP address, port, and

timestamp. Such a large number of entries avoids prob-

lems of disconnections [8]. A rough estimation of the

overhead gives 16 bytes per entry × 30 entries, which

means that a traffic of less than 50 bytes is generated at

each node.

Synchronization layer. The heartbeat flash messages

are simulated as simple UDP pings. The default cycle

length ∆ is equal to 1 second; the choice of such a small

value is motivated by our desire to test the protocol in a

difficult scenario where the cycle length is comparable

to message latency. As supported by our simulations,

synchronization can be obtained even in this case.

We use f to denote the fan-out of a node which

determines the number of messages sent at each cycle.

In our simulations, the fan-out is equal to the size of the

NEWSCAST view, which is 30. We show, however, that a

smaller fan-out (as low as 10 neighbors) is sufficient to

correctly synchronize nodes.

Apart from ∆ and f , the only other free parameter

of the protocol is ε . Unless stated otherwise, in all our

simulations ε will be equal to 0.01, a value which has

proven to deliver good results.

Simulation environment. All of our experiments are

event-based simulations performed using PEERSIM, an

open-source simulator designed for large-scale peer-

to-peer systems. It is publicly available on Source-

Forge [14]. Unless otherwise stated, our graphs show

the averages over 50 experiments. When graphically

feasible, individual results are displayed as distinct dots;

a small random translation may be added to separate

dots that are too close to be distinguishable.

All our experiments apply a transport layer that em-

ulates some model of random latencies. To allow for

scalability of simulations, if not otherwise stated, we

adopt a simple transport layer that emulates random la-

tencies, uniformly distributed between 1 and 200 ms.

This is consistent with several measurements of all-

pairs latencies of a group of nodes such as the King

and Meridian data sets [4, 17]. Furthermore, it intro-

duces the additional difficulty of a totally unpredictable

latency. Further simulations with a publicly available

data set will also be discussed.

Initial settings. At the beginning, a network contain-

ing between 210 and 216 nodes is created. Nodes emit

their first flash in the first three seconds of their life and

set their period randomly selected uniformly between

0.85s and 1.15 seconds, which also corresponds to the

minimum and maximum cycle lengths ∆l and ∆u, re-

spectively. In other words, nodes start completely un-

synchronized, and their internal periods are subject to

large skew. In simulations where churn is present, nodes

joining the network are also initialized in this manner.

Measures of synchronization quality. Our main

measure of the quality of synchronization is the emis-

sion window length, which measures the time between

the first and the last flashes of a coherent emission (as

described below). An emission is a collection of flash

events, potentially occurring at different nodes. Infor-

mally, an emission is coherent if it is preceeded and fol-

lowed by long “silent” intervals without flashes. For

example, in most of our experiments, the protocol al-

ternates short periods of time with flashes (few tens of

milliseconds), with long intervals of silence (approxi-

mately one second, or longer depending on ∆). In our

simulations, emissions are coherent when they are pre-

ceeded and followed by at least 200ms of silence. This

value is used only for presentation purposes and has no

effect on the protocol execution.

When experimenting with different cycle lengths,

we will consider additional measures: the relative emis-

sion window length, expressed as percentage over the

cycle length, and the overhead, measured as the average

number of bytes transmitted, per node and per second.

To estimate the latter, we assume that a ping message

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

N
o

d
e

 I
d

Time (s)

Figure 2. Flashes emitted by a network of 210

nodes over an interval of 60 seconds.

requires 32 bytes (IP header + UDP header + 4 bytes of

message identification).

Graphical intuition of the behavior of the protocol.

We begin with three figures that graphically depict the

behavior of the protocol as a function of time. To be

graphically appealing, they are obtained from a single

experiment.

In Figure 2, 1024 nodes are synchronized using our

protocol. The time evolves along the x-axis, while in-

dividual nodes are shown on the y-axis. A dot with co-

ordinate (x,y) represents a flash event executed by node

y at time x. In the first seconds of simulation, flashes

look like random noise, and no coherent emission can

be identified. This is the effect of the initialization de-

scribed above. After about 10 seconds, however, nodes

starts to emit coherent emissions, represented by verti-

cal lines, that become more and more defined as time

passes.

Figure 3 zooms in on a single coherent emission

(the last one of Figure 2). The x-axis is now relative

to the beginning of the emission window, which lasts

approximately 30ms. Each dot, again, represents an in-

dividual flash. The figure shows that nodes are even

more synchronized than the 30ms value could suggest:

many of the flashes are between 15ms and 27ms, with

very few flashes outside this range.

While a short emission window is a good indicator

of good synchronization, it does not tell the whole story:

we need to examine the length of time between two co-

herent emissions. Figure 4 illustrates the time occurring

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

N
o

d
e

 I
d

Time (ms)

Figure 3. Flashes emitted by 210 nodes during

a single coherent emission.

 850

 900

 950

 1000

 1050

 1100

 1150

 0 10 20 30 40 50 60

C
y
c
le

 L
e

n
g

th
 (

m
s
)

Time (s)

Figure 4. Individual periods for a network of 210

nodes over an interval of 60 seconds.

between two consecutive flashes at each node. After the

initial period, where synchrony is missing, nodes tend

to adopt a uniform value that tends toward the maxi-

mum initial delay.

Scalability. For the sake of graphical presentation, the

previous figures have been obtained by simulating a rel-

atively small network (210 nodes). Figures 5 and 6 show

that our model is highly scalable by plotting the length

of the emission window for network sizes ranging from

210 to 216 nodes. Figure 5 depicts seven individual ex-

periments, one for each of the different sizes. The fig-

ure illustrates that fluctuations are possible, but are rel-

atively small with respect to both the cycle length and

the emission window. Figure 6 shows the average of

 10

 100

 1000

 20 40 60 80 100 120 140 160 180

E
m

is
s
io

n
 w

in
d

o
w

 (
m

s
)

Time (s)

size=2
16

size=2
15

size=2
14

size=2
13

size=2
12

size=2
11

size=2
10

Figure 5. Length of the emission window as

a function of time for different network sizes

ranging from 210 to 216. Each line represents a

single experiment.

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

E
m

is
s
io

n
 w

in
d

o
w

 (
m

s
)

Cycle #

size=2
16

size=2
15

size=2
14

size=2
13

size=2
12

size=2
11

size=2
10

Figure 6. Length of the emission window as

a function of cycle number, averaged over 50

experiments. Network sizes ranging from 210

to 216.

50 experiments; here, each flash is tagged by an incre-

mental counter maintained at each of the nodes, and ex-

periments are aggregated based on this counter, rather

than time. The reason is that coherent emissions occur

at different time instants in distinct experiments, so ag-

gregating them over time is meaningless.

Experimenting with parameters. So far, each flash

event has been transmitted to all 30 neighbor nodes

returned by NEWSCAST through the selectPeerList()

method. We wondered whether this is strictly neces-

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30

E
m

is
s
io

n
 w

in
d

o
w

 (
m

s
)

Fan-out (# messages per node)

Average
Individual experiments

Figure 7. Length of the emission window as a

function of fan-out.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5 6 7 8 9 10 11

E
m

is
s
io

n
 w

in
d

o
w

 (
m

s
)

Cycle length (s)

Average
Individual experiments

Figure 8. Length of the emission window as a

function of cycle length.

sary to obtain convergence, and found that this is not

the case. Figure 7 shows the length of the emission

window as a function of the fan-out in a network of 213

nodes. When fan-out is k, a flash is transmitted to only

k nodes, selected randomly from the NEWSCAST view. It

is interesting to discover that with as few as 10 mes-

sages, convergence to small emission window is still

possible. With fewer nodes, however, it is possible to

observe emission windows longer than ∆ (i.e. larger

than 1 second), meaning that no coherent emission is

emitted for long periods of time.

Choosing the cycle length involves a trade-off be-

tween the speed of convergence and communication

overhead. So far, we have demonstrated that 1 second

is a feasible choice that allows for fast convergence (re-

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1 2 3 4 5 6 7 8 9 10 11

E
m

is
s
io

n
 w

in
d

o
w

 (
%

 o
v
e

r
c
y
c
le

 l
e

n
g

th
)

Cycle length (s)

Average
Individual experiments

Figure 9. Relative emission window as a func-

tion of cycle length ∆.

 0.1

 1

 10

 100

 1000

 1 10 100 1000

E
m

is
s
io

n
 W

in
d

o
w

 (
m

s
)

Delay Range (ms)

Individual experiments
Cycle length = 1s
Cycle length = 2s
Cycle length = 4s

Figure 10. Length of the emission window as a

function of maximum message latency.

quiring only about 10 seconds); but the resulting over-

head is quite large (32× 30 = 960 bytes per second).

Figures 8 and 9 show that enlarging the cycle length not

only reduces the overhead, but also improves the rela-

tive emission window length. Once again, the size of

these networks is 213. In fact, with a cycle length of 10

seconds, the relative emission window is around 1.5%

of the cycle length, compared to 4% with a cycle length

of 1 second; and overhead is reduced by a factor of 10,

requiring only 96 bytes per second. The only drawback

is the slowing down of the protocol, which now requires

up to 100 seconds before achieving the first coherent

emission. But once nodes are synchronized, this prob-

lem will not be relevant any more.

 100

 1000

 10000

 100000

 0 20 40 60 80 100

E
m

is
s
io

n
 w

in
d

o
w

 (
m

s
)

Cycle number

size=2
16

size=2
15

size=2
14

size=2
13

size=2
12

size=2
11

size=2
10

Figure 11. Length of the emission window at

different cycles for the Harvard data trace.

Message latency. All experiments discussed so far

were based on a simplified transport layer that deliv-

ers messages with random delays in the interval 1ms-

200ms. This maximum value is obtained from the King

data set [4], which reports the average pairwise latency

between more than 1500 nodes. Both the King and

the Meridian data sets [17] consider only the average

latency without reporting the variance of the measure-

ments. Raw data, when available, only show few mea-

surements per pair of nodes.

To understand how our protocol behaves in other

delay scenarios, we tried two alternative approaches.

First, we studied the effect of the maximum delay on

the emission window length as illustrated in Figure 10.

There is a clear correlation between the maximum delay

and the emission window length.

Next, we decided to use the Harvard data set [10],

where the pairwise latency distance between 226 nodes

in PlanetLab has been measured. An average of 100

measurements have been performed for each pair of

nodes. Figure 11 is the corresponding of Figure 6 under

this data set. This is a demanding data set: several mea-

surements are larger than 1 second (the cycle length),

and the maximum possible latency is equal to 41 sec-

onds. Despite this wide variability, our algorithm is still

able to synchronize large collections of nodes.

Churn. We conclude the experimental section show-

ing the robustness of our protocol by testing it under

two failure scenarios: churn and message losses.

A network is subject to churn if its membership is

 10

 100

 1000

 20 40 60 80 100 120 140 160 180

E
m

is
s
io

n
 w

in
d

o
w

 (
m

s
)

Time (s)

Churn = 0.01%
Churn = 0.10%
Churn = 1.00%

Figure 12. Three experiments with churn lev-

els of 0.01%, 0.1%, 1%. The listening period is

equal to 16 flashes.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16

E
m

is
s
io

n
 w

in
d

o
w

 (
m

s
)

Listening period (# flashes)

Churn = 0.01%
Churn = 0.10%
Churn = 1.00%

Figure 13. Emission windows as function of

the listening period for churn levels of 0.01%,

0.1%, 1%.

continously evolving due to nodes joining and leaving

the network. We simulated churn by “killing” a given

percentage of nodes at each cycle, and substituting them

with new ones. In other words, the size of the network

remains constant, while its composition changes.

When analyzing the problem of churn, a small

modification to the algorithm is required. If new nodes

were allowed to emit flashes as soon as they join, identi-

fying coherent emissions would be difficult, if not even

impossible: not only their flashes could be outside the

emission window of pre-existing nodes, but also they

could perturb or even destroy the current synchronism.

For this reason, when a node joins the network, it

initially behaves only as a listener: it receives flashes

and modifies its period accordingly, but it does not

emit flashes. In our protocol, this “listening” period is

bounded by a predefined number of flashes, after which

the node acts normally.

Figure 12 shows the temporal behavior of the pro-

tocol under three different churn scenarios: after the

initial 60 seconds, 0.1%, 0.5% and 1.0% of the nodes

are killed and substituted with new ones at each second.

These scenarios are extremely harsh when compared to

typical churn rates of 0.01% nodes per second that are

observable in file sharing environments [1, 15]. The de-

lay between when churn starts (60 seconds) and the time

when the first “tooth” is observed is due to the listening

period, which is fixed at 16 cycles. Cycle length, as il-

lustrated in Figure 4, is equal to 1.13 seconds; so, 16

cycles corresponds approximately to 18 seconds. The

“sawtooth” aspect of the Figure can be easily explained

as follows. After its listening period, a recently added

node may still not be in perfect sync, flashing a few hun-

dred milliseconds before or after the others. A single

outlier node may greatly enlarge the emission window;

visually, this appears as a tooth. After its first flash, the

outlier node is progressively brought in sync by the pro-

tocol, until the next outlier starts to emit flashes.

Our churn analysis is completed by Figure 13,

where the behavior of the algorithm for different lev-

els of churn and different lengths of the listening period

are shown. Here, the size of the network is 213 nodes.

Each dot corresponds to one of 50 experiments, rep-

resented by the length of the emission window at the

end of the simulation. It is possible to observe that, for

short listening periods and large churn rates, the emis-

sion window can be located anywhere between 0 and 1

second. Furthermore, few dots are very close to 0 (iso-

lated flashes with more than 200ms of silence before

and after) and some dots are larger than 1 second (no

periods of silence), suggesting a complete loss of syn-

chrony. On the other hand, for longer listening periods

and smaller churn rates, our algorithm works perfectly

fine and maintains nodes in good synchrony.

Message losses. We do not include graphical results

for our message loss studies, because there is a direct

relationship between fan-out and message loss. A sys-

tem that sends only 10 messages to random neighbors

(out of 30 possible neighbors) can be compared to a

system that sends 30 messages, 20 of which are lost at

each cycle. Experimental results confirm that the emis-

sion window length remains acceptable for up to 66%

of messages being lost. Beyond this threshold, quality

of results rapidly degrades and becomes unusable.

5. Related Work

Synchrony has long received a lot of attention in

many disciplines including mathematics, physics, biol-

ogy and many others. In this section we focus on pro-

tocols that are responsible for creating and maintaining

synchrony in networks.

In computer networks, clock synchronization has

received the most attention, where each node in the net-

work is required to align its own clock with a reference

clock. The nature of the network on which a protocol

is deployed largely determines the approach to be fol-

lowed.

On the Internet, and similar networks, where the

reference clock can be accessed in relatively few hops,

and where the reference clock is reliable, the major is-

sues in designing a protocol are to deal with the skew

of the local clock and to approximate, predict and neu-

tralize the probabilistic delays resulting from message

transmission delays while communicating with the ref-

erence clock (for example, [2, 12]).

In dynamic overlay networks, time synchronization

remains relatively unexplored. An interesting example

is [6]. However, as with all time synchronization proto-

cols, a robust and accurate reference clock is assumed

to exist.

In wireless sensor networks the topology is geo-

graphic in nature and the reference clock can be many

hops away which motivates different approaches to time

synchronization (see [5] for an overview).

Heartbeat synchronization, where the nodes have

to align with each other and not with a reference clock,

has received little attention. This problem is interest-

ing both as a primitive to achieve clock synchroniza-

tion and also as a service in its own right. One example

is [16], where the target environment is a sensor net-

work. We have no knowledge of heartbeat synchroniza-

tion approaches for peer-to-peer overlay networks, that

are different from both sensor networks and static wired

networks in that the network diameter is typically low,

while at the same time unreliability and dynamism is

very high.

6. Conclusions

In this paper we tackled the heartbeat synchroniza-

tion problem in the context of overlay networks. Peer-

to-peer overlay networks represent a special environ-

ment: nodes can communicate with each other directly

using a routing service, involving relatively few hops in

the physical network, unlike in the case of sensor net-

works, that have a geographic topology with a large di-

ameter. However, the major challenge is represented by

the dynamic character of overlay networks, the unreli-

able communication channels and the lack of reliable

and robust components.

We proposed the application of the adaptive Er-

mentrout model [3] of firefly flashing synchronization

to deal with the requirements of overlay networks. We

have demonstrated that under various scenarios and pa-

rameter settings, the nodes synchronize their heartbeats

to fall in an interval of 1%-10% of the cycle length of

the periodic heartbeats.

Finally, we would like to stress that the scenarios,

and especially the performance metrics were intention-

ally pessimistic, in order to represent a worst case anal-

ysis. For example, the emission window is defined to

include all the flashes of all nodes, so a single outlier

can have an arbitrarily large effect.

References

[1] Miguel Castro, Manuel Costa, and Antony Rowstron.

Performance and dependability of structured peer-to-

peer overlays. In Proceedings of the 2004 Interna-

tional Conference on Dependable Systems and Networks

(DSN’04). IEEE Computer Society, 2004.

[2] Flaviu Cristian. Probabilistic clock synchronization.

Distributed Computing, 3(3):146–158, September 1989.

[3] Bard Ermentrout. An adaptive model for synchrony in

the firefly pteroptyx malaccae. Journal of Mathematical

Biology, 29(6):571–585, June 1991.

[4] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Grib-

ble. King: estimating latency between arbitrary inter-

net end hosts. Proceedings of the 2nd ACM SIGCOMM

Workshop on Internet Measurment, pages 5–18, 2002.

[5] An-Swol Hu and Sergio D. Servetto. On the scalability

of cooperative time synchronization in pulse-connected

networks. IEEE Transactions on Information Theory,

52(6):2725–2748, June 2006.

[6] Konrad Iwanicki, Maarten van Steen, and Spyros Voul-

garis. Gossip-based clock synchronization for large

decentralized systems. In Alexander Keller and Jean-

Philippe Martin-Flatin, editors, Self-Managed Networks,

Systems and Services, volume 3996 of Lecture Notes in

Computer Science, Dublin, Ireland, June 2006.

[7] Márk Jelasity and Ozalp Babaoglu. T-Man: Gossip-

based overlay topology management. In Sven A.

Brueckner, Giovanna Di Marzo Serugendo, David

Hales, and Franco Zambonelli, editors, Engineering

Self-Organising Systems: Third International Workshop

(ESOA 2005), Revised Selected Papers, volume 3910

of Lecture Notes in Computer Science, pages 1–15.

Springer-Verlag, 2006.

[8] Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermar-

rec, and Maarten van Steen. The peer sampling ser-

vice: Experimental evaluation of unstructured gossip-

based implementations. In Hans-Arno Jacobsen, edi-

tor, Middleware 2004, volume 3231 of Lecture Notes in

Computer Science, pages 79–98. Springer-Verlag, 2004.

[9] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu.

Gossip-based aggregation in large dynamic networks.

ACM Transactions on Computer Systems, 23(3):219–

252, August 2005.

[10] Jonathan Ledlie, Peter Pietzuch, and Margo Seltzer. Sta-

ble and accurate network coordinates. In Proceedings of

the IEEE ICDCS 2006.

[11] Dennis Lucarelli and I-Jeng Wang. Decentralized syn-

chronization protocols with nearest neighbor communi-

cation. In Proceedings of the 2nd international confer-

ence on Embedded networked sensor systems (SenSys

’04), pages 62–68, New York, NY, USA, 2004. ACM

Press.

[12] David L. Mills. Improved algorithms for synchronizing

computer network clocks. IEEEACM Transactions on

networking (TON), 3(3):245–254, 1995.

[13] Renato E. Mirollo and Steven H. Strogatz. Synchroniza-

tion of pulse-coupled biological oscillators. SIAM Jour-

nal on Applied Mathematics, 50(6):1645–1662, 1990.

[14] PeerSim. http://peersim.sourceforge.net/.

[15] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Grib-

ble. A measurement study of peer-to-peer file sharing

systems. In Proceedings of Multimedia Computing and

Networking 2002 (MMCN ’02), San Jose, CA, USA,

January 2002.

[16] Geoffrey Werner-Allen, Geetika Tewari, Ankit Patel,

Matt Welsh, and Radhika Nagpal. Firefly-inspired sen-

sor network synchronicity with realistic radio effects. In

Proceedings of the 3rd international conference on Em-

bedded networked sensor systems (SenSys ’05), pages

142–153, New York, NY, USA, 2005. ACM Press.

[17] Bernard Wong, Aleksandrs Slivkins, and Emin Gun

Sirer. Meridian: a lightweight network location service

without virtual coordinates. Proceedings of SIGCOMM

2005, pages 85–96.

