
JA-BE-JA: A Distributed Algorithm for Balanced Graph Partitioning

Fatemeh Rahimian†, Amir H. Payberah†, Sarunas Girdzijauskas†, Mark Jelasity‡, Seif Haridi†
†KTH - Royal Institute of Technology and Swedish Institute of Computer Science (SICS), Sweden

{rahimian, payberah, sarunasg, haridi}@kth.se
‡Hungarian Academy of Sciences and University of Szeged, Hungary, jelasity@inf.u-szeged.hu

Abstract—Balanced graph partitioning is a well known NP-
complete problem with a wide range of applications. These
applications include many large-scale distributed problems
including the optimal storage of large sets of graph-structured
data over several hosts—a key problem in today’s Cloud in-
frastructure. However, in very large-scale distributed scenarios,
state-of-the-art algorithms are not directly applicable, because
they typically involve frequent global operations over the entire
graph. In this paper, we propose a fully distributed algorithm,
called JA-BE-JA, that uses local search and simulated annealing
techniques for graph partitioning. The algorithm is massively
parallel: there is no central coordination, each node is pro-
cessed independently, and only the direct neighbors of the node,
and a small subset of random nodes in the graph need to be
known locally. Strict synchronization is not required. These
features allow JA-BE-JA to be easily adapted to any distributed
graph-processing system from data centers to fully distributed
networks. We perform a thorough experimental analysis, which
shows that the minimal edge-cut value achieved by JA-BE-JA

is comparable to state-of-the-art centralized algorithms such
as METIS. In particular, on large social networks JA-BE-
JA outperforms METIS, which makes JA-BE-JA—a bottom-
up, self-organizing algorithm—a highly competitive practical
solution for graph partitioning.

Keywords-graph partitioning; distributed algorithm; load
balancing; simulated annealing;

I. INTRODUCTION

Every day, petabytes of data are generated and processed
in on-line social networking services. Some of this data can
be modeled as a graph, in which nodes represent users and
edges represent the relationship between them. Similarly,
search engines manage very large amounts of data to capture
and analyze the structure of the Internet. Likewise, this data
can be modeled as a graph, with websites as nodes and the
hyperlinks between them as edges. One important problem
related to graph-structured data processing is partitioning:
extremely large scale graphs must be distributed to hosts in
such a way, that most of the adjacent edges are stored on
the same host [1].

Finding good partitions is a well-known and well-studied
problem in graph theory [2]. The graph partitioning problem,

In: Proc. IEEE SASO 2013, pp 51–60, doi:10.1109/SASO.2013.13. c©
2013 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promo-
tional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in
other works.

0

0

0

1

1

1

1

1

2

2

2

0

0

0

1

2

2

0

0

1

2

2

0

1

1

2

2

0
1

1

0

0

1
2

1

2

2

1

2

0

0

0

0

1

1

1

1

1

1

2

2

2

0

0

0

1

2

2

2

0

1

1

0

2

1

1

2

0

0

2

0

2

0

0

0

0

1

1

1

2

2

2

0

0

0

1

2

1

1

2

1

1

2

2

0

2

0

2

1

2

(a) A poor graph partition-
ing. Nodes are partitioned
randomly so there are many
inter-partition links.

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

0

0

0

0

2

0

0

0

0

1
1

0

1

0

0

0

2

0

0

1

1

2

1

2

2

2

0

2

1

1
1

2

1

2

2

2

2

1

2

1

1

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

1

1

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

(b) A good partitioning
of the same graph, where
nodes that are highly
connected are assigned to
the same partition.

Figure 1. Illustration of graph partitioning. The color of each node
represents the partition it belongs to. the colored links are connections
between two nodes in the same partition. The gray links are inter-partition
connections.

sometimes referred to as the min-cut problem, is formulated
as dividing a graph into a predefined number of compo-
nents, such that the number of edges between different
components is small. A variant of this problem is the
balanced or uniform graph partitioning problem, where it
is also important that the components hold an equal number
of nodes. The examples of important applications include
biological networks, circuit design, parallel programming,
load balancing, graph databases and on-line social network
analysis. The motivation for graph partitioning depends on
the application. A good partitioning can be used to minimize
communication cost, to balance load, or to identify densely
connected clusters. Figures 1(a) and 1(b) are examples of a
poor and a good partitioning of a graph, respectively.

In this paper, we focus on processing extremely large-
scale graphs, e.g., user relationship and interaction graphs
from online social networking services such as Facebook
or Twitter, resulting in graphs with billions of nodes and
hundreds of billions of edges. The very large scale of
the graphs we target poses a major challenge. Although
a very large number of algorithms are known for graph
partitioning [3], [4], [5], [6], [7], [8], [9], [10], including
parallel ones, most of the techniques involved assume a form
of cheap random access to the entire graph. In contrast to
this, large scale graphs do not fit into the main memory of

a single computer, in fact, they often do not fit on a single
local file system either. Worse still, the graph can be fully
distributed as well, with only very few nodes hosted on a
single computer.

We provide a distributed balanced graph partitioning
algorithm, which does not require any global knowledge
of the graph topology. That is, we do not have cheap
access to the entire graph and we have to process it only
with partial information. Our solution, called JA-BE-JA, is
a decentralized local search algorithm. Each node of the
graph is a processing unit, with local information about its
neighboring nodes, and a small subset of random nodes in
the graph, which it acquires by purely local interactions.
Initially, every node selects a random partition, and over
time nodes swap their partitions to increase the number of
neighbors they have in the same partition as themselves.

Our algorithm is uniquely designed to deal with ex-
tremely large distributed graphs. The algorithm achieves this
through its locality, simplicity and lack of synchronization
requirements, which enables it to be adapted easily to graph
processing frameworks such as Pregel [11] or GraphLab [1].
Furthermore, JA-BE-JA can be applied on fully distributed
graphs, where each network node represents a single graph
vertex.

To evaluate JA-BE-JA, we use multiple datasets of differ-
ent characteristics, including a few synthetically generated
graphs, some graphs that are well-known in the graph
partitioning community [12], and some sampled graphs from
Facebook [13] and Twitter [14]. We first investigate the
impact of different heuristics on the resulting partitioning of
the input graphs, and then compare JA-BE-JA to METIS [4],
a well-known centralized solution. We show that, although
JA-BE-JA does not have cheap random access to the graph
data, it can work as good as, and sometimes even better
than, a centralized solution. In particular, for large graphs
that represent real-world social network structures, such as
Facebook and Twitter, JA-BE-JA outperforms METIS [4].

In the next section we define the exact problem that we
are targeting, together with the boundary requirements of
the potential applications. In Section III we study the related
work of graph partitioning. Then, in Section IV we explain
JA-BE-JA in detail, and evaluate it in Section V. Finally, in
Section VI we conclude the work.

II. PROBLEM STATEMENT

The problem that we address in this paper is distributed
balanced k-way graph partitioning. In this section we formu-
late the optimization problem and describe our assumptions
about the system we operate in.

A. Balanced k-way graph partitioning

We are given an undirected graph G = (V,E), where
V is the set of nodes (vertices) and E is the set of edges.
A k-way partitioning divides V into k subsets. Intuitively,
in a good partitioning the number of edges that cross the
boundaries of components is minimized. This is referred to
as the min-cut problem in graph theory. Balanced (uniform)
partitioning refers to the problem of partitioning the graph

into equal-sized components. The equal size constraint can
be softened by requiring that the partition sizes differ only
by a factor of a small ǫ.

A k-way partitioning can be given with the help of a
partition function π : V → {1, . . . , k} that assigns a color
to each node. Hence, π(p), or πp for short, refers to the color
of node p. Nodes with the same color form a partition. We
denote the set of neighbors of node p by Np, and define
Np(c) as the set of neighbors of p that have color c:

Np(c) = {q ∈ Np : πq = c} (1)

The number of neighbors of node p is denoted by dp,
and dp(c) = |Np(c)| is the number of neighbors of p with
color c. We define the energy of the system as the number
of edges between nodes with different colors (equivalent to
edge-cut). Accordingly, the energy of a node is the number
of its neighbors with a different color, and the energy of the
graph is the sum of the energy of the nodes:

E(G, π) =
1

2

∑

p∈V

(dp − dp(πp)) , (2)

where we divide the sum by two since the sum counts each
edge twice. Now we can formulate the balanced optimization
problem: find the optimal partitioning π∗ such that

π∗ = argmin
π

E(G, π) (3)

s.t. |V (c1)| = |V (c2)|, ∀ c1, c2 ∈ {1, . . . , k} (4)

where V (c) is the set of nodes with color c.

B. Data distribution model

We assume that the nodes of the graph are processed
periodically and asynchronously, where each node only has
access to the state of its immediate neighbors and a small set
of random nodes in the graph. The nodes could be placed
either on an independent host each, or processed in separate
threads in a distributed framework. This model, which we
refer to as the one-host-one-node model, is appropriate for
frameworks like GraphLab [1] or Pregel [11], Google’s
distributed framework for processing very large graphs. It
can also be used in peer-to-peer overlays, where each node is
an independent computer. In both cases, no shared memory
is required. Nodes communicate only through messages
over edges of the graph, and each message adds to the
communication overhead.

The algorithm can take advantage of the case, when
a computer hosts more than one graph node. We call
this the one-host-multiple-nodes model. Here, nodes on the
same host can benefit from a shared memory on that host.
For example, if a node exchanges some information with
other nodes on the same host, the communication cost is
negligible. However, information exchange across hosts is
costly and constitutes the main body of the communication
overhead. This model is interesting for data centers or cloud
environments, where each computer can emulate thousands
of nodes at the same time.

III. RELATED WORK

A. Graph Partitioning

There exist quite a few works that address the k-way
balanced graph partitioning problem in a centralized model.
Also, there are partitioning algorithms that have a distributed
model similar to that of JA-BE-JA, but do not compute a
predefined number of balanced partitions. Here, we briefly
overview some of these algorithms. To the best of our
knowledge, JA-BE-JA is the first algorithm that fills in the
gap between these two sets of algorithms and can produce
balanced partitions in a completely distributed model.

B. Balanced Graph Partitioning Algorithms

METIS [4] is a widely known and successful algorithm
based on Multilevel Graph Partitioning (MGP) [2]. MGP
generally works in three phases: (i) a sequence of smaller
graphs are produced from the original graph, by iteratively
contracting edges and unifying nodes. This is repeated until
the number of nodes in the coarsened graph is small enough
to perform an inexpensive partitioning, (ii) the smallest
graph is partitioned, and (iii) the partitions are propagated
back through a sequence of un-contracting nodes and edges.

Note that the best partition for the coarsened graph may
not be optimal for the uncoarsened original graph, thus, the
third phase also includes some local refinements to improve
the cut size as the edges are un-contracted. Therefore, the
MGP approach is usually coupled with other heuristics for
local refinement, e.g., Kernighan-Lin (KL) algorithm [15].
METIS combines several heuristics during its coarsening,
partitioning, and uncoarsening phases to improve the cut
size. It also uses a greedy refinement method, which was
found to be significantly faster than the original MGP
algorithm.

There are many other algorithms based on MGP. For
example, Soper et al. [16] proposed an algorithm that
combined a Genetic Algorithm (GA) technique with MPG.
In [16] crossover and mutation operators are used to compute
edge biases, which yield hints for the underlying multilevel
graph partitioner. Chardaire et al. [17] also proposed a meta-
heuristic, which can be viewed as a GA without selection.
Benlic et al. [18] provided a perturbation-based iterated tabu
search procedure for partition refinement of each coarsened
graph. KAFFPA [10] is another MGP algorithm using local
improvement algorithms that are based on flows and local-
ized searches.

In order to speedup the partitioning process for very large-
scale graphs, designing algorithms that can be parallelized
is inevitable. PARMETIS [5] is the parallel version of METIS

that improves the partitioning time, but at the cost of lower
quality partitions. KAFFPAE [9] is also a parallelized MGP
algorithm, which produces even better partitions compared
to its non-parallel ancestor KAFFPA [10]. Moreover, Talbi
et al. proposed a parallel graph partitioning technique in [19]
based on parallel GA [20]. Although these algorithms can
produce the final partitioning faster, they require access
to the entire graph at all times, which renders them very
expensive for large graphs that can not fit into the memory
of a single computer.

C. Distributed Graph Partitioning Algorithms

Apart from JA-BE-JA, there exist some other algorithms
that operate based on partial information. The decentralized
nature of these algorithms enables them to process very large
graphs. For example, DIDIC [21] is a distributed diffusion-
based algorithm that eliminates all the global operations for
assigning nodes to partitions. Also, CDC [22], which adopts
some ideas from the diffusion-based models, is particularly
designed for peer-to-peer networks. However, unlike JA-BE-
JA, these solutions may produce partitions of drastically
different sizes. We initially carried out experiments with
DIDIC for our problem, however had to abandon it since we
observed that it tends to find good-shaped partitions rather
than balanced ones, and therefore, the number and size of
yielded partitions can not be controlled, as it depends on the
topology of the input graph.

IV. SOLUTION

We propose JA-BE-JA, a distributed heuristic algorithm
for the balanced k-way graph partitioning problem.

A. The basic idea

Recall, that we defined the energy of the system as
the number of edges between nodes with different colors,
and the energy of a node is the number of its neighbors
with a different color. The basic idea is to initialize colors
uniformly at random, and then to apply heuristic local search
to push the configuration towards lower energy states (min-
cut).

The local search operator is executed by all the graph
nodes in parallel: each node attempts to change its color to
the most dominant color among its neighbors. However, in
order to preserve the size of the partitions, the nodes cannot
change their color independently. Instead, they only swap1

their color with one another. Each node iteratively selects
another node from either its neighbors or a random sample,
and investigates the pair-wise utility of a color exchange. If
the color exchange decreases the energy then the two nodes
swap their colors. Otherwise, they preserve their colors.

When applying local search, the key problem is to ensure
that the algorithm does not get stuck in a local optimum.
For this purpose, we employ the simulated annealing tech-
nique [23] as we describe below. Later, in the evaluation
section (Section V), we show the impact of this technique
on the quality of the final partitioning.

Note that, since no color is added to/removed from the
graph, the distribution of colors is preserved during the
course of optimization. Hence, if the initial random coloring
of the graph is uniform, we will have balanced partitions at
each step. We stress that this is a heuristic algorithm, so
it cannot be proven (or, in fact, expected) that the globally
minimal energy value is achieved. Exact algorithms are not
feasible since the problem is NP-complete, so we cannot
compute the minimum edge-cut in a reasonable time, even
with a centralized solution and a complete knowledge of the
graph. In Section V-F, however, we compare our results with

1JA-BE-JA means swap in Persian.

p q
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(a) Color exchange be-
tween p and q is accepted
if α ≥ 1.

u v

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(b) Color exchange be-
tween u and v is accepted
only if α > 1.

Figure 2. Examples of two potential color exchanges.

the best known partitioning over a number of benchmark
problem instances.

B. Swapping: the local search operator

Firstly, a node selects a set of candidate nodes for
swapping. We consider three possible ways of selecting the
candidate set:

• Local (L): every node considers its directly connected
nodes (neighbors) as candidates for color exchange.

• Random (R): every node selects a uniform random
sample of the nodes in the graph. Note that there exist
multiple techniques for taking a uniform sample of a
given graph at a low cost [24], [25], [26], [27], [28],
[29].

• Hybrid (H): in this policy first the immediate neighbor
nodes are selected (i.e., the local policy). If this selec-
tion fails to improve the pair-wise utility, the node is
given another chance for improvement, by letting it to
select nodes from its random sample (i.e., the random
policy).

Secondly, a node needs to define how to select the swap
partner. The partner of a node p is the node that p chooses
among its candidates to exchange its color with. To decide if
two nodes should swap their colors, we require: (i) a function
to measure the pair-wise utility of a color exchange, and (ii)
a policy for escaping local optima.

In order to minimize the edge-cut of the partitioning, we
try to maximize dp(πp) for all nodes p in the graph, which
only requires local information at each node. Two nodes
p and q with colors πp and πq , respectively, exchange their
colors only if this exchange decreases their energy (increases
the number of neighbors with a similar color to that of the
node):

dp(πq)
α + dq(πp)

α
> dp(πp)

α + dq(πq)
α

(5)

where α is a parameter of the energy function. If α = 1, a
color exchange is accepted if it increases the total number
of edges with the same color at two ends. For example,
color exchange for nodes p and q in Figure 2(a) is accepted,
as the nodes change from a state with 1 and 0 neighbors
of a similar color, to 1 and 3 such neighbors, respectively.
However, nodes u and v in Figure 2(b), each in a state with
2 neighbors of a similar color, do not exchange their colors,
if α = 1, because 2 + 2 6> 1 + 3. However, if α > 1, then
nodes u and v will exchange their colors. Although, this
exchange does not directly reduce the total edge-cut of the
graph, it increases the probability of future color exchanges
for the two yellow nodes, currently in the neighborhood of

node v. In section V we evaluate the effect of the parameter
α.

To avoid becoming stuck in a local optimum, we use
the well-known Simulated Annealing (SA) technique [23].
We introduce a temperature (T) and decrease it over time,
similar to the cooling process in [23]. The updated decision
criterion becomes

(dp(πq)
α
+ dq(πp)

α
)× T > dp(πp)

α
+ dq(πq)

α
. (6)

As a result, in the beginning we might move in a direction
that degrades the energy function, i.e., nodes exchange their
color even if the edge-cut is increased. Over time, however,
we take more conservative steps and do not allow those ex-
changes that result in a higher edge-cut. The two parameters
of the SA process are (i) T0, the initial temperature, which
is greater than or equal to one, and (ii) δ, that determines the
speed of the cooling process. The temperature in round r is
calculated as Tr = Tr−1− δ. When the temperature reaches
the lower bound 1, it is not decreased anymore. From then
on, the decision procedure falls back on using equation (5).

We also use a multi-start search [23], by running the
algorithm many times, starting from different initial states.
Note that this technique is applied in a distributed way.
More precisely, after each run, nodes use a gossip-based
aggregation method [26] to calculate the edge-cut in the
graph. If the new edge-cut is smaller than the previous one,
they update the best solution found so far by storing the new
edge-cut value together with the current local color.

C. Ja-Be-Ja

JA-BE-JA combines the two aforementioned compo-
nents: the sampling policy and swapping technique. Al-
gorithm IV-B presents the core of JA-BE-JA. As shown
in method SampleAndSwap, we use the hybrid heuristic
for node selection, which first tries the local policy (line
3), and if it fails it follows the random policy (line 5).
Method FindPartner shows how the partner is selected.
We calculate the two sides of equation (5) in lines 20− 25,
and in line 26, we compare these computed values. Here,
the current temperature, Tr, biases the comparison towards
selecting new states (in the initial rounds).

Note that the actual swapping operation is implemented
as an optimistic transaction, the details of which are not
included in the algorithm listing to avoid distraction from
the core algorithm. The actual swap is done after the two
nodes perform a handshake and agree on the swap. This is
necessary, because the deciding node might have outdated
information about the partner node. During the handshake,
the initiating node sends a swap request to the partner
node, along with all the information that the partner node
needs to verify the swap utility: the current color (πp), the
partner’s color (πpartner), the number of neighbors with the
same color (dp(πp)), and the number of neighbors with the
color of the partner node (dp(πpartner)). If the verification
succeeds, the partner node replies with an acknowledgment
(ACK) message and the swap takes place. Otherwise, a
negative acknowledgment message (NACK) is sent and the
two nodes preserve their previous colors. These sample and

Algorithm 1 JA-BE-JA Algorithm.

Require: Any node p in the graph has the following meth-
ods:

• getNeighbors(): returns p’s neighbors.
• getSample(): returns a uniform sample of all the

nodes.
• getDegree(c): returns the number of p’s neighbors

that have color c.

1: //Sample and Swap algorithm at node p
2: procedure SAMPLEANDSWAP

3: partner← FindPartner(p.getNeighbors(), Tr)
4: if partner = null then
5: partner ← FindPartner(p.getSample(), Tr)
6: end if
7: if partner 6= null then
8: color exchange handshake between p and

partner
9: end if

10: Tr ← Tr − δ
11: if Tr < 1 then
12: Tr ← 1
13: end if
14: end procedure

15: //Find the best node as swap partner for node p
16: function FINDPARTNER(Node[] nodes, float Tr)
17: highest← 0
18: bestPartner← null
19: for q ∈ nodes do
20: dpp ← p.getDegree(p.color)
21: dqq ← q.getDegree(q.color)
22: old← dαpp + dαqq
23: dpq ← p.getDegree(q.color)
24: dqp ← q.getDegree(p.color)
25: new← dαpq + dαqp
26: if (new × Tr > old) ∧ (new > higest) then
27: bestPartnere← q
28: highest← new
29: end if
30: end for
31: return bestPartner
32: end function

swap processes are periodically repeated by all the nodes, in
parallel, and when no more swaps take place in the graph,
the algorithm has converged.

In the one-host-multiple-nodes model, the only change
required to the core algorithm is to give preference to local
host swaps. That is, if there are several nodes as potential
partners for a swap, the node selects the one that is located
on the local host, if there is such a candidate. Note that in
this model not each and every node requires to maintain
a random view for itself. Instead, the host can maintain a
large enough sample of the graph to be used as a source of
samples for all hosted nodes. In Section V-E, we study the
trade-off between communication overhead and the edge-cut

with and without considering the locality.

D. Generalizations of Ja-Be-Ja

So far, we have discussed the case when the graph links
are not weighted and the partition sizes are equal. However,
JA-BE-JA is not limited to these cases. In this section, we
briefly describe how it can deal with weighted graphs and
produce arbitrary pre-defined partition sizes.

Weighted graphs.: In real world applications links are
often weighted. For example, in a graph database some
operations are performed more frequently, thus, some links
are accessed more often [30]. In order to prioritize such links
when partitioning the graph, we change the definition of dp,
such that, instead of just counting the number of neighboring
nodes with the same color, we sum the weights of these
links:

dp(c) =
∑

q∈Np(c)

w(p, q) (7)

where w(p, q) is the weight of the edge between p and q.
Arbitrary partition sizes.: For example, assume we

want to split the data over two machines that are not equally
powerful. If the first machine has twice as many resources
than the second one, we need a 2-way partitioning with
one component being twice as large as the other. To do
that, we can initialize the graph partitioning with a biased
distribution. For example, if nodes initially choose randomly
between two partitions c1 and c2, such that c1 is twice as
likely to be chosen, then the final partitioning will have
a partition c1, which is twice as big. This is true for
any distribution of interest, as JA-BE-JA is guaranteed to
preserve the initial distribution of colors.

V. EXPERIMENTAL EVALUATION

We implemented JA-BE-JA on PEERSIM [31], a discrete
event simulator for building P2P protocols. First, we inves-
tigate the impact of different heuristics and parameters on
different types of graphs. Then, we conduct an extensive
experimental evaluation to compare the performance of JA-
BE-JA to (i) METIS [4], a well-known efficient centralized
solution, and (ii) the best known available results from the
Walshaw benchmark [12] for several graphs. Unless stated
otherwise, we compute a 4-way partitioning of the input
graph with initial temperature T0 = 2, the temperature is
reduced by δ = 0.003 in each step until it reaches value 1,
and parameter α is set to 2.

A. Metrics

Although the most important metric for graph partitioning
is edge-cut (or energy), there are a number of studies [32]
that show that the edge-cut alone is not enough to measure
the partitioning quality. Several metrics are, therefore, de-
fined and used in the literature [7], [8], among which we
selected the following ones in our evaluations:

• edge-cut: the number of inter-partition edges, as given
in Formula 2, i.e., E(G, π).

• swaps: the number of swaps that take place between
different hosts during run-time (that is, swaps between
graph nodes stored on the same host are not counted).

Table I
DATASETS

Dataset |V| |E| Type Reference

Synth-WS 1000 4147 Synth. -
Synth-SF 1000 7936 Synth. -
add20 2395 7462 Walshaw [12]
data 2851 15093 Walshaw [12]
3elt 4720 13722 Walshaw [12]
4elt 15606 45878 Walshaw [12]
vibrobox 12328 165250 Walshaw [12]
Twitter 2731 164629 Social [14]
Facebook 63731 817090 Social [13]

• data migration: the number of nodes that need to
be migrated from their initial partition to their final
partition.

While the edge-cut is a quality metric for partitioning, the
number of swaps defines the cost of the algorithm. Moreover,
the data migration metric makes sense only in the one-
host-multiple-nodes model, where some graph nodes have to
migrate from one physical machine to another after finding
the final partitioning. If the graph nodes that are initially
located at a given host get the same initial color, then this
metric is given by the number of nodes that end up with a
different color by the time the algorithm has converged.

B. Datasets

We have used three types of graphs: (i) two syntheti-
cally generated graphs, (ii) several graphs from Walshaw
archive [12], and (iii) sampled graphs from two well-known
social networks: Twitter [14] and Facebook [13]. These
graphs are listed in Table I.

Synthetic Graphs.: We generated two different graphs
synthetically. The first one is based on the Watts-Strogatz
model [33], with 1000 nodes and average degree 8 per node.
First, a lattice is constructed and then some edges are rewired
with probability 0.02. We refer to this graph as Synth-WS.
The second graph, Synth-SF, is an implementation of the
Barabasi-Albert model [34] of growing scale free networks.
This graph also includes 1000 nodes with an average degree
of 16. Both graphs are undirected and there are no parallel
edges either.

The Walshaw Archive.: The Walshaw archive [12] con-
sists of the best partitioning found to date for a set of graphs,
and reports the partitioning algorithms that achieved those
best results. This archive, which has been active since the
year 2000, includes the results from most of the major graph
partitioning software packages, and is kept updated regularly
by receiving new results from the researchers in this field.
For our experiments, we have chosen graphs add20, data,
3elt, 4elt, and vibrobox, which are the small and medium
size graphs in the archive, listed in Table I.

The Social Network Graphs.: Since social network
graphs are one of the main targets of our partitioning
algorithm, we investigate the performance of JA-BE-JA on
two sampled datasets, which represent the social network
graphs of Twitter and Facebook.

We sampled our Twitter graph from the follower network
of 2.4 million Twitter users [14]. There are several known

 0

 500

 1000

 1500

 2000

 2500

0.001

0.003

0.01
0.03

0.1
0.3

1 0

 100000

 200000

 300000

 400000

 500000

 600000

ed
ge

-c
ut

 (
Y

1)

nu
m

. o
f s

w
ap

s
(Y

2)

delta

edge-cuts (Y1-axis)
num. of swaps (Y2-axis)

(a) add20 graph.

 0

 500

 1000

 1500

 2000

 2500

0.001

0.003

0.01
0.03

0.1
0.3

1 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

ed
ge

-c
ut

 (
Y

1)

nu
m

. o
f s

w
ap

s
(Y

2)

delta

edge-cuts (Y1-axis)
num. of swaps (Y2-axis)

(b) 3elt graph.

 0

 10000

 20000

 30000

 40000

 50000

0.001

0.003

0.01
0.03

0.1
0.3

1 0

 100000

 200000

 300000

 400000

 500000

ed
ge

-c
ut

 (
Y

1)

nu
m

. o
f s

w
ap

s
(Y

2)

delta

edge-cuts (Y1-axis)
num. of swaps (Y2-axis)

(c) Twitter graph.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

0.001

0.003

0.01
0.03

0.1
0.3

1 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

ed
ge

-c
ut

 (
Y

1)

nu
m

. o
f s

w
ap

s
(Y

2)

delta

edge-cuts (Y1-axis)
num. of swaps (Y2-axis)

(d) Facebook graph.

Figure 3. The number of swaps and edge-cut over δ.

Table II
DIFFERENT SAMPLING HEURISTICS, WITH α = 2 AND SA.

Graph initial L R H

Synth-WS 3127 1051 600 221
Synth-SF 5934 4571 4151 4169
add20 5601 3241 1446 1206
data 11326 3975 1583 775
3elt 10315 4292 1815 390
4elt 34418 14304 6315 1424
vibrobox 123931 42914 22865 23174
Twitter 123683 45568 41079 41040
Facebook 612585 181661 119551 117844

approaches for producing an unbiased sample of a very
large social network, such that the sample has similar
graph properties to those of the original graph. We used an
approach discussed in [35] sampling nearly 10000 nodes by
performing multiple breadth first searches (BFS). We also
used a sample graph of Facebook, which is made available
by Viswanath et. al. [13]. This data is collected by crawling
the New Orleans regional network during December 29th,
2008 and January 3rd, 2009, and includes those users who
had a publicly accessible profile in the network. The data,
however, is anonymized.

C. The impact of the sampling policies

In this section, we study the effect of different sampling
heuristics on the edge-cut. These heuristics were introduced
in Section IV-B and are denoted by L, R, and H . Here, we
evaluated the one-node-one-host model, and to take uniform
random samples of the graph we applied Newscast [26], [36]
in our implementation. As shown in Table II, all heuristics
significantly reduce the initial edge-cut that belongs to a
random partitioning. Even with heuristic L, which only
requires the information about direct neighbors of each node,
the edge-cut is reduced to 30% of the initial number for the
Facebook graph. The random selection policy, i.e., heuristic
R, works even better than local (L) for all the graphs, as it
is less likely to get stuck in a local optimum. The best result
for most graphs, however, is achieved with the combination
of L and R: the hybrid heuristic (H).

D. The impact of the swapping policies

In these experiments, we study the effect of the pa-
rameters that define the swapping policies, introduced in
Section IV-B. We investigate the impact of the parameters
on the final edge-cut, as well as on the number of swaps.
Table III contains the edge-cut values achieved with different
values of α, a parameter of the swapping condition in
equation (5). The setting α = 2 gives the best result for
most of the graphs. In Section IV-B we explained why α is
better to be greater than 1. In this experiment, we observe
that if α is set too high, nodes might overestimate the value
of a swap and end up in an inferior state.

Table IV lists the edge-cut with and without simulated
annealing (SA). In the simulations without SA, we set T0 =
1, which is the lowest allowed temperature in our case (see
equation (6)). Although the improvements due to SA might
be minor for some graphs, for other graphs with various

 0

 1000

 2000

 3000

 4000

 5000

 6000

50 100
150

200
250

300
350

400
450

500
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

ed
ge

-c
ut

C
D

F
 o

f n
um

. o
f i

nt
er

-h
os

t s
w

ap
s

cycles

edge-cut (with locality)
swaps (with locality)

edge-cut (no locality)
swaps (no locality)

(a) add20 graph.

 0

 2000

 4000

 6000

 8000

 10000

 12000

50 100
150

200
250

300
350

400
450

500
 0

 50000

 100000

 150000

 200000

 250000

 300000

ed
ge

-c
ut

C
D

F
 o

f n
um

. o
f i

nt
er

-h
os

t s
w

ap
s

cycles

edge-cut (with locality)
swaps (with locality)

edge-cut (no locality)
swaps (no locality)

(b) 3elt graph.

 0

 20000

 40000

 60000

 80000

 100000

 120000

50 100
150

200
250

300
350

400
450

500
 0

 50000

 100000

 150000

 200000

ed
ge

-c
ut

C
D

F
 o

f n
um

. o
f i

nt
er

-h
os

t s
w

ap
s

cycles

edge-cut (with locality)
swaps (with locality)

edge-cut (no locality)
swaps (no locality)

(c) Twitter graph.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

50 100
150

200
250

300
350

400
450

500
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

ed
ge

-c
ut

C
D

F
 o

f n
um

. o
f i

nt
er

-h
os

t s
w

ap
s

cycles

edge-cut (with locality)
swaps (with locality)

edge-cut (no locality)
swaps (no locality)

(d) Facebook graph.

Figure 4. Evolution of edge-cut and swaps over time.

Table III
TUNING α, WITH HYBRID SAMPLING AND SA.

Graph initial α = 1 α = 2 α = 3

Synth-WS 3127 265 221 290
Synth-SF 5934 4190 4169 4215
add20 5601 1206 1206 1420
data 11326 618 775 1241
3elt 10315 601 390 1106
4elt 34418 1473 1424 2704
vibrobox 123931 23802 23174 25602
Twitter 123683 40775 41040 41247
Facebook 612585 124328 117844 133920

local optima SA can lead to a much smaller edge-cut. We
also ran several experiments to investigate the effect of T0

and observed that T0 = 2 gives the best results in most cases.
These experiments are not reported due to lack of space.

The other parameter of the simulated annealing technique
is δ, the speed of the cooling process. We investigate the
impact of δ on the edge-cut and on the number of swaps.
Figure 3 shows the results as a function of different values
for δ. The higher δ is, the higher the edge-cut is (Y1-
axis) and the smaller the number of swaps is (Y2-axis). In
other words, δ represents a trade-off between the number
of swaps and the quality of the partitioning (edge-cut).
Note that a higher number of swaps means both a longer
convergence time and more communication overhead. For
example, for δ = 0.003, it takes around 334 rounds for the
temperature to decrease from 2 to 1, and in just very few
rounds after reaching the temperature of 1 the algorithm
converges. Interestingly, the social network graphs are very
robust to δ in terms of the edge-cut value, so in the case
of highly clustered graphs the best choice seems to be a
relatively fast cooling schedule.

E. Locality

Here, we investigate the evolution of the edge-cut, the
number of swaps, and the number of migrations over time,
assuming the one-host-multiple-nodes model. Recall, that
swaps between nodes within the same host are not counted.
We assume there are four hosts in the systems, where each
host gets a random subset of nodes initially. They run
the algorithm to find a better partitioning by repeating the
sample and swap steps periodically, until no more swaps
occur (convergence). As shown in Figure 4, in both models,
the algorithm converges to the final partitioning in round
350, that is, shortly after the temperature reaches 1. We also
observe that the convergence time is mainly dependent on
the parameters of the simulated annealing process, and so
it can be controlled by the initial temperature T0 and the
cooling schedule parameter δ.

Although (as we have seen) we can achieve a much
lower number of swaps in Twitter and Facebook graphs
with higher values of δ without sacrificing the solution
quality (Figures 3(c) and 3(d)), we have performed these
experiments with the same setting of δ = 0.003 for all the
graphs. As shown in Figure 4(b), locally biased swapping
results in relatively more inter-host swaps over the 3elt
graph. Fortunately, in the rest of the graphs—that include

Table IV
THE IMPACT OF SA ON THE EDGE-CUT (α = 2).

Graph initial H H + SA

Synth-WS 3127 503 221
Synth-SF 5934 4258 4169
add20 5601 1600 1206
data 11326 1375 775
3elt 10315 1635 390
4elt 34418 6240 1424
vibrobox 123931 26870 23174
Twitter 123683 41087 41040
Facebook 612585 152670 117844

Table V
THE NUMBER OF NODES THAT NEED TO MIGRATE.

graph |V | |mig|

Synth-WS 1000 720
add20 2395 1740
3elt 4720 3436
Twitter 2731 2000
Facebook 63731 47555

the practically interesting social network samples as well—
we can see the opposite (and more favorable) trend, namely
that JA-BE-JA achieves the same edge-cut with much fewer
inter-host swaps. We speculate that this is due to the fact
that in the latter group of graphs there are various different
partitionings of the graph with a similar edge-cut value, thus,
local swaps will be more likely to be good enough.

When the goal is to re-arrange the graph, data is not actu-
ally moved before the algorithm has converged to the final
partitioning. Instead, on a given host, all nodes are initialized
with the same color. During run-time, only the color labels
are exchanged. The color of a node may change several
times before convergence. When the algorithm converges,
each data item (node) is migrated from its initial partition
to its final partition indicated by its color.

Note that migration could be optimized given the final
partitioning, but we simply assume that nodes with a color
different from the original color will migrate. Table V shows
the number of data items that need to be migrated after
the convergence of the algorithm. As expected, this number
constitutes nearly 75% of the nodes for a 4-way partitioning.
This is because each node initially selects one out of four
partitions uniformly at random, and the probability that it is
not moved to a different partition is only 25%. Equivalently,
25% of the nodes stay in their initial partition and the
remaining 75% have to migrate.

F. Comparison With the State-of-the-Art

In this section, we compare JA-BE-JA to METIS [4] on
all the input graphs. We also compare these results to the
best known solutions for the graphs from the Walshaw
benchmark [12]. Table VI shows the edge-cut of the final
4-way partitioning. As shown, for some graphs, METIS

produces better results, and for some others JA-BE-JA works
better. However, the advantage of JA-BE-JA is that it does
not require all the graph data at once, and therefore, it is
more practical when processing very large graphs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 4 8 16 32 64

e
d

g
e

-c
u

ts

number of partitions

Ja-be-Ja
METIS

(a) add20 graph.

 0

 500

 1000

 1500

 2000

 2500

 3000

2 4 8 16 32 64

e
d

g
e

-c
u

ts

number of partitions

Ja-be-Ja
METIS

(b) 3elt graph.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

2 4 8 16 32 64

e
d

g
e

-c
u

ts

number of partitions

Ja-be-Ja
METIS

(c) Twitter graph.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

2 4 8 16 32 64

e
d

g
e

-c
u

ts

number of partitions

Ja-be-Ja
METIS

(d) Facebook graph.

Figure 5. JA-BE-JA vs. METIS scalability in different graphs.

Table VI
JA-BE-JA VS. METIS VS. THE BEST KNOWN EDGE-CUT.

Graph JA-BE-JA METIS Best known edge-cut

Synth-WS 221 210 -
Synth-SF 4169 4279 -
add20 1206 1276 1159 (PROBE [17])
data 775 452 382 (MMA02 [37])
3elt 390 224 201 (JE [16])
4elt 1424 374 326 (NW [38])
vibrobox 23174 22526 19098 (MMA02 [37])
Twitter 41040 65737 -
Facebook 117844 117996 -

Next, we investigate the performance of the algorithms,
in terms of edge-cut, when the number of the required
partitions grows. Figure 5 shows the resulting edge-cut of
JA-BE-JA versus METIS for 2 to 64 partitions. Naturally,
when there are more partitions in the graph, the edge-cut will
also grow. However, as shown in most of the graphs (except
for 3elt), JA-BE-JA finds a better partitioning compared to
METIS, when the number of partitions grows. In particular,
JA-BE-JA outperforms METIS in the social network graphs.
For example, as shown in Figure 5(d) the edge-cut in METIS

is nearly 20,000 more than JA-BE-JA. Note, unlike METIS,
JA-BE-JA does not make use of any global information or
operation over the entire graph.

VI. CONCLUSION

We provided an algorithm that, to the best of our knowl-
edge, is the first distributed algorithm for balanced graph
partitioning that does not require any global knowledge. To
compute the partitioning, nodes of the graph require only
some local information and perform only local operations.
Therefore, the entire graph does not need to be loaded
into memory, and the algorithm can run in parallel on as
many computers as available. We showed that our algorithm
can achieve a quality partitioning, as good as a centralized
algorithm. We also studied the trade-off between the quality
of the partitioning versus the cost of it, in terms of the
number of swaps during the run-time of the algorithm.

ACKNOWLEDGMENT

M. Jelasity was supported by the Bolyai Scholarship of the
Hungarian Academy of Sciences. This work was partially
supported by the European Union and the European Social
Fund through project FuturICT.hu (grant no.: TAMOP-
4.2.2.C-11/1/KONV-2012-0013).

REFERENCES

[1] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. Hellerstein, “Distributed graphlab: A framework for
machine learning and data mining in the cloud,” Proc. VLDB
Endow., vol. 5, no. 8, pp. 716–727, 2012.

[2] B. Hendrickson and R. Leland, “A multilevel algorithm for
partitioning graphs,” in Proc. of CDROM’95. ACM, 1995,
p. 28.

[3] A. Enright, S. Van Dongen, and C. Ouzounis, “An efficient al-
gorithm for large-scale detection of protein families,” Nucleic
acids research, vol. 30, no. 7, pp. 1575–1584, 2002.

[4] G. Karypis and V. Kumar, “Parallel multilevel k-way parti-
tioning scheme for irregular graphs,” in Proc. of Supercom-
puting’96. ACM, 1996, pp. 35–35.

[5] ——, “A fast and high quality multilevel scheme for partition-
ing irregular graphs,” SIAM Jour. Sci. Comp., vol. 20, no. 1,
p. 359, 1999.

[6] B. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell System Technical Journal, vol. 49,
no. 2, pp. 291–307, 1970.

[7] H. Meyerhenke, B. Monien, and T. Sauerwald, “A new
diffusion-based multilevel algorithm for computing graph
partitions of very high quality,” in Proc. of IPDPS’08. IEEE,
2008, pp. 1–13.

[8] H. Meyerhenke, B. Monien, and S. Schamberger, “Graph
partitioning and disturbed diffusion,” Parallel Computing,
vol. 35, no. 10-11, pp. 544–569, 2009.

[9] P. Sanders and C. Schulz, “Distributed Evolutionary Graph
Partitioning,” in ALENEX, 2012, pp. 16–29.

[10] ——, “Engineering Multilevel Graph Partitioning Algo-
rithms,” in Proceedings of the 19th European Symposium on
Algorithms, ser. LNCS, vol. 6942, 2011, pp. 469–480.

[11] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-
scale graph processing,” in Proc. of SIGMOD’10. ACM,
2010, pp. 135–146.

[12] C. Walshaw, “The graph partitioning archive:
http://staffweb.cms.gre.ac.uk/˜wc06/partition,” Aug 2012.

[13] B. Viswanath, A. Mislove, M. Cha, and K. Gummadi, “On
the evolution of user interaction in facebook,” in Proc. of
WOSN’09. ACM, 2009, pp. 37–42.

[14] W. Galuba, K. Aberer, D. Chakraborty, Z. Despotovic,
and W. Kellerer, “Outtweeting the twitterers-predicting in-
formation cascades in microblogs,” in Proc. of WOSN’10.
USENIX, 2010, pp. 3–3.

[15] B. W. Kernighan and S. Lin, “An efficient heuristic procedure
for partitioning graphs,” The Bell system technical journal,
vol. 49, no. 1, pp. 291–307, 1970.

[16] A. Soper, C. Walshaw, and M. Cross, “A combined evolu-
tionary search and multilevel optimisation approach to graph-
partitioning,” Journal of Global Optimization, vol. 29, no. 2,
pp. 225–241, 2004.

[17] P. Chardaire, M. Barake, and G. McKeown, “A probe-based
heuristic for graph partitioning,” IEEE Tran. Comp., vol. 56,
no. 12, pp. 1707–1720, 2007.

[18] U. Benlic and J. Hao, “An effective multilevel tabu search
approach for balanced graph partitioning,” Computers &
Operations Research, vol. 38, no. 7, pp. 1066–1075, 2011.

[19] E. Talbi and P. Bessiere, “A parallel genetic algorithm for
the graph partitioning problem,” in Proc. of ICS’91. ACM,
1991, pp. 312–320.

[20] G. Luque and E. Alba, Parallel Genetic Algorithms: Theory
and Real World Applications. Springer, 2011, vol. 367.

[21] J. Gehweiler and H. Meyerhenke, “A distributed diffusive
heuristic for clustering a virtual p2p supercomputer,” in Proc.
of IPDPSW’10, 2010, pp. 1–8.

[22] L. Ramaswamy, B. Gedik, and L. Liu, “A distributed approach
to node clustering in decentralized peer-to-peer networks,”
IEEE Tran. Par. Dist. Sys., vol. 16, no. 9, pp. 814–829, 2005.

[23] E. Talbi, Metaheuristics: From design to implementation.
Wiley, 2009.

[24] A. Awan, R. Ferreira, S. Jagannathan, and A. Grama, “Dis-
tributed uniform sampling in unstructured peer-to-peer net-
works,” in Proc. of HICSS’06, vol. 9. IEEE, 2006, pp.
223c–223c.

[25] J. Dowling and A. Payberah, “Shuffling with a croupier: Nat-
aware peer-sampling,” in Proc. of ICDCS’12. IEEE, 2012,
pp. 102–111.

[26] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based
aggregation in large dynamic networks,” ACM Trans. Comp.
Syst. (TOCS), vol. 23, no. 3, pp. 219–252, 2005.

[27] L. Massoulié, E. Le Merrer, A. Kermarrec, and A. Ganesh,
“Peer counting and sampling in overlay networks: random
walk methods,” in Proc. of PODC’06. ACM, 2006, pp.
123–132.

[28] A. Payberah, J. Dowling, and S. Haridi, “Gozar: Nat-friendly
peer sampling with one-hop distributed nat traversal,” in Proc.
of DAIS’11. Springer, 2011, pp. 1–14.

[29] S. Voulgaris, D. Gavidia, and M. Van Steen, “Cyclon:
Inexpensive membership management for unstructured p2p
overlays,” Jour. Net. Sys. Manag., vol. 13, no. 2, pp. 197–
217, 2005.

[30] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó,
S. Gómez-Villamor, N. Martı́nez-Bazán, and J. Larriba-Pey,
“Survey of graph database performance on the hpc scalable
graph analysis benchmark,” Web-Age Inf. Manag., pp. 37–48,
2010.

[31] A. Montresor and M. Jelasity, “Peersim: A scalable p2p
simulator,” in Proc. of P2P’09. IEEE, 2009, pp. 99–100.

[32] B. Hendrickson, “Graph partitioning and parallel solvers:
Has the emperor no clothes?” in Proc. of IRREGULAR’98.
Springer, 1998, pp. 218–225.

[33] D. J. Watts and S. H. Strogatz, “Collective dynamics of
’small-world’ networks,” Nature, vol. 393, pp. 440–442, 1998.

[34] R. Albert and A. Barabási, “Statistical mechanics of complex
networks,” Reviews of modern physics, vol. 74, no. 1, p. 47,
2002.

[35] M. Kurant, A. Markopoulou, and P. Thiran, “On the bias of
bfs (breadth first search),” in Teletraffic Congress (ITC), 2010
22nd International. IEEE, 2010, pp. 1–8.

[36] N. Tölgyesi and M. Jelasity, “Adaptive peer sampling with
newscast,” in Proc. of Euro-Par’09. Springer-Verlag, 2009,
pp. 523–534.

[37] U. Benlic and J. Hao, “A multilevel memetic approach
for improving graph k-partitions,” IEEE Tran. Evo. Comp.,
vol. 15, no. 5, pp. 624–642, 2011.

[38] C. Walshaw, “Focusware networks mno - a commercialised
version of jostle: http://http://focusware.co.uk,” Sep 2012.

