
Decentralized Ranking in Large-Scale Overlay Networks ∗

Alberto Montresor
University of Trento

Italy
alberto.montresor@unitn.it

Márk Jelasity
University of Szeged and
Hungarian Academy of

Sciences, Hungary
jelasity@inf.u-szeged.hu

Ozalp Babaoglu
University of Bologna

Italy
babaoglu@cs.unibo.it

Abstract

Modern distributed systems are often characterized by

very large scale, poor reliability, and extreme dynamism of

the participating nodes, with a continuous flow of nodes

joining and leaving the system. In order to develop ro-

bust applications in such environments, middleware ser-

vices aimed at dealing with the inherent unpredictability of

the underlying networks are required. One such service is

aggregation. In the aggregation problem, each node is as-

sumed to have attributes. The task is to extract global in-

formation about these attributes and make it available to

the nodes. Examples include the total free storage, the av-

erage load, or the size of the network. Efficient protocols

for computing several aggregates such as average, count,

and variance have already been proposed. In this paper,

we consider calculating the rank of nodes, where the set

of nodes has to be sorted according to a numeric attribute

and each node must be informed about its own rank in the

global sorting. This information has a number of applica-

tions, such as slicing. It can also be applied to calculate

the median or any other percentile. We propose T-RANK,

a robust and completely decentralized algorithm for solv-

ing the ranking problem with minimal assumptions. Due

to the characteristics of the targeted environment, we aim

for a probabilistic approach and accept minor errors in the

output. We present extensive empirical results that suggest

near logarithmic time complexity, scalability and robust-

ness in different failure scenarios.

1. Introduction

The large scale and extreme dynamism of current dis-
tributed systems pose special challenges to developers:
monitoring and control requires the orchestration of a huge
number of nodes, with a continuous flow of nodes joining
and leaving the system. Special middleware services are

∗In Proc. IEEE SASOW 2008, DOI 10.1109/SASOW.2008.17. This
work was partially supported by the Future & Emerging Technologies unit
of the European Commission through Project CASCADAS (IST-027807).
M. Jelasity was supported by the Bolyai Scholarship of the Hungarian
Academy of Sciences.

required that shield the application from the resulting un-
predictability of the environment.

One such important service is aggregation [1]. Aggrega-
tion is a common name for a set of functions that provide
a summary of some global property in a distributed system.
Possible examples include the network size, the total free
storage, the maximum load, the average uptime, location
and description of hotspots, etc. The computation of sim-
ple aggregate values can be used to support more complex
protocols. For example, the knowledge of average load in
a system can be exploited to implement near-optimal load-
balancing schemes [2].

Many existing aggregation solutions are reactive [3, 4]:
aggregation is triggered by a specific query issued by a
node, and the answer is returned to the issuer. Instead,
we are interested in proactive protocols, where results are
continuously made available to all nodes. Proactive pro-
tocols are useful when aggregation is used as a building
block for other decentralized algorithms, as in the load-
balancing example cited above. Furthermore, proactive pro-
tocols are completely decentralized and “democratic”, with
every node participating equally, without any bottlenecks or
points of failure.

Previous work exist [5,6] on gossip-based algorithms for
computing a large collection of aggregates [7], including
maximum, minimum, means, counting, sum, product, vari-
ance and other moments. Thanks to the gossip approach,
the algorithms are characterized by extreme robustness and
scalability, together with a very small communication cost.
In this paper we tackle the ranking problem, that is closely
related to the sorting problem, where the task is to sort the
nodes according to their attributes; the additional goal is to
inform all nodes about their own index (rank) in the global
sorting.

In this paper we propose T-RANK, that, under minimal
assumptions, creates and overlay representing a sorted list
and informs all nodes about their rank in (empirically) log-
arithmic time using a logarithmic number of messages per
node.

There are countless protocols and applications that main-
tain or rely on a sorted list/ring overlay. We build on T-
MAN [8] to create the list, and then we add long range links

to this topology in an informed manner so that ranking in-
formation can be propagated in a logarithmic time. Our con-
tribution lies in the scalability, speed and small cost of ob-
taining ranking information from scratch, without assuming
the existence of a structured overlay.

The outline of the paper is as follows. In Section 2 we
define the system model. Section 3 presents the problem,
describes the core idea of the protocol and discusses the al-
gorithmic details of the protocol. Section 4 presents simula-
tion results. Finally, related work and conclusions are given
in Section 5 and Section 6.

2. System Model

We consider a network consisting of a large collection of
nodes that are assigned unique identifiers and that commu-
nicate through message exchanges. The network is highly
dynamic; new nodes may join at any time, and existing
nodes may leave, either voluntarily or by crashing. For the
sake of simplicity, in the following we limit our discussion
to node crashes, that is, we treat nodes that leave voluntarily
as crashed nodes. This clearly represents a worst case sce-
nario, since we could add special procedures to handle node
leaves. Byzantine failures, with nodes behaving arbitrarily,
are excluded from the present discussion.

We assume that nodes are connected through an existing
routed network, such as the Internet, where every node can
potentially communicate with every other node. To actually
communicate, a node has to know the identifiers of a set of
other nodes (its neighbors). A neighborhood relation over
the nodes defines the topology of an overlay network. Given
the large scale and the dynamism of our envisioned system,
neighborhoods are typically limited to small subsets of the
entire network. The neighbors of a node (and so the overlay
topology) can change dynamically.

Communication incurs unpredictable delays and is sub-
ject to failures. Single messages may be lost, links between
pairs of nodes may break. Occasional performance fail-
ures in communication (e.g., delay in receiving or sending
a message in time) can be seen as general communication
failures, and are treated as such. Nodes have access to lo-
cal clocks that can measure the passage of real time with
reasonable accuracy, that is, with small short-term drift.

3. The Algorithm

This section gives a formal description of the ranking prob-
lem and the basic concepts, along with the solution we pro-
pose: the T-RANK algorithm.

3.1. Definition of the Problem

As mentioned before, all nodes in the system hold a value
that is used in the sorting problem. For the sake of simpli-
fying language, we will often refer to the value as if it was
the node itself.

(a)

(b)

Figure 1. (a) A linear lattice topology, with
K = 3. (b) A finger-based topology, show-
ing links to nodes whose distance is equal
to 2i, for i = 0 . . . 3. In both cases, the links
of the first node are highlighted to ease their
identification.

The input of the ranking problem is a set N of N nodes,
together with a total ordering relation �, defined over N .
We assume that, given two nodes r and q, each node can
establish whether r � q or q � r, that is, nodes know
and can apply the ordering relation. We define a ranking

distance function d : N × N → Z, where d(r, q) is equal
to number of “hops” that must be traversed to go from one
node to the other:

d(r, q) = |{ r′ | min(r, q) ≺ r′ � max(r, q) }|

The goal of the protocol is to compute the ranking po-

sition of each node in the ordered sequence defined by �,
corresponding to its distance from the first node of the se-
quence (i.e., the one with the minimum value), and to also
inform each node about its rank.

Motivated by the arguments given in the Introduction, we
are interested in a completely decentralized solution, where
each node participates in a “democratic” way (i.e., with the
same amount of resources) in the computation of the rank-
ing, using only local information.

3.2. The Idea

The idea behind the proposed solution is the following: if
we can efficiently build a structured overlay topology over
the set of nodes that reflects the � order relation, that is,
that embeds the ordering as a linked list, we can use it to (i)
discover the first node in the sequence (and thus its rank: 1),
and (ii) propagate rank information following the overlay
links and we can also add shortcuts to the overlay defining
the ordering so as to facilitate the propagation of the rank
information.

The sorted list/ring overlay, enhanced with shortcuts, is
by now a standard component of a wide class of distributed
algorithms, mainly distributed hash tables (DHTs). It is
therefore important not to confuse our proposal with DHTs.
Our goal is to build the structure quickly and cheaply from
scratch, dynamically, perhaps for several attributes simul-
taneously or sequentially. The structure itself will often be
only temporary, needed only until ranks have been calcu-
lated. The design goal of DHTs, where maintaining the

structure is the key goal, is therefore not appropriate. Ac-
cordingly, known DHT algorithms are not applicable, as
they solve a different problem.

Let us introduce some notations. The topology that em-
beds the ordering will be a one-dimensional linear lattice

topology, illustrated in Figure 1(a). Each node r is con-
nected to the nodes whose ranking distance is less than a
configuration parameter K ≥ 1. We call these nodes leafs;
each node r will maintain two distinct leaf vectors, called
leafP and leafS, respectively containing nodes that preceed
(predecessors) or succeed r (successors):

leafP

r[i] =

{

r′ if d(r, r′) = i and r′ � r
⊥ if no such r′ exists

leafS

r[i] =

{

r′ if d(r, r′) = i and r � r′

⊥ if no such r′ exists

The length of these vectors is the number of non-⊥ el-
ements. The length is at most K but sometimes smaller:
obviously, those nodes that are closer to the beginning or
the end of the ordering than K will not have K nodes pre-
ceeding them or succeeding them, respectively. Also note
that the larger K is, the higher the probability is that the
overlay network will not get partitioned due to node or link
failures.

Once this network is available, a trivial solution to the
ranking problem is the following: the nodes whose leafP set
is smaller than K can easily compute their rank, which is
equal to the number of leafP entries. Whenever a node r
discovers its rank v, it sends a message to each node q =
leafS[i], informing q that its rank is equal to v + i. It is easy
to see that this algorithm will eventually lead to each node
knowing its rank in the total order �.

The problem with this solution is the number of steps
required to complete the algorithm, which is O(N). To
improve the speed of convergence, we build a finger-based

topology, as shown in Figure 1(b), where nodes are con-
nected to “distant” nodes in the ordered sequence. These
nodes are called fingers. In our solution, we want to build
a target topology, where the finger set of a node r contains
all nodes whose distance from r is equal to 2i, for i ≥ 0.
As with leafs, each node r organizes the information about
fingers in two vectors fingerP and fingerS, with predecessor
and successors fingers, respectively:

fingerP

r[i] =

{

r′ if d(r, r′) = 2i and r′ � r
⊥ if no such r′ exists

fingerS

r[i] =

{

r′ if d(r, r′) = 2i and r � r′

⊥ if no such r′ exists

Note that definition of fingers given here is different from
the one of Chord [9]. Our fingers are defined based on their
distance between their index over the sorted listed of nodes,
while Chord fingers are defined based on the distance in the
identifier space. This is clearly motivated by the specific
goal of our protocol, and can be very significant if the dis-
tribution of attribute values (that we cannot control, unlike
node IDs in Chord) is far from uniform.

The propagation algorithm can now be modified to ex-
ploit also the fingers: a node r with rank v can send a mes-
sage to its finger q = fingerS[i] informing it that its rank
is v + 2i. It is easy to see that, in the absence of failures,
the number of steps needed to complete the algorithm is
O(log N), thanks to the exponential distance of fingers, as-
suming that all fingers are informed in a single timestep.

In the rest of this section, we provide the algorithmic
details of the protocol. For building and maintaining the or-
dering topology, we rely on T-MAN [8]. T-MAN is a gossip-
based protocol scheme for the construction of several kinds
of topologies. We provide a brief description of T-MAN be-
low; interested readers may refer to the original paper for
details [8]. Subsequently we focus on the description of T-
RANK, the algorithm used to discover fingers and propagate
rank information.

3.3. The T-MAN Algorithm

T-MAN is a gossip-based protocol scheme for the construc-
tion of several kinds of topologies. Each node maintains a
list of neighbors. This list is of a fixed size, and updated pe-
riodically through gossip. In a gossip step, a node contacts
one of its neighbors, and the two peers exchange their lists
of neighbors, so that both peers have two lists: their old list
and the list of the selected neighbor. Subsequently both par-
ticipating nodes update their lists of neighbors by selecting
the new list from the union of the two old lists. The key is
how to select peers for a gossip step, and how to update the
list of neighbors based on the two lists.

In T-MAN, the peer selection and the list update func-
tions are implemented based on a ranking function (not to
be confused with the ranking in this paper). The ranking
function can be used to sort the list of neighbors to cre-
ate an order of preference. This order of preference can
be used to select peers and to update the list. The ranking
function of T-MAN is a generic function and it can capture
a wide range of topologies from rings to binary trees, from
n-dimensional lattice to sorting. In particular, in the case of
sorting, the order of preference is defined by the function
d(r, r′) as defined previously.

As described in [8], T-MAN is able to construct overlay
topologies in logarithmic time, with high accuracy.

3.4. The T-RANK Algorithm

The T-RANK algorithm is illustrated in Figure 2. Even
though the system is not synchronous, we find it convenient
to describe the protocol execution in terms of consecutive
real time intervals of length δ called cycles. We describe
the algorithm following its organization, namely introduc-
ing variables and discussing their initialization first; then,
we present the periodic section, whose task is to discover
new fingers and propagate ranking information.

As anticipated above, each node maintains four vectors
leafP, leafS, fingerP and fingerS. The first two contain the
leafs, as obtained by T-MAN. The last two should contain

// Variables
Node[] leafP, leafS,fingerP,fingerS

int[] distP, distS

Set nextP,nextS

Set newleafs ,newfingers = ∅
int rank = −1

// Initialization:
leafP and leafS are initialized by T-MAN, with K leafs
Init fingerP, fingerS based on leafP, leafS

foreach i do distP[i] = distS[i] = 2i

nextP = { i | fingerP[i] 6= ⊥ }
nextS = { i | fingerS[i] 6= ⊥ }
if (|leafP| < threshold)

newleafs = { i | leafS[i] 6= ⊥ }
newfingers = { i | fingerS[i] 6= ⊥ }
rank = |leafP|

repeat periodically every δ time units

// Send rank
foreach i ∈ newleafs :
send 〈RANK, rank + i〉 to leafS[i]

foreach i ∈ newfingers :
send 〈RANK, rank + distS[i]〉 to fingerS[i]

newfingers = newleafs = ∅

// Send fingers
mask = nextP ∪ nextS

foreach i : fingerP[i] 6= ⊥ and tosend(i)
send 〈VIEWS, distP[i],fingerS ∩ mask, distS ∩ mask〉

to fingerP[i]
foreach i : fingerS[i] 6= ⊥ and tosend(i)
send 〈VIEWP, distS[i],fingerP ∩ mask, distP ∩ mask〉

to fingerS[i]
nextP = nextS = ∅

on receive 〈VIEWt , d, fq, dq〉
foreach fq[i] :

e = dq[i] + d, l = bits(e)
if (fingert(l) == ⊥ or fq[l] ≺ fingert (l))
if (t == S and rank ≥ 0)

newfingers = newfingers ∪ { l } }
fingert [l] = fq[i]
distt [l] = e
nextt [l] = nextt ∪ { l }

on receive 〈RANK, r〉
if (r > rank)

rank = r
newleafs = { i | leafS[i] 6= ⊥}
newfingers = { i | fingerS[i] 6= ⊥}

Figure 2. T-RANK Algorithm.

fingers whose distance is equal to 2i; due to failures, how-
ever, discovering nodes at the required distance may be im-
possible. For this reason, the finger vectors are allowed
to store nodes whose distance is smaller than required, and
two dist vectors are created to contain the actual distance of
nodes. If a finger is discovered with distance d included in
[2i, 2i+1 − 1], it is stored in fingert [i] (where t corresponds
to the appropriate direction); furthermore, value d is stored
in distt [i].

In addition to these vectors, four variable sets are main-
tained. Their goal is to reduce the amount of messages
sent by the algorithm, by storing information about the
nodes that need to be updated. In particular, newleafs and
newfingers contain the indexes of the nodes to which the
rank information need to be propagated, while nextP and
nextS contain the indexes of the new discovered predeces-
sor and successor fingers. All these sets trigger the sending
of corresponding messages in the periodic section of the al-
gorithm, after which they are emptied.

Finally, variable rank contains the current estimate of
the rank position. rank is initialized to -1 to denote that the
node does not know its position yet.

The algorithm initialization is as follows. First, the
leaf and finger vectors are initialized as described in Sec-
tion 3.2, and the dist vectors are set accordingly. Second,
nodes that are beginning of the ordered sequence (recog-
nized by a leafP set smaller than a given threshold) initial-
ize their rank based on the cardinality of leafP and update
their newleafs and newfingers sets to start sending ranking
messages to their neighbors.

The core of the algorithm is given by the periodic send-
ing of messages and their handling. Two kinds of messages
are sent: RANK are used to notify nodes with their rank posi-
tion, while VIEW messages are used to build the finger table.
Communication is one-way; as we will see in Section 4, the
algorithm is capable of dealing with message losses.

RANK messages are sent to all nodes in newleafs and
newfingers; the rank value contained in them is computed
by adding the distance of the destination node (obtained by
the position in leafS or the distance in distS) to the rank of
the local node. After the sending of the message, newleafs
and newfingers are emptied, to avoid further sending of the
same value. When a RANK message containing a new rank
value is received, the node updates its local value and stores
all leafs and fingers in newleafs and newfingers , to propa-
gate the new rank value to its successor neighbors. Note that
the rank value is considered new only if it is greater than the
previous value; this is because in case of a non-perfect leaf
ordering (as the one produced by T-MAN), the estimate of
this value can be initially smaller than the real value.

Finger tables are built in the following way. Each node
sends a VIEW message containing its predecessor fingers to
its successor ones, and a message containing its successor
fingers to its predecessor ones. In this way, at each cycle
a node discovers nodes that are progressively further away
from itself; for example, when a node p receives from its

successor q with distance 2i a successor finger r of q whose
distance is 2i, it discovers that r is distant 2i+1 and can fill
the corresponding entry in fingerS. In case of failures, if
a node p receives a message from a non-perfect successor
finger q with distance in [2i−1, 2i − 1], containing a non-
perfect successor finger r with distance in [2i−1, 2i−1] from
q, the distance from p to r is in the range [2i, 2i+1 − 1] and
r can fill the corresponding entry.

To avoid sending an excessive amount of information,
just new fingers (the one stored in mask = nextP ∪ nextS)
are sent to the opposite nodes. In the algorithm, we abuse
of notation by writing fingert ∩ mask and distt ∩ mask
(t = P, S), to indicate this restriction. Clearly, if the nextP

or nextS are empty, the corresponding message is not sent.

Function tosend() is used in the figure to determine the
set of fingers to which the VIEW message has to be sent. For
the moment, we consider a function that returns always true,
meaning that fingers are propagated to all nodes. This is the
safest assumption in the case of failures, but also the more
costly one. We will see alternative possibilities in Section 4.

When a VIEW message is received, the node verifies
whether some of the nodes received may be used to insert
a new entry or replace an existing one in the finger table.
The predefined function bits(x) returns i if x is contained
in]2i−1, 2i]. If a new finger is found, it is added to nextP or
nextS; if it is a successor finger, and the node has already re-
ceived a rank estimate (certified by rank ≥ 0), newfingers
is updated as well.

4. Evaluation

All experiments in the paper were performed with PEERSIM,
a simulator optimized for executing cycle-based protocols
such as T-RANK [2]. In all figures, 20 individual experi-
ments were performed. Averages computed over all experi-
ments are shown as curves. In most of the experiments, the
empirical variance of the results is very low. When this is
not true, the variance has been shown through error bars.

We present two sets of results. The first set is performed
over a perfect regular lattice, where each node is connected
to the K nodes that preceed it and to the K nodes that suc-
ceed it in the linear ordering. The perfect regular lattice
can be produced by T-MAN in the absence of failures; these
simulations serve thus as a baseline for comparison with the
experiments on non-perfect lattices and to illustrate the ro-
bustness of the T-RANK algorithm with respect to node fail-
ures. The second set presents more realistic results based on
the topologies constructed by the T-MAN distributed proto-
col. The extreme robustness is confirmed, even with the
suboptimal topologies constructed by T-MAN. For all the
simulations, the value of K is equal to 20. This means that
the leaf degree of the nodes equals to 2K = 40: this value
is also suggested by empirical results with T-MAN [8], and
has proven to be sufficient to obtain good approximations
even in very large networks.

To evaluate our protocol, we are also interested in the

 10

 100

 1000

 10000

 100000

 0 5 10 15 20

N
o
d
e
s

Cycle

p = 0.0%
p = 0.5%
p = 1.0%

Figure 3. Number of correct nodes that have
learned the exact ranking after each cycle.
Network size is 218.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20

T
o
ta

l
m

e
s
s
a
g
e
s
 p

e
r

n
o
d
e

Cycle

p = 0.0%
p = 0.5%
p = 1.0%

Figure 4. Number of VIEW messages ex-
changed after each cycle. Network size is 218.

following metrics: convergence speed and communication

cost. Regarding convergence speed, we are interested in
how many steps are needed to inform all nodes about their
rank. Regarding communication cost, two kinds of mes-
sages are sent, rank and VIEW. The latter ones represent the
higher cost, because they are sent in each cycle to all the
current fingers.

Orthogonal to these figures of merit, we are interested
also in the scalability and robustness characteristics.

4.1. Simulation Experiments

Figures 3 and 4 show the behavior of the protocol when ex-
ecuted starting from a perfect lattice. The T-RANK protocol
was executed on a simulated network of 218 nodes. Three
curves are shown, corresponding to a failure probability of
0%, 0.5% and 1% per cycle If we consider 1s cycles, the
latest probability is extremely high, approximately two or-
der of magnitudes larger than what you observe in normal

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

N
u
m

b
e
r

o
f
c
y
c
le

s

Network size

pf = 0.0%
pf = 0.5%
pf = 1.0%

Figure 5. Number of cycles needed to com-
plete the protocol, on networks with size in
the range [210, 218].

 50

 100

 150

 200

 250

 300

 350

 400

 450

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

T
o
ta

l
m

e
s
s
a
g
e
s
 p

e
r

n
o
d
e

Network size

pf = 0.0%
pf = 0.5%
pf = 1.0%

Figure 6. Total number of VIEW messages sent
per node to complete the protocol, on net-
works with variable size in the range [210, 218].

 10

 15

 20

 25

 30

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

N
u
m

b
e
r

o
f
c
y
c
le

s

Network size

pf = 0.0%
pf = 0.5%
pf = 1.0%

Figure 7. Number of cycles needed to com-
plete the protocol, on networks with variable
size in the range [210, 218].

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

T
o
ta

l
m

e
s
s
a
g
e
s
 p

e
r

n
o
d
e

Network size

pf = 0.0%
pf = 0.5%
pf = 1.0%

Figure 8. Total number of VIEW messages sent
per node to complete the protocol, on net-
works with variable size in the range [210, 218].

P2P systems.

Figure 3 shows the number of nodes that have obtained
the correct estimation of the rank after each cycle. In the ab-
sence of failures, the number of nodes knowing their correct
rank grows exponentially. In case of failures, the growth is
slightly slower, due to the impossibility to discover some of
the farthest fingers. In both cases, the number of cycles to
complete the rank estimation is reasonably low.

Figure 4 shows the total number of VIEW messages ex-
changed per node after each cycle. In the absence of fail-
ures, if a node p knows a finger whose distance is 2i, at
the next cycle it will discover a link whose distance is 2i+1

(if such finger exist). This quickly leads to completion of
the finger tables of all nodes, after which no VIEW messages
are sent. Failures, on the other hand, may slow down the
discovery process, as long-range fingers may not be present
due to unavailability of nodes.

To illustrate the scalability of our protocol, we have
tested it on networks with different sizes ranging between
210 and 218 nodes. Results are shown in Figures 5 and 6.
As before, three curves are shown, corresponding to a fail-
ure probability of 0%, 0.5% and 1% per cycle. Figure 5
shows the number of cycles needed to complete the proto-
col, i.e. for all nodes to know their exact rank. Such desir-
able output has always been reached in all our simulations,
independently of size and failure probability. As mentioned
earlier, in a static network the number of cycles grows log-
arithmically with respect to the size of the network. The
presence of failures slow down the algorithm, but only by a
small constant factor.

Figure 6 shows the total number of VIEW messages per
node. In this case, the growth is superlogarithmic with re-
spect to the size of the network. Yet, the number of mes-
sages involved (around 300 in a static network with to 218

nodes) is very small when compared to the size of the net-
work itself.

Experiment 1 Experiment 2 Experiment 3

error # nodes error # nodes error # nodes

0 4252 0 144 0 2620
1 12407 1 807 1 187354
2 167688 2 3137
3 3855 3 135296
4 1149 4 50918
5 921 207 1

13 1 428 1
1382 1 841 1

2652 1

Table 1. Three independent runs as illustra-
tive examples for the distribution of the error
over the nodes.

Figures 7 and 8 show the same scalability results, but
starting from a topology built by T-MAN, instead of a stati-
cally generated network. In a static network, convergence is
as quick as in the optimal case. The presence of failures, as
before, may slow down the convergence. In the larger net-
work, it is also possible that a perfect ranking is not reached.
However, we can observe that T-MAN provides a sufficiently
good sorting topology as the results are very close to that of
the perfect sorting. In fact, the sorting generated by T-MAN

is almost perfect, only very few nodes are misplaced. To
illustrate this, consider Table 1, where the detailed distri-
bution of the error (difference from correct rank) is shown
along with the number of nodes with the difference in ques-
tion. Three typical experiments are shown, with a network
size of 218 and failure probability of p = 1% per cycle. The
number of nodes do not sum up to 218 because of the large
number of nodes that have crashed in the meantime. We
can observe that there are very few outliers, and most of the
nodes are very accurately ranked, especially considering the
size of the network.

Figure 9 illustrates the same error distribution as a func-
tion of time. It depicts statistics of the error of ranking dur-
ing a single run of T-RANK. The network size was 218 with
a failure probability of p = 1%. The initial network was
obtained by the execution of T-MAN. We can see that the
average error is very low while the maximal error is rel-
tively hight. Fortunately, as illustrated by Table 1, the max-
imal value is represented by outliers that form an ignorable
minority.

4.2. Optimization

It is possible to reduce the number of messages that need
to be sent during the running of T-RANK. In this section
we present two ideas and illustrate them through simulation
experiments, based on the perfect sorting as input.

As a first possibility for optimization, we can reduce the
number of messages sent by changing function tosend(). If

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35

E
rr

o
r

Cycle

Max error
Avg error

Figure 9. The error of ranking during a single
run of T-RANK. Network size is 218 and failure
probability is p = 1%. The initial network is
obtained by the execution of T-MAN.

tosend(i) returns true only if i ∈ mask, with mask com-
puted as nextP∪nextS, the algorithm converges as quickly as
the original algorithm in the absence of failures, as shown
in Figure 10. The number of messages exchanged is much
smaller however as shown in the same figure.

Unfortunately, in the presence of failures, the conver-
gence is much slower, particularly with large networks. The
reason for this is that in the case of failures, if a node does
not receive a finger with distance 2i from a finger at distance
2i (because the latter is crashed), it cannot find a finger of
distance 2i+1. However, it can still receive long-range fin-
gers from other nodes whose distance is not exactly 2i, and
thus jump over the gap.

As a second idea of optimization, consider that we do
not need to send messages to all fingers. If we modify func-
tion tosend(i) to return i ∈ mask ∨ toss(r), where toss(r)
returns true with probality r, we obtain a lighter version of
the algorithm that sends messages to all nodes in mask, in
addition to some other nodes choosen at random. Figure 11
shows the behavior of the algorithm for various values of
r (where r = 1 corresponds to the tosend function that al-
ways returns true). As can be seen, for values of r as small
as 20%, the convergence does not suffer, while the number
of messages sent is greatly reduced.

5. Related Work

The several manifestations of the problem of sorting and
ranking in distributed systems have long been an important
area of research. Many, rather different definitions of the
problem exist that can be classified according to the na-
ture of the distribution of the data and the features of the
networking environment, but in all cases it is the data that
moves in the network, not the (overlay) network adapts to
the data, as in our case. Nevertheless, to focus on those solu-

 0

 20

 40

 60

 80

 100

 120

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

N
u
m

b
e
r

o
f
c
y
c
le

s

Network size

pf = 0.0%
pf = 0.5%
pf = 1.0%

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

T
o
ta

l
m

e
s
s
a
g
e
s
 p

e
r

n
o
d
e

Network size

pf = 0.0%
pf = 0.5%
pf = 1.0%

Figure 10. T-RANK with tosend(i) returning true only if i ∈ nextP ∪ nextS. Figures show the number of
cycles to reach perfect ranking, and the number of messages sent per node, respectively.

 12

 14

 16

 18

 20

 22

 24

 26

 0 0.005 0.01 0.015 0.02

N
u
m

b
e
r

o
f
c
y
c
le

s

Failure probability

r = 0.1%
r = 0.2%
r = 0.3%
r = 1.0%

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.005 0.01 0.015 0.02

T
o
ta

l
m

e
s
s
a
g
e
s
 p

e
r

n
o
d
e

Failure probability

r = 0.1%
r = 0.2%
r = 0.3%
r = 1.0%

Figure 11. T-RANK with tosend(i) returning true only if i ∈ nextP ∪ nextS or with probability r. Figures
show the number of cycles to reach perfect ranking, and the number of messages sent per node,
respectively, in a network of 218 nodes.

tions that were designed to operate in an unreliable environ-
ment, for example, Byzantine failure has been considered in
a fixed hypercube topology [10] and dynamically changing
values were tackled using the self-stabilization framework
of Dijkstra [11], over a spanning tree topology. In compar-
ison, our approach is probabilistic partly to deal with the
extreme failure scenarios we are targeting, and partly be-
cause the goal is not ranking per se, but to apply ranking
information for data aggregation, so absolute precision is
not crucial.

Ordered slicing protocols [12, 13] are used to select the
“best” k% nodes from a network. There is a clear relation
between the problems of slicing and ranking: ranking is a

possible implementation of slicing (although not the only
possible implementation). Slicing protocols are often less
rigorous, and cannot provide a precise ordering of nodes,
even in the absence of failures.

As mentioned previously, the idea of long term links (fin-
gers) added to a large diameter linear structure to facilitate
information propagation is extremely common. Two well
known examples are Chord and Pastry [9, 14]. The closest
structures to our proposal are SkipNet and GosSkip [15,16],
which is based on the idea of skip lists [17]. Our contribu-
tion however was not the invention of the structure itself but
to propose a way to (i) build it very quickly and efficiently
from scratch in order to use it in a dynamic setting and (ii) to

propose a protocol to utilize the structure to calculate ranks.

6. Conclusions

In this paper we have proposed T-RANK, a protocol for solv-
ing the ranking problem in large-scale, dynamic networks.
The protocol bootstraps a one dimensional lattice overlay
network representing the sorting of the nodes and assigns
the ranks based on propagating rank information in this
overlay network while simultaneously enhancing the over-
lay with long range links to facilitate the propagation pro-
cess.

It has been pointed out that the speed of rank calcula-
tion is logarithmic if a sorted list overlay is given. It is also
guaranteed to converge in the absence of failures. Most im-
portantly, apart from these simple theoretical observations,
we have presented extensive empirical evidence showing
that the protocol can be practically implemented based on
T-MAN, that provides the sorted list in approximately loga-
rithmic time, and that it is scalable and robust to node fail-
ures (churn).

As of applicability, reasonably cheap information on
ranking is potentially important in large scale dynamic dis-
tributed systems, where the shape of the distribution of
many attributes could be unknown and can be very far from
uniform. Ranking provides the basis to derive percentiles
of the distribution, that can be used for slicing. We can also
use ranking to help identify the distribution of a certain at-
tribute.

References

[1] Robbert van Renesse, “The importance of aggregation,” in

Future Directions in Distributed Computing, André Schiper,

Alex A. Shvartsman, Hakim Weatherspoon, and Ben Y.

Zhao, Eds. 2003, number 2584 in Lecture Notes in Computer

Science, pp. 87–92, Springer.

[2] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu,

“A modular paradigm for building self-organizing peer-to-

peer applications,” in Engineering Self-Organising Systems.

2004, vol. 2977 of Lecture Notes in Artificial Intelligence,

pp. 265–282, Springer.

[3] Indranil Gupta, Robbert van Renesse, and Kenneth P. Bir-

man, “Scalable fault-tolerant aggregation in large process

groups,” in Proceedings of the International Conference

on Dependable Systems and Networks (DSN’01), Göteborg,

Sweden, 2001.

[4] Robbert van Renesse, Kenneth P. Birman, and Werner Vo-

gels, “Astrolabe: A robust and scalable technology for dis-

tributed system monitoring, management, and data mining,”

ACM Trans. Comput. Syst., vol. 21, no. 2, pp. 164–206, 2003.

[5] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu,

“Gossip-based aggregation in large dynamic networks,”

ACM Trans. Comput. Syst., vol. 23, no. 1, pp. 219–252, Aug.

2005.

[6] Fetahi Wuhib, Mads Dam, Rolf Stadler, and Alexander

Clemm, “Robust monitoring of network-wide aggregates

through gossiping,” in Integrated Network Management.

2007, pp. 226–235, IEEE.

[7] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,

M. Venkatrao, F. Pellow, and H. Pirahesh, “Data cube: A

relational aggregation operator generalizing group-by, cross-

tab, and sub-totals,” Data Mining and Knowledge Discovery,

vol. 1, no. 1, pp. 29–53, 1997.

[8] Márk Jelasity and Ozalp Babaoglu, “T-Man: Gossip-

based overlay topology management,” in Engineering Self-

Organising Systems: Third International Workshop (ESOA

2005), Revised Selected Papers, Sven A. Brueckner, Gio-

vanna Di Marzo Serugendo, David Hales, and Franco Zam-

bonelli, Eds. 2006, vol. 3910 of Lecture Notes in Computer

Science, pp. 1–15, Springer-Verlag.

[9] Frank Dabek et al., “Building Peer-to-Peer Systems with

Chord, a Distributed Lookup Service,” in Proc. of the 8th

Workshop on Hot Topics in Operating Systems (HotOS),

Schloss Elmau, Germany, May 2001, IEEE Computer So-

ciety.

[10] Bruce M. McMillin and Lionel M. Ni, “Reliable dis-

tributed sorting through the application-oriented fault toler-

ance paradigm,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 3, no. 4, pp. 411–420, July 1992.

[11] Gianluigi Alari, Joffroy Beauquier, Joseph Chacko, Ajoy K.

Datta, and Sebastien Tixeuil, “Fault-tolerant distributed

sorting algorithm in tree networks,” in IEEE International

Performance, Computing and Communications Conference

(IPCCC 1998), 1998, pp. 37–43.

[12] Márk Jelasity and Anne-Marie Kermarrec, “Ordered slicing

of very large-scale overlay networks,” In Montresor et al.

[18], pp. 117–124.

[13] Antonio Fernández, Vincent Gramoli, Ernesto Jiménez,

Anne-Marie Kermarrec, and Michel Raynal, “Distributed

slicing in dynamic systems,” in ICDCS. 2007, p. 66, IEEE

Computer Society.

[14] Antony Rowstron and Peter Druschel, “Pastry: Scalable,

Decentralized Object Location and Routing for Large-Scale

Peer-to-Peer Systems,” in Proc. of the 18th Int. Conf. on Dis-

tributed Systems Platforms, Heidelberg, Germany, Novem-

ber 2001.

[15] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Mar-

vin Theimer, and Alec Wolman, “Skipnet: A scalable over-

lay network with practical locality properties,” in USENIX

Symposium on Internet Technologies and Systems, 2003.

[16] Rachid Guerraoui, Sidath B. Handurukande, Kevin

Huguenin, Anne-Marie Kermarrec, Fabrice Le Fessant, and

Etienne Riviere, “Gosskip, an efficient, fault-tolerant and

self organizing overlay using gossip-based construction and

skip-lists principles,” In Montresor et al. [18], pp. 12–22.

[17] W. Pugh, “Skip Lists: A Probabilistic Alternative to Bal-

anced Trees,” Communications of the ACM, vol. 33, no. 6,

pp. 668 – 676, 1990.

[18] Alberto Montresor, Adam Wierzbicki, and Nahid Shah-

mehri, Eds., Sixth IEEE International Conference on Peer-

to-Peer Computing (P2P 2006), 2-4 October 2006, Cam-

bridge, United Kingdom. IEEE Computer Society, 2006.

