
Research Article
Robust Fully Distributed Minibatch Gradient Descent
with Privacy Preservation

Gábor Danner , Árpád Berta , István Heged4s , and Márk Jelasity

University of Szeged, and MTA-SZTE Research Group on AI, Szeged, Hungary

Correspondence should be addressed to Márk Jelasity; jelasity@inf.u-szeged.hu

Received 3 November 2017; Revised 3 March 2018; Accepted 4 April 2018; Published 14 May 2018

Academic Editor: Po-Ching Lin

Copyright © 2018 Gábor Danner et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Privacy and security are among the highest priorities in data mining approaches over data collected from mobile devices. Fully
distributed machine learning is a promising direction in this context. However, it is a hard problem to design protocols that are
efficient yet provide sufficient levels of privacy and security. In fully distributed environments, secure multiparty computation
(MPC) is often applied to solve these problems. However, in our dynamic and unreliable application domain, known MPC
algorithms are not scalable or not robust enough. We propose a light-weight protocol to quickly and securely compute the sum
query over a subset of participants assuming a semihonest adversary. During the computation the participants learn no individual
values.We apply this protocol to efficiently calculate the sum of gradients as part of a fully distributedminibatch stochastic gradient
descent algorithm. The protocol achieves scalability and robustness by exploiting the fact that in this application domain a “quick
and dirty” sum computation is acceptable.We utilize the Paillier homomorphic cryptosystem as part of our solution combined with
extreme lossy gradient compression tomake the cost of the cryptographic algorithms affordable.We demonstrate both theoretically
and experimentally, based on churn statistics from a real smartphone trace, that the protocol is indeed practically viable.

1. Introduction

Data mining over personal data harvested from mobile
devices is a very sensitive problem due to the strong require-
ments of privacy preservation and security. Recently, the
federated learning approach was proposed to solve this
problembynot collecting the data in the first place but instead
processing the data in place and creating the final models in
the cloud based on the models created locally [1, 2].

We go one step further and propose a solution that does
not utilize centralized resources at all. The main motivation
for a fully distributed solution in our cloud-based era is to
preserve privacy by avoiding the central collection of any
personal data, even in preprocessed form. Another advantage
of distributed processing is that this way we can make full
use of all the local personal data, which is impossible in
cloud-based or private centralized data silos that store only
specific subsets of the data. The key issue here of course is
to offer decentralized algorithms that are competitive with
approaches like federated learning in terms of time and

communication complexity and that provide increased levels
of privacy and security.

Previously, we proposed numerous distributed machine
learning algorithms in a framework called gossip learning.
In this framework, models perform random walks over the
network and are trained using stochastic gradient descent [3]
(see Section 4). This involves an update step in which nodes
use their local data to improve each model they receive and
then forward the updated model along the next step of the
random walk. Assuming the random walk is secure, which
in itself is a research problem on its own, see, for example,
[4], it is hard for an adversary to obtain the two versions of
the model right before and right after the local update step at
any given node. This provides reasonable protection against
uncovering private data.

However, this method is susceptible to collusion. If the
nodes before and after an update in the random walk collude
they can recover private data. In this paper we address this
problem and improve gossip learning so that it can tolerate

Hindawi
Security and Communication Networks
Volume 2018, Article ID 6728020, 15 pages
https://doi.org/10.1155/2018/6728020

http://orcid.org/0000-0002-9983-1060
http://orcid.org/0000-0002-4005-2273
http://orcid.org/0000-0002-5356-2192
http://orcid.org/0000-0001-9363-1482
https://doi.org/10.1155/2018/6728020

2 Security and Communication Networks

a much higher proportion of honest but curious (or semihon-
est) adversaries. The key idea behind the approach is that in
each step of the random walk we form groups of peers that
securely compute the sum of their gradients, and the model
update step is performed using this aggregated gradient. In
machine learning this is called minibatch learning, which,
apart from increasing the resistance to collusion, is known
to often speed up the learning algorithm as well (see, e.g.,
[5]).

It might seem attractive to run a secure multiparty com-
putation (MPC) algorithm within the minibatch to compute
the sum of the gradients. The goal of MPC is to compute
a function of the private inputs of the parties in such a
way that, at the end of the computation, no party knows
anything except what can be determined from the result and
its own input [6]. Secure sum computation is an important
application of secure MPC [7].

However, we do not only require our algorithm to be
secure but also fast, light-weight, and robust, since the
participating nodes may go offline at any time [8] and they
might have limited resources. One key observation is that for
the minibatch algorithm we do not need a precise sum; in
fact, the sum over any group that is large enough to protect
privacy will do. At the same time, it is unlikely that all the
nodes will stay online until the end of the computation. We
propose a protocol that—using a binomial tree topology and
Paillier homomorphic encryption—can produce a “quick and
dirty” partial sum even in the event of failures, has adjustable
capability of resisting collusion, and can be completed in
logarithmic time.

We also put a great emphasis on demonstrating that
the proposed protocol is practically viable. This is a non-
trivial question because homomorphic cryptosystems can
quickly become very expensive when applied along with
large-enough key-sizes (such as 2048 bit keys), especially
considering that in machine learning the gradients can be
rather large. To achieve practical viability, we propose an
extreme lossy compression, where we discretize floating-
point gradient values to as few as two bits. We demonstrate
experimentally that this does not affect learning accuracy yet
allows for an affordable cryptography cost. Our simulations
are based on a real smartphone trace we collected [8].

2. Related Work

There are many approaches that have goals similar to ours,
that is, to perform computations over a large and highly
distributed database or network in a secure and privacy
preserving way. Our work touches upon several fields of
research includingmachine learning, distributed systems and
algorithms, secure multiparty computation, and privacy. Our
contribution lies in the intersection of these areas. Here we
focus only on related work that is directly relevant to our
present contributions.

Algorithms exist for completely generic secure compu-
tations, Saia and Zamani give a comprehensive overview
with a focus on scalability [9]. However, due to their focus
on generic computations, these approaches are relatively

complex and in the context of our application they still do not
scale well enough and do not tolerate dynamic membership
either.

Approaches targeted at specific problems are more
promising. Clifton et al. propose, among other things, an
algorithm to compute a sum [7]. This algorithm requires
linear time in the network size and it does not tolerate node
failure either. Bickson et al. focus on a class of computations
over graphs, where the computation is performed in an
iterative manner through a series of local updates [10]. They
introduce a secure algorithm to compute local sums over
neighboring nodes based on secret sharing. Unfortunately,
this model of computation does not cover our problem as
we want to compute minibatches of a size independent of the
size of the direct neighborhood, and the proposed approach
does not scale well in that sense. Besides, the robustness
of the method is not satisfactory either [11]. Han et al.
address stochastic gradient search explicitly [12]. However,
they assume that the parties involved have large portions
of the database, so their solution is not applicable in our
scenario.

Bonawitz et al. [13] address a similar problem setting
where the goal is to compute a secure sum in an efficient and
robust manner. They also assume a semihonest adversarial
model (with a limited set of potentially malicious behaviors
by a server). However, their solution requires a server and
an all-to-all broadcast primitive even in the most efficient
version of their protocol. Our solution requires a linear
number of messages only.

The algorithm of Ahmad and Khokhar is similar to
ours [14], as they also use a tree to aggregate values using
homomorphic encryption. However, in their solution all
the nodes have the same public key and the private key is
distributed over a subset of elite nodes using secret sharing.
The problem with this approach in our minibatch gradient
descent application is that for each minibatch a new key set
has to be generated for the group, which requires frequent
access to a trusted server; otherwise the method is highly
vulnerable in the key generation phase. In our solution, all
the nodes have their own public/private key pair and no keys
have to be shared at any point in time. Besides, these key pairs
may remain the same in every minibatch the given node par-
ticipates in without compromising our security guarantees.

We need to mention the area of differential privacy [15],
which is concerned with the problem that the (perhaps
securely computed) output itself might contain information
about individual records. The approach is that a carefully
designed noise term is added to the output. Gradient search
has been addressed in this framework (e.g., [16]). In our
distributed setup, this noise term can be computed in a
distributed and secure way [17].

We also strongly build on our previous work [18]. There,
we proposed an algorithm very similar to the one presented
here. In this study we offer several optimizations of the algo-
rithm and we propose the binomial topology for building the
minibatch overlay tree. We also explore the issue of gradient
compression necessary for keeping the cost of cryptography
under control andwe perform a thorough experimental study
of the algorithm based on a smartphone churn trace.

Security and Communication Networks 3

3. Model

Communication. We model our system as a very large set
of nodes that communicate via message passing. At every
point in time each node has a set of neighbors forming
a connected network. The neighbor set can change over
time, but nodes can send messages only to their current
neighbors. Nodes can leave the network or fail at any time.
We model leaving the network as a node failure. Messages
can be delayed up to a maximum delay. Messages cannot be
dropped, so communication fails only if the target node fails
before receiving the message.

The set of neighbors is either hard-wired, or given by
other physical constraints (e.g., proximity), or set by an over-
lay service. Such overlay services are widely available in the
literature and are out of the scope of our present discussion.
It is not strictly required that the set of neighbors are random;
however, we will assume this for the sake of simplicity. If the
set is not random, then implementing a random walk with
a uniform stationary distribution requires additional well-
proven techniques such as Metropolis-Hastings sampling or
structured routing [19].

Data Distribution. We assume a horizontal distribution,
which means that each node has full data records. We are
most interested in the extreme case when each node has only
a single record. The database that we wish to perform data
mining over is given by the union of the records stored by the
nodes.

We assume that the adversaries are honest but curious
(or semihonest). That is, nodes corrupted by an adversary
will follow the protocol but the adversary can see the internal
state of the node. The goal of the adversary is to learn about
the private data of other nodes (note that the adversary
can obviously see the private data on the node it observes
directly). Wiretapping is allowed, since all the sensitive
messages in our protocol are encrypted.

We also assume that adversaries are not able to manip-
ulate the set of neighbors. In each application domain this
assumption translates to different requirements. For example,
if an overlay service is used to maintain the neighbors then
this service has to be secure itself.

4. Background on Gossip Learning

Although not strictly required for understanding our key
contribution, it is important to briefly overview the basic
concepts of stochastic gradient descent search and our gossip
learning framework (GOLF) [3].

The basic problem of supervised binary classification can
be defined as follows. Let us assume thatwe are given a labeled
database in the form of pairs of feature vectors and their
correct classification, that is, 𝑧1 = (𝑥1, 𝑦1), . . . , 𝑧𝑛 = (𝑥𝑛, 𝑦𝑛),
where 𝑥𝑖 ∈ R𝑑, and 𝑦𝑖 ∈ {−1, 1}. The constant 𝑑 is the
dimension of the problem (the number of features). We are
looking for a model𝑓𝑤 : R𝑑 → {−1, 1} parameterized by a
vector 𝑤 that correctly classifies the available feature vectors

and that can also generalize well, that is, which can classify
unseen examples too.

Supervised learning can be thought of as an optimization
problem, where we want to minimize the empirical risk:

𝐸𝑛 (𝑤) = 1
𝑛

𝑛

∑
𝑖=1

𝑄 (𝑧𝑖, 𝑤) = 1
𝑛

𝑛

∑
𝑖=1

ℓ (𝑓𝑤 (𝑥𝑖) , 𝑦𝑖) , (1)

where function 𝑄(𝑧𝑖, 𝑤) = ℓ(𝑓𝑤(𝑥𝑖), 𝑦𝑖) is a loss function
capturing the prediction error on example 𝑧𝑖.

Training algorithms that iterate over available training
data or process a continuous stream of data records and
evolve a model by updating it for each individual data record
according to some update rule are called online learning
algorithms. Gossip learning relies on this type of learning
algorithms. Ma et al. provide a nice summary of online
learning for large scale data [21].

Stochastic gradient search [22, 23] is a generic algorithmic
family for implementing online learning methods. The basic
idea is that we iterate over the training examples in a
randomorder repeatedly, and for each training example 𝑧𝑡 we
calculate the gradient of the error function (which describes
classification error) andmodify themodel along this gradient
to reduce the error on this particular example according to
the following rule:

𝑤𝑡+1 = 𝑤𝑡 − 𝛾𝑡∇𝑤𝑄 (𝑧𝑡, 𝑤𝑡) , (2)

where 𝛾𝑡 is the learning rate at step 𝑡 that often decreases as 𝑡
increases.

A popular way to accelerate the convergence is the use of
minibatches, that is, to update the model with the gradient
of the sum of the loss functions of a few training examples
(instead of only one) in each iteration. This allows for fast
distributed implementations as well [24].

In gossip learning, models perform random walks on the
network and are trained on the local data using stochastic gra-
dient descent. Besides, several models can perform random
walks at the same time, and these models can be combined
time-to-time to accelerate convergence. Our approach here
will be based on this scheme, replacing the local update step
with a minibatch approach.

5. Our Solution

As explained previously, at each step, when a node receives a
model to update, it coordinates the distributed computation
of a minibatch gradient and then uses this gradient to
update the model. Based on the assumptions in Section 3
and building on the GOLF framework outlined in Section 4
we now present our algorithm for computing a minibatch
gradient.

5.1. Minibatch Tree Topology. The very first step for comput-
ing a minibatch gradient is to create a temporary group of
random nodes that form the minibatch. In our decentralized
environment we do this by building a rooted overlay tree.The
basic version of our algorithmwill require the overlay tree not

4 Security and Communication Networks

only to be rooted at the node computing the gradient but also
to be trunked.

Definition 1 (trunked tree). Any rooted tree is 1-trunked. For
𝑘 > 1, a rooted tree is 𝑘-trunked if the root has exactly one
child node, and the corresponding subtree is a (𝑘−1)-trunked
tree.

Let 𝑁 denote the intended size of the minibatch group.
We assume that 𝑁 is significantly less than the network size.
Let 𝑆 be a parameter that determines the desired security level
(𝑁 ≥ 𝑆 ≥ 2). We can now state that we require an 𝑆-trunked
tree rooted at the node that is being visited by gossip learning.
Aswewill see later, this is to prevent amalicious root to collect
too much information.

Apart from the trunk, the tree can be arbitrary; however,
we propose a binomial tree as a preferable choice. If every
node already in the tree spawns a new child node in periodic
rounds (starting from a single root node) then the result is a
binomial tree. It is not possible to construct a tree of a given
size faster, since in the case of a binomial tree each node
keeps working continuously so the efficiency is maximal. Of
course we assumed here that child nodes can be added only
sequentially at a given node. However, if we also assume that
all the nodes have the same up- and download bandwidth
cap then adding nodes in parallel will be proportionally
slower thus parallelism provides no advantage as long as we
utilize the maximal available bandwidth. The same up- and
download bandwidth requirement is naturally satisfied in
our application domain because we assume that the protocol
is allowed to use only a fixed, relatively small amount of
bandwidth (such as 1Mbps) and low bandwidth connections
are excluded from the set of possible overlay connections.

Another advantage of binomial trees is that we can use
the links in reverse order of construction for uploading
and aggregating data along the tree. This way, we get a
data aggregation schedule that is similarly efficient and also
collision-free in the sense that each node communicates with
at most one node at a given time.

The tree overlay network we have described so far can be
constructed over a random overlay network by first building
the trunk (which takes a randomwalk of 𝑆−1 steps) and then
recursively constructing a binomial tree of depth𝐷, resulting
in an 𝑆-trunked tree of size 2𝐷+𝑆−1 and total depth𝑑 = 𝐷+𝑆−
1. Every child node is chosen randomly from those neighbors
of the node that are both online and not in the tree already.No
attention needs to be paid to reliability. We generate the tree
quickly and use it only once quickly. Normally, some subtrees
will be lost in the process because of churn but our algorithm
is designed to tolerate this. The effect of certain parameters,
such as the binomial tree parameter and node failures, will be
discussed later in the evaluation.

5.2. Calculating the Gradient. The sum we want to calculate
is over vectors of real numbers. Without loss of generality, we
discuss the one-dimensional case from now on for simplicity.
Homomorphic encryption works over integers, to be precise,
over the set of residue classes Z𝑛 for some large 𝑛. For this
reason we need to discretize the real interval that includes all

possible sums we might calculate, and we need to map the
resulting discrete intervals to residue classes in Z𝑀 where 𝑀
defines the granularity of the resolution of the discretization.
This mapping is natural, we do not go into details here.
Since the gradient of the loss function for most learning
algorithms is bounded, this is not a practical limitation. Also,
in Section 7we evaluate the effect of discretization on learning
performance and we show that even an extreme compression
(discretizing the gradient down to two bits) is tolerable due to
the high robustness of the minibatch gradient method itself.

In a nutshell, the basic idea of the algorithm is to divide
the local value at each node into 𝑆 shares, encrypt these with
asymmetric additively homomorphic encryption (such as the
Paillier cryptosystem), and send them to the root via the chain
of ancestors. Although the shares travel together, they are
encrypted with the public keys of different ancestors. Along
the route, the arrays of shares are aggregated and periodically
reencrypted. Finally, the root calculates the sum.

The algorithm consists of three procedures, shown in
Algorithm 1. These are run locally on the individual nodes.
Procedure Init is called once after the node becomes part
of the tree. Here, the function call Ancestor(𝑖) returns the
descriptor of the 𝑖th ancestor on the path towards the root.
The descriptor contains the necessary public keys as well.
During tree building this information can be given to each
node so the nodes can look up the keys of their ancestors
locally. For the purposes of the Ancestor function, the par-
ent of the root is defined to be itself. Function Encrypt(𝑥, 𝑦)
encrypts the integer 𝑥 with the public key of node 𝑦 using an
asymmetric additively homomorphic cryptosystem.

Procedure OnMessageReceived is called whenever a
message is received by the node. A message contains an array
of dimension 𝑆 that contains shares encoded for the 𝑆 closest
ancestors to the sender child. The first element (msg[1]) is
thus encrypted for the current node, so it can decrypt it.
The rest of the shares are shifted down by one position and
added (with homomorphic encryption) to the local array of
shares to be sent (operation 𝑎⊕𝑏 performs the homomorphic
addition of the two encrypted integers 𝑎 and 𝑏 to get the
encrypted form of the sum of these integers). Note that the
𝑖th element (1 ≤ 𝑖 ≤ 𝑆 − 1) of the array shares is encrypted
with the public key of the 𝑖th ancestor of the current node
and is used to aggregate a share of the sum of the subtree
except the local value of the current node. The 𝑆th share is
aggregated in variable knownShare unencrypted.The value
of share[𝑆] is notmodified in thismethod; it will be initialized
using knownShare after all the child nodes that are alive
have responded.

After all the shares have been processed, procedure
OnNoMoreMessagesExpected is called. This happens
when the node has received a message from all of its
children, or when the remaining children are considered
to be dead by a failure detector. The timeout used here
has to take into account the depth of the given subtree
and the maximal delay of a message. In the case of leaf
nodes, this procedure is called right after Init. When calling
OnNoMoreMessagesExpected, we know that the 𝑖th ele-
ment (1 ≤ 𝑖 ≤ 𝑆 − 1) of the array shares already contains
the 𝑖th share of the sum of the subtree rooted at the current

Security and Communication Networks 5

procedure Init
shares ← new array[1 ⋅ ⋅ ⋅ 𝑆]
for 𝑖 ← 1 to 𝑆 do

shares[𝑖] ← Encrypt(0, Ancestor(𝑖))
end for
knownShare ← 0

end procedure
ProcedureOnMessageReceived(msg)

for 𝑖 ← 1 to 𝑆 − 1 do
shares[𝑖] ← shares[𝑖] ⊕ msg[𝑖 + 1]

end for
knownShare ← knownShare + Decrypt(msg[1])

end procedure
procedureOnNoMoreMessagesExpected

if IAmTheRoot() then
for 𝑖 ← 1 to 𝑆 − 1 do

knownShare ← knownShare + Decrypt(shares[𝑖])
end for
Publish((knownShare + localValue) mod𝑀)

else
randSum ← 0
for 𝑖 ← 1 to 𝑆 − 1 do

rand ← Random(𝑀)
randSum ← randSum + rand
shares[𝑖] ← shares[𝑖] ⊕ Encrypt(rand, Ancestor(𝑖))

end for
knownShare ← knownShare + localValue − randSum
shares[𝑆] ← Encrypt(knownShare mod𝑀, Ancestor(𝑆))
SendToParent(shares)

end if
end procedure

Algorithm 1

node (except the local value of the current) encrypted with
the public key of the 𝑖th ancestor of the current node.We also
know that knownShare contains the 𝑆th share of the same
sum unencrypted.

Now, if the current node is the root then the elements of
the received array are decrypted and summed. The root can
decrypt all the elements because it is the parent of itself, so
all the elements are encrypted for the root when the message
reaches it. Here, Decrypt(𝑥) decrypts 𝑥 using the private
key of the current node. Function Publish(𝑥) announces 𝑥,
the output of the algorithm, that is, the final unencrypted
sum.

If the current node is not the root then the local value
has to be added, and the 𝑆th element of the array has to be
filled. First, the local value is split into 𝑆 shares according to
the 𝑆-out-of-𝑆 secret-sharing scheme discussed in [20]: 𝑆 − 1
out of the 𝑆 shares are uniformly distributed random integers
between 0 and 𝑀 − 1. The last share is the difference between
the local value and the sumof the randomnumbers (mod𝑀).
This way, the sum of shares equals the local value (mod𝑀).
Also, the sum of any nonempty proper subset of these shares
is uniformly distributed; therefore nothing can be learned
about the local valuewithout knowing all the shares. Function
Random(𝑥) returns a uniformly distributed random integer
in the range [0, 𝑥 − 1].

The shares calculated this way are then encrypted and
added to the corresponding shares, and finally the remaining
𝑆th share is encrypted with the public key of the 𝑆th ancestor
and put into the end of the array. This array—that now
contains the 𝑆 shares of the sum of the full subtree including
the current node—is sent to the parent.

5.3.Working withVectors. Wenowdescribe how to efficiently
extend our method to vectors of discrete numbers, by
packaging multiple elements into a single block of encrypted
data. Let us first calculate the number of bits that are required
to represent one vector element. Assume that the elements of
the input vectors are in the range [0, 𝑚]. This means that the
elements of the output vector fall in range [0, 𝑁𝑚], where𝑁 is
theminibatch (tree) size.That is,𝑀 = 𝑁𝑚+1. After applying
the secret-sharing scheme on an input vector, the elements of
the resulting shares also fall in the range [0, 𝑁𝑚] due to the
𝑆-out-of-𝑆 secret-sharing scheme we apply.

However, when working with homomorphic cryptog-
raphy, we keep adding encrypted shares together without
performing the modulo operation that is required for the
correct decoding in our 𝑆-out-of-𝑆 secret-sharing scheme and
for keeping the values in the range [0, 𝑁𝑚]. Thus, we need a
larger range to accommodate the sum of at most 𝑁 shares

6 Security and Communication Networks

giving us the range of [0, 𝑁2𝑚]. This means that ⌈log
2
(1 +

𝑁2𝑚)⌉ bits are required per element.
Using this many bits, we can simply concatenate the

elements of a share together to form a single bit vector
before encryption. Homomorphic addition will result in
the corresponding elements being added together. After
decryption, the vector can be restored by splitting the bit
vector, and element-wise modulo can be performed. This
method can be trivially extended to arrays of blocks of a
desired size, by packaging the elements into multiple blocks.

5.4. Practical Considerations and Optimizations. We stress
again that if during the algorithm a child node never responds
then its subtree will be essentially missing (will have a sum
of zero) but other than that the algorithm will terminate
normally. This is acceptable in our application, because for
a minibatch we simply need the sum of any number of gra-
dients, this will not threaten the convergence of the gradient
descent algorithm.

The pseudocode discussed above describes a simple and
basic version of our algorithm that allows for optimizations
to speed up execution. Execution time is important because
a shorter execution time allows less time for nodes to fail; in
addition, the machine learning algorithm will execute faster
as well. A simple optimization is, for example, if, as part of
their initialization, all the nodes instantly start encrypting the
𝑆 − 1 shares of their local data with the public keys of its 𝑆 − 1
closest ancestors.

Another optimization is the parallelization of encryption
and sending. Note that encrypting data typically takes much
longer than sending it; we will evaluate this in more detail
later on. Here, when calculating the message to send to the
parent, the node immediately sends the first encoded share
to the parent (i.e., the share that the parent can decrypt) so
that the parent can start working on the decryption.The node
then sends all the remaining shares except the 𝑆th share, while
calculating its own encryption of the 𝑆th share. Finally, when
the encryption is ready, the node sends the 𝑆th share as well.

Also, consider that, due to the binomial tree structure, all
the leaves are created at about the same time, so they will start
to send their message to the parent at about the same time
resulting in a more or less round-based aggregation protocol.
This makes the time complexity of one such aggregation
round in which the aggregation moves up one level (starting
from the leaves) 𝐸 + 𝑇 + 𝐿, where 𝐸 is the encryp-
tion/decryption time of a share, 𝑇 is the transmission time of
an encrypted share, and 𝐿 is the network latency (assuming
𝐸 + 𝑇 > 𝑆𝑇 and that the cost of homomorphic addition is
negligible).Note that the actual algorithmdoes not rely on the
existence of synchronized aggregation rounds; in fact, in real-
istic environments these rounds often overlap if, for example,
a node finishes sooner due to losing its children. The rounds
are merely an emergent property in reliable environments, a
side-effect of using binomial trees as our tree topology.

Another possibility for optimization is based on the
observation that shares that would be encrypted with the
public keys of the ancestors of the root do not need to be

encrypted at all, therefore the root in fact performs only a
single decryption.

5.5. Variants. Apart from optimizations, one can consider
slightly modified versions of the algorithm that can be useful
for trading off security and robustness or that allow for a
minimal involvement of a central server.

The first variation—that we will actually utilize during
our evaluation in Section 8—is setting a lower bound on
the size of the subtree that we accept. Indeed, we have to be
careful when publishing a sum based on too few participants.
Let us denote by 𝑅 the minimal required number of actual
participants (𝑆 ≤ 𝑅 ≤ 𝑁). Let the nodes pad their messages
with an (unencrypted) integer 𝑛 indicating the number of
nodes its data is based on. When the node exactly 𝑆 − 1 steps
away from the root (thus in the trunk) is about to send its
message, it checks whether 𝑛 + 𝑆 − 1 ≥ 𝑅 holds (since the
remaining nodes towards the root have no children except
the one on this path). If not, it sends a failuremessage instead.
The nodes fewer than 𝑆 − 1 steps away from the root transmit
a failure message if they receive one, or if they fail to receive
any messages.This way, no nodes can decode the sum of a set
that is not large enough.

On a different issue, one can ask the question whether
the trunk is needed, as the protocol can be executed on any
tree unmodified. However, having no trunkmakes it easier to
steal information about subtrees close to the root. If the tree
is well-balanced and the probability of failure is small, these
subtrees can be large enough for the stolen partial sums to not
pose a practical privacy problem in certain applications. The
advantages include a simpler topology, a faster running time,
and increased robustness.

Another option is to replace the top 𝑆 − 1 nodes with a
central server. To bemore precise, we can have a server simu-
late the top 𝑆−1 nodes with the local values of these nodes set
to zero.This server acts as the root of a 2-trunked tree. From a
security point of view, if the server is corrupted by a semihon-
est adversary, we have the same situation when the top 𝑆 − 1
nodes are corrupted by the same adversary. Aswe have shown
in Section 6.1, one needs to corrupt at least 𝑆 nodes in a chain
to gain any extra advantage, so on its own the server is not able
to obtain extra information other than the global sum. Also,
the server does not need more computational capacity or
bandwidth than the other nodes. This variation can be com-
bined with the size propagation technique described above.
Here, the child of the server can check whether 𝑛 ≥ 𝑅 holds.

6. Analysis

We first consider the level of security that our solution
provides, and we also characterize the complexity of the
algorithm.

6.1. Security. To steal information, that is, to learn the sum
over a subtree, the adversary needs to catch and decrypt all
the 𝑆 shares of the corresponding message that was sent by
the root of the subtree in question. Recall that if the adversary
decrypts less than 𝑆 shares from any message, it still has only

Security and Communication Networks 7

a uniform random value due to our construction. To be more
precise, to completely decrypt a message sent to node 𝑐1, the
adversary needs to corrupt 𝑐1 and all its 𝑆−1 closest ancestors,
denoted by 𝑐2, . . . , 𝑐𝑆, so he can obtain the necessary private
keys.

The only situation when the shares of a message are
not encrypted with the public keys of 𝑆 different nodes—
and hence when less than 𝑆 nodes are sufficient to be
corrupted—is when the distance of the sender from the
root is less than 𝑆. In this case, the sender node is located in
the trunk of the tree. However, decrypting such a message
does not yield any more information than what can be
calculated from the (public) result of the protocol and the
local values (gradients) of the nodes needed to be corrupted
for the decryption. This is because in the trunk the sender
of the message in question is surely the only child of the first
corrupted node, and the message represents the sum of the
local values of all the nodes, except for the ones needed to be
corrupted. To put it in a different way, corrupting less than
𝑆 nodes never gives more leverage than learning the private
data of the corrupted nodes only.

Therefore, the only way to steal extra information (other
than the local values of the corrupted nodes) is to form a
continuous chain of corrupted nodes 𝑐1, . . . , 𝑐𝑆 towards the
root, where 𝑐𝑖+1 is the parent of 𝑐𝑖. This makes it possible to
steal the partial sums of the subtrees rooted at the children of
𝑐1. For this reason we now focus only on the𝑁 − 𝑆 vulnerable
subtrees not rooted in the trunk.

As a consequence, a threshold adversary cannot steal
information if he corrupts at most 𝑆−1 nodes. A probabilistic
adversary that corrupts each node with probability 𝑝 can
steal the exact partial sum of a given subtree whose root is
not corrupted with probability 𝑝𝑆.

Even if the sum of a given subtree is not stolen, some
information can be learned about it by stealing the sums
of other subtrees. However, this information is limited, as
demonstrated by the following theorem.

Theorem 2. The private value of a node that is not corrupted
cannot be exactly determined by the adversary as long as at
least one of the 𝑆 closest ancestors of the node is not corrupted.

Proof. Let us denote by 𝑡 the target node and by 𝑢 the closest
ancestor of 𝑡 that is not corrupted. The message sent by 𝑡
cannot be decrypted by the adversary, because one of its
shares is encrypted to 𝑢 (because 𝑢 is one of the 𝑆 closest
ancestors of 𝑡).The same holds for all the nodes between 𝑡 and
𝑢. Therefore the smallest subtree that contains 𝑡 and whose
sum can be stolen also contains 𝑢. Due to the nested nature
of subtrees, bigger subtrees that contains 𝑡 also contains 𝑢 as
well. Also, any subtree that contains𝑢 also contains 𝑡 (since 𝑡 is
the descendant of 𝑢). Therefore 𝑢 and 𝑡 cannot be separated.
Even if every other node is corrupted in the subtree whose
sum is stolen, only the sum of the private values of 𝑢 and 𝑡
can be determined.

Therefore 𝑝𝑆 is also an upper bound on the probability
of stealing the exact private value of a given node that is not
corrupted.

6.2. Complexity. In a tree with a maximal branching factor
of 𝐵 each node sends only one message and receives at most
𝐵. The length of a message (which is an array of 𝑆 encrypted
integers) is O(𝑆𝐶), where 𝐶 is the length of the encrypted
form of an integer. Let us now elaborate on 𝐶. First, as stated
before, the sum is represented on O(log𝑀) bits, where 𝑀
is a design choice defining the precision of the fixed point
representation of the real values. Let us assume for now that
we use the Paillier cryptosystem [25]. In this case, we need
to set the parameters of our cryptosystem in such a way
that the largest number it can represent is no less than 𝑛 =
min(𝐵𝑆𝑀, 𝑁𝑀), which is the upper bound of any share being
computed by the algorithm (assuming 𝐵 ≥ 2). In the Paillier
cryptosystem the ciphertext for this parameter setting has an
upper bound of O(𝑛2) for a single share. Since

𝑆 log 𝑛2 = 𝑆 logmin (𝐵𝑆𝑀, 𝑁𝑀)
2

≤ 2 (𝑆2 log𝐵 + 𝑆 log𝑀) ,
(3)

the number of bits required is O(𝑆2 log𝐵 + 𝑆 log𝑀).
The computational complexity isO(𝐵𝑆𝐸) per node, where

𝐸 is the cost of encryption, decryption, or homomorphic
addition. All these three operations boil down to one or
two exponentiations in modular arithmetic in the Paillier
cryptosystem. Note that this is independent of 𝑁.

The time complexity of the protocol is proportional to the
depth of the tree. If the tree is balanced, this results in 𝑆 +
O(log𝑁) steps altogether.

7. Compressing the Gradient

As mentioned in Section 5.2, it is essential that we compress
the gradient because in a realistic machine learning problem
there are at least a few hundred parameters, often a lot more.
Encoding and decoding this many floating-point numbers
with full precision can be prohibitively expensive for our
protocol, especially on a mobile device. For this reason,
we evaluated the effect of gradient compression on the
performance of gradient descent learning. Similar techniques
have been used before in a slightly different context [1].

Let us first introduce the exact algorithms and learning
tasks we used for this evaluation. As for the learning tasks,
we used two data sets. The first is the Spambase binary
classification data set from the UCI repository [26], which
consists of 4601 recordswith 57 features. Each of these records
belongs to an email that was classified either as spam or as
a regular email. The features that represent a piece of email
are based on, for example, word and character frequencies or
the length of capital letter sequences within the email. 39.4%
of the records are positive examples. 10% of the records were
reserved for testing. Each node had one record resulting in a
network size of 4140; the remaining part of the dataset (461
records) was used for testing. The second dataset we used
was based on Reuters articles (http://download.joachims.org/
svm light/examples/example1.tar.gz) It contains 1000 posi-
tive and 1000 negative examples, with 600 additional exam-
ples used for testing. The examples have 9947 features. The
dataset contains Reuters articles and the task is to decide

http://download.joachims.org/svm_light/examples/example1.tar.gz
http://download.joachims.org/svm_light/examples/example1.tar.gz

8 Security and Communication Networks

whether a given document is about “corporate acquisitions”
or not. The documents are represented by word stam feature
vectors, where each feature corresponds to the occurrence of
a word. Hence, the representation is very high-dimensional
and sparse (i.e., each vector contains mostly zeros).

We tested two machine learning algorithms. The first is
logistic regression [27]. We used the L2-regularized logistic
regression online update rule:

𝑤 ←󳨀 𝑡
𝑡 + 1

𝑤 +
𝜂

(𝑡 + 1)
(𝑝 − 𝑦) 𝑥, (4)

where 𝑤 is the weight vector of the model, 𝑡 is the number
of samples seen by the model (not including the new one), 𝑥
is the feature vector of the training example, 𝑦 is the correct
label (1 or 0), 𝑝 is the prediction of the model (probability
of the label being 1), and 𝜂 is the learning parameter. We
generalize this rule to minibatches of size 𝐸 as follows:

𝑤 ←󳨀 𝑡
𝑡 + 𝐸

𝑤 +
𝜂

𝑡 + 𝐸

𝐸

∑
𝑖=1

(𝑝𝑖 − 𝑦𝑖) 𝑥𝑖, (5)

where (𝑝𝑖−𝑦𝑖)𝑥𝑖 is supposed to be calculated by the individual
nodes and summed using Algorithm 1. After the update, 𝑡
is increased by 𝐸 instead of 1. 𝜂 was set to 105. The second
algorithm was linear SVM [28]. The setup is very similar to
that of logistic regression; only the batch update rule we used
is

𝑤 ←󳨀 𝑡
𝑡 + 𝐸

𝑤 +
𝜂

𝑡 + 𝐸

𝐸

∑
𝑖=1

[𝑦𝑖𝑤
𝑇𝑥𝑖 < 1] 𝑦𝑖𝑥𝑖, (6)

where [⋅] is the Iverson bracket notation (1 if its parameter
is true, otherwise 0). Here 𝑦 is the correct label as before,
however, now 𝑦 ∈ {−1, +1}.

The compression method we used was the following. All
the individual gradients within theminibatchwere computed
using a 32-bit floating-point representation. These gradients
were then quantized bymapping each attribute to one of only
three possible values: 1, 0, and −1.This mapping was achieved
by stochastic quantization.The quantized value requires only
2 bits to encode, a dramatic compression compared to the
original floating-point representation of 32 bits. In fact, since
we have only three levels, theoretically only a trit is needed
for the encoding. We exploit this fact when summing the
gradients: the upper bound of the sum of trits (represented
on two bits) is lower than the sum of two-bit values. These
compressed gradients were then used in (5) and (6) where no
further compression is applied.

We ran experiments with all the four possible combina-
tions of learning algorithms and datasets, using four different
batch sizes: 𝐸 = 1, 10, 50, and 100. The results are shown
in Figure 1. The figure shows how the classification accuracy
evolves as a function of the number of training examples seen.
Accuracy is the proportion of correctly classified instances,
that is, the sumof the number of the true positive and the true
negative test examples divided by the size of the test set. The
databases are well-balanced with respect to the class labels,
making this metric adequate. The compressed versions are

indicated by the “C-” prefix. It is clear that in these experi-
ments there is virtually no difference between the compressed
and original versions. This result is quite striking and is
probably explained by the fact that minibatch gradients still
contain a lot of noise compared to the full gradient even if
they are computed exactly.

In the following, we assume that gradient attributes can
be safely encoded in two bits only.

8. Experimental Evaluation

In this section, our goal is to demonstrate that the decen-
tralized secure minibatch gradient search we proposed is
practically viable; that is, the running time in a real system
with realistic parameters is acceptable and that the learning
algorithm offers good performance under realistic failure
conditions.

Recall that the solution we proposed consists of three
components. The first is the overlay tree building algorithm,
which defines the minibatches. The second is the secure sum
computation algorithm, which assumes that an overlay tree
is given.The third is the applied machine learning algorithm.
These three components are modular; different solutions for
any of these components can be combined.

We exploit this modularity in our experimental evalua-
tion. First, for each scenario we determine the time that is
needed to encrypt and decrypt the messages defined by our
secure sum protocol based on the Paillier cryptosystem. We
then plug these values into a simulation of the tree building
and aggregation protocols under realistic network and failure
conditions. The end result of this simulation is a series of
minibatch sizes that are defined by the effective tree sizes
we observe, along with a time-stamp for each minibatch that
depends on the simulated duration of the secure minibatch
gradient computation. Finally, we use these series of mini-
batch sizes as well as their timing to assess the performance
of the machine learning algorithm in our system.This is pos-
sible, because the only important factor for machine learning
is the effective size of the tree in each step. We assume that
each tree defines a uniform random subset, which is a good
approximation if the underlying overlay network is random.

To model the network required for simulating the tree
building protocol, we used a real trace of smartphone user
behavior [8]. The rest of the parameters defining the com-
putational cost and network utilization were set based on
realistic examples. We used PeerSim [29] for our simulations.
Let us first describe our smartphone trace.

8.1. Trace Properties. The trace we used was collected by
an openly available smartphone app called STUNner, as
described previously [8]. In a nutshell, the app monitors
and collects information about charging status, battery level,
bandwidth, and NAT type.

Wehave traces of varying lengths harvested from 1,191 dif-
ferent users. We divided these traces into one-day segments,
resulting in 41,849 segments altogether.With the help of these
segments, we are able to simulate a virtual period of up to
one day by assigning a different, randomly selected segment

Security and Communication Networks 9

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

1 10 100 1000 10000
used training examples

LogReg on Reuters data set

1 10 100 1000 10000
used training examples

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

1 10 100 1000 10000010000
used training examples

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

1 10 100 1000 10000010000
used training examples

SVM on Reuters data set

LogReg on Spambase data set SVM on Spambase data set

SGD
C-SGD
BGD (E = 10)
C-BGD (E = 10)

BGD (E = 50)
C-BGD (E = 50)
BGD (E = 100)
C-BGD (E = 100)

SGD
C-SGD
BGD (E = 10)
C-BGD (E = 10)

BGD (E = 50)
C-BGD (E = 50)
BGD (E = 100)
C-BGD (E = 100)

SGD
C-SGD
BGD (E = 10)
C-BGD (E = 10)

BGD (E = 50)
C-BGD (E = 50)
BGD (E = 100)
C-BGD (E = 100)

SGD
C-SGD
BGD (E = 10)
C-BGD (E = 10)

BGD (E = 50)
C-BGD (E = 50)
BGD (E = 100)
C-BGD (E = 100)

Figure 1: Classification accuracy of the compressed gradient update on the data sets with various batch sizes.

to each simulated node.The sampling of one-day segments is
done without replacement. When the pool of segments runs
out (which happens when we needmore nodes than there are
segments), we reinitialize the pool with the original 41,849
segments and continue the sampling without replacement.
This way, we can simulate networks larger than 41,849 nodes.
For example, as we will see, here we will simulate a network
of size 100,000 for a one-day period.

Note that, due to this sampling method, users are repre-
sented with a probability proportional to the number of days
theywere online.This ismotivated by the observation that the
protocol at any given point in time can operate onlywith users
that are actually online; hence those types of users that spend
more time online are indeed encountered proportionally to
their online-time.

Figure 2 shows statistics about smartphone availability.
For each hour, we calculated the probability that a node that
has been online for at least 10 seconds remains online for 1,
5, or 10 more minutes. Note that for us these probabilities
are important because the overlay tree that we build for each
minibatch has to remain connected at least for the short
amount of time that it takes to propagate the gradient updates

0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

pr
op

or
tio

n
of

 o
nl

in
e n

od
es

0 5 10 15 20
hour-of-day

online for at least 1 more minute
online for at least 5 more minutes
online for at least 10 more minutes

Figure 2: Expected availability of smartphones that have been
online for at least 10 seconds. Hour-of-day is in UTC.

to the root. As the figure illustrates, these probabilities are
rather high even for a 10-minute extra time. In Section 8.3
we evaluate tree building experimentally in many scenarios

10 Security and Communication Networks

and show that, indeed, most of the overlay trees survive the
short period during which they are used.

Although our sample contains users from all over the
world, they are mostly from Europe, and some are from the
USA. The indicated time is GMT; thus we did not convert
times to local times.

Users with a bandwidth of less than 1Mbps were treated
as offline. This choice is motivated by two factors. First, the
Internet bandwidth available to users has surpassed 1Mbps
inmany developed countries, even for upload [30]. Indeed, in
our trace the probability of encountering a connection with a
bandwidth of lower than 1Mbps is only 3.86%.Thus, exclud-
ing such devices will cause only minimal loss of data but in
return slow devices will not slow the entire network down.
Second, utilizing a device with such a low bandwidth would
place too much of a burden on the device and user-friendly
applications might want to avoid this. Applications based
on our algorithm will mostly run in the background while
collecting data and communicating with other devices. To
ensure that an application of this kind is user-friendly, all the
background processing needs to be transparent to the user.

Due to this consideration, in our experiments we will
use 1Mbps not only as a lower bound, but also as an upper
bound. That is, the algorithm is allowed to utilize at most
1Mbps of the available bandwidth, irrespective of the total
available bandwidth, in order to avoid overloading the device.
Obviously, utilizing all the available bandwidth would result
in a more favorable convergence speed.

Note that we can simulate the case where a participating
phone is required to have at least a certain battery level. From
the point of view of churn, though, the worst case is when
any battery levels are allowed to join, because this results in
a more dynamic scenario. However, the first 10 seconds of
each online session (or the entire session if it is shorter) is
considered offline because extremely short online sessions
would introduce unreliability. This technique can also be
explicitly implemented as part of our protocol: a node should
simply wait 10 seconds before joining the network.

8.2. Time Consumption. As mentioned above, we first
describe the time consumption of the most important opera-
tions in our protocol. In order to do that, we carefully have to
consider the size of each message that is transmitted and the
time needed for encrypting and decrypting these messages.
We performed these calculations in a number of scenarios
with different parameters that represent interesting use cases.

The different scenarios as well as the corresponding
message sizes and the amount of time needed to complete
a number of different tasks are shown in Table 1. In the
followingwe explain these scenarios and the computed values
within these scenarios in detail.

For all the trees that we would like to build we fix 𝑆 = 4, as
indicated in the first column. This is our security parameter,
introduced in Section 5.1.The value of 𝑆 = 4 represents a good
tradeoff between efficiency and the offered level of security.
The binomial tree parameter 𝐷 (the number of rounds used
to build the tree) was set to 4 or 6, giving us themaximum tree
sizes of 19 and 67, computed by the formula 𝑁 = 2𝐷 + 𝑆 − 1,

which was explained in detail in Section 5.1. The motivation
for these settings is that our preliminary experiments with
our machine learning application indicated that increasing
the minibatch size beyond 67 is not beneficial. The lower
value of 19 is motivated by the fact that smaller trees do not
offer a sufficient level of privacy, since the sum is computed
based on too few nodes. Also, in a very small tree, the trunk
represents a considerable proportion of the tree which limits
the possibilities for parallelization; hence the efficiency is not
ideal.

The number of features in the learning problem was
modeled to be 100 or 10,000. This setting accommodates
the number of features in our datasets that are 57 for the
Spambase dataset and 9947 for the Reuters dataset (see
Section 7). Note that we rounded the number up to the closest
power of 10 so that we have a 100 times scaling factor, which
makes comparison more intuitive.

Based on the tree size 𝑁 and the quantization parameter
𝑚we can compute the number of bits (𝑏) needed to represent
a share of one element of the secret-shared gradient vector.
As explained in Section 5.3 in detail, the formula is given by
𝑏 = ⌈log

2
(1 + 𝑁2𝑚)⌉. We used 𝑚 = 2 based on our results

on compressing the gradient vector in Section 7. The next
column shows the key size (or block size) 𝑛, a parameter
for the Paillier cryptosystem that defines the level of secu-
rity. We examine the common values 1024 and 2048. Note
that 2048 is currently recommended for sufficient security
(https://www.keylength.com/).

Based on the parameters we already defined, we can now
compute the number of blocks to be encoded per gradient
share: ⌈𝑓𝑏/𝑛⌉. Finally, let us compute the message size to
be sent by a node in the tree to its parent. According to
the protocol, this message is composed of the 𝑆 encrypted
shares of the compressed gradient. The size of the message
is 𝑆2𝑛⌈𝑓𝑏/𝑛⌉ bits. This is due to the fact that the size of an
encrypted block is 2𝑛, and we need ⌈𝑓𝑏/𝑛⌉ blocks per share.

We have now computed almost all the values necessary
to determine the time consumption of some important
operations of the protocol. The last bit of information
required for that is the time consumption of encoding a
single block. The Paillier encryption and decryption time of
a block is experimentally measured using an unoptimized
Java implementation based on BigIntegers on a real Android
device (Samsung SM-T280). This can be considered a worst
case scenario because the implementation we used has a lot
of room for optimization and the device itself is not an up-to-
date model. Both the encryption and decryption take 0.041 s
with a 1024-bit key and 0.300 s with a 2048-bit key.

Sending the model in plaintext from the parent to the
child is required when building the tree. We assume single
precision floating-point arithmetic (32 bits) so the sizes of
the linear models are 3,200 bits and 320,000 bits for 100 and
10,000 features, respectively. The actual sending time is given
by the 1Mbps bandwidth we allow between online nodes
and assuming a 100ms latency. After receiving the model in
plaintext the node instantly starts encrypting 𝑆 − 1 shares as
discussed in Section 5.4.This takes 𝑆 − 1 times the encryption
time of all the required blocks. The computed values are
shown in Table 1.

https://www.keylength.com/

Security and Communication Networks 11

Ta
bl
e
1

Pa
ra
m
et
er
se
tu
ps

Ti
m
ec
on
su
m
pt
io
n
(s
ec
on
ds
)

Re
su
lts

𝑆
N
um

be
ro
f

fe
at
ur
es
(𝑓
)

𝐷
M
ax
tre
e

siz
e(

𝑁
)

Bi
ts
pe
r

fe
at
ur
e(

𝑏)
Ke
y
siz
e

(𝑛
)

Bl
oc
ks

⌈𝑓
𝑏/

𝑛⌉

M
es
sa
ge
siz
e

to
pa
re
nt

𝑆2
𝑛⌈

𝑓𝑏
/𝑛

⌉

En
cr
yp
t/d
ec
ry
pt
a

bl
oc
k

Se
nd

pl
ai
n-

te
xt
m
od
el

En
cr
yp
t𝑆

−
1

sh
ar
es

O
ne

ag
gr
eg
at
io
n

ro
un
d

O
ve
ra
ll
tim

e
of
m
in
i-b
at
ch

Pr
ob
.o
fg
oo
d

tre
e

4

10
2

4
19

10
10
24

1
81
92

0.
04
1

0.
10
3

0.
12
3

0.
14
3

1.8
47

0.
99
9

20
48

1
16
38
4

0.
30
0

0.
10
3

0.
90
0

0.
40
4

4.
45
1

0.
99
7

6
67

14
10
24

2
16
38
4

0.
04
1

0.
10
3

0.
24
6

0.
18
6

2.
85
0

0.
99
7

20
48

1
16
38
4

0.
30
0

0.
10
3

0.
90
0

0.
40
4

5.
46
6

0.
99
6

10
4

4
19

10
10
24

99
81
10
08

0.
04
1

0.
42
0

12
.17
7

4.
36
2

45
.6
49

0.
96
9

20
48

50
81
92
00

0.
30
0

0.
42
0

45
.0
00

15
.3
05

15
5.
07
4

0.
90
4

6
67

14
10
24

13
7

11
22
30
4

0.
04
1

0.
42
0

16
.8
51

5.
99
8

74
.6
09

0.
95
1

20
48

69
11
30
49
6

0.
30
0

0.
42
0

62
.10
0

21
.0
83

25
5.
62
4

0.
85
0

12 Security and Communication Networks

0.0001

0.001

0.01

0.1

1

Ra
te

1 19171513119753
Batch size

n = 1024
n = 2048

0.0001

0.001

0.01

0.1

1

Ra
te

Batch size

n = 1024
n = 2048

6763615957555351494745434139373533312927252321191715131197531 65

Figure 3: Distribution of effective minibatch sizes for scenario of 10,000 features. The histograms use a logarithmic scale.

The next column shows the time of one aggregation
round, that is, the time needed for a child node to propagate
information up to the parent. In Section 5.4 we described
a number of variants of the protocol that involve different
optimizations compared to the basic variant.Here, we assume
the variant, in which children in the tree start encrypting
their share while they simultaneously upload the other 𝑆 − 1
shares to their parents. In all our scenarios uploading 𝑆 − 1
shares is faster than encrypting one share. This means that
the time needed for one aggregation round is the time of
encoding one share plus the time of uploading this share
(which consists of transmission time and network latency).
The column indicating the time needed for one aggregation
round shows this value for each parameter setting.

The column that corresponds to the overall minibatch
time sums up all the required times for completing the
minibatch, assuming the network is error free. This involves
sending the plaintext model to the children down the tree
during tree building as well as the aggregation rounds up to
the root.These operations are performed for each level of the
tree; note that the depth of the whole tree is 𝐷 + 𝑆 − 1. The
time of encoding 𝑆 − 1 shares also needs to be added because
the leaves must first complete this encoding before starting

the first aggregation round. If nodes can fail, in an actual run
these times may be slightly longer because of the delay intro-
duced by the failure detector, but they may also be slightly
shorter, due to a smaller tree. Our simulations account for
these effects. Note that we ignored the time consumption of
the single gradient update step that has to be performed as
well at every node. This is because the encryption operation
is orders of magnitude slower than the gradient update.

8.3. Simulating Tree Building. All of our experiments were
run on top of the churn trace described in Section 8.1. The
network size was 100,000. The membership overlay network
was implemented by independently assigning 100 randomly
selected outgoing neighbors to each node and then dropping
the directionality of the links. This network forms the basis
of tree building; the tree neighbors are selected from these
nodes. We assume that each node maintains an active TCP
connection with its neighbors as suggested in [31]. If a node
fails, its neighbors will detect this only with a one-second
delay. The neighbor set is constant in our simulations; that
is, when a neighbor fails it remains on the list and it is
reconnected when it comes back online. The size of our

Security and Communication Networks 13

100 1000 10000
Time (Seconds)

LogReg on Reuters data set

100 1000 10000
Time (Seconds)

SVM on Reuters data set

10 100 1000 10000
Time (Seconds)

10 100 1000 10000
Time (Seconds)

LogReg on Spambase data set SVM on Spambase data set

1

0.5

0.6

0.7

0.8

0.9
Ac

cu
ra

cy

SGD
C-GD (19, 1024)
C-GD (67, 1024)

C-GD (19, 2048)
C-GD (67, 2048)

SGD
C-GD (19, 1024)
C-GD (67, 1024)

C-GD (19, 2048)
C-GD (67, 2048)

1

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

1

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

1

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

SGD
C-GD (19, 1024)
C-GD (67, 1024)

C-GD (19, 2048)
C-GD (67, 2048)

SGD
C-GD (19, 1024)
C-GD (67, 1024)

C-GD (19, 2048)
C-GD (67, 2048)

Figure 4: Classification accuracy of the compressed gradient update on the data sets based on trace-based simulation. We vary key size (1024
or 2048) and maximum tree size (19 or 67).

neighbor set was large enough for the overlay network to
remain connected.

Initially a random online node is picked from the
network at time 0:00 and we simulate building the first tree
using that node as root. This simulation involves building
the tree and propagating the aggregated gradient up to the
root, simulated based on the time consumption of these
operations described previously. When this is completed, we
pick a new random node that is online at the time of finishing
the first minibatch and simulate a new minibatch round.
We repeat this procedure until the end of the simulated day.
With this methodology, we record the effective minibatch
sizes (which determines the number of gradients the sum
of which the root actually received) and we examine the
distribution of these effective minibatch sizes.

The empirical distributions of the effective minibatch
sizes for the case of 10,000 features are shown in Figure 3.
In every scenario we simulated a sample of at least 15,000
tree building attempts.The figure shows the histograms based
on these samples. The histograms use a logarithmic scale to
better illustrate the structure of the distribution. However,
note that most of the probability mass belongs to the largest

effective sizes. For 100 features almost all the trees are
complete due to the very quick building times (not shown).
The relatively high probability masses for tree sizes 1, 2, and 3
are due to the vulnerability of the trunk.

In our experiments, we used the variant of the protocol
that limits the effective tree size from below as explained in
Section 5.5.We accepted aminibatch for gradient update only
if its size was greater than or equal to ⌊𝑁/2⌋. The reason
is that smaller trees represent reduced privacy. We call such
trees a “good tree.” The last column of Table 1 contains the
probability of getting a good tree. Clearly, only a very small
proportion of tree building attempts are unsuccessful.

8.4. Machine Learning Results. We now present our results
with the actual learning tasks. The setup for the learning
problems is identical to that presented in Section 7. The only
difference is that now the batch sizes used in each update
step are variable and depend on the effective batch size that
is obtained in our tree building simulation based on the
smartphone trace, and the time needed to complete a given
minibatch is also given by the output of the simulation. The

14 Security and Communication Networks

results are shown in Figure 4. Note that the horizontal axis of
the plots now shows the time, covering one full day. It is clear
that the main factor for convergence speed is the encryption
key size, with 2048 being significantly slower than 1024. This
could be expected based onTable 1 aswell.We can see that our
example learning tasks can converge within one day, which is
adequate for many practically interesting learning problems.

9. Conclusion

We proposed a secure sum protocol to prevent the collusion
attack in gossip learning.Themain idea is that instead of SGD
we implement a minibatch method and the sum within the
minibatch is calculated using our novel secure algorithm.We
can achieve high levels of robustness and good scalability in
our tree building protocol through exploiting the fact that the
minibatch gradient algorithm does not require the sum to
be precise. The algorithm runs in logarithmic time and it is
designed to calculate a partial sum in case of node failures. It
can tolerate collusion unless there are 𝑆 consecutive colluding
nodes on any path to the root of the aggregation tree, where
𝑆 is a free parameter. The algorithm is completely local;
therefore it has the same time complexity independently of
the network size.

We evaluated the protocol in realistic simulations where
we took into account the time needed for encryption and
message transmission, and we used a real smartphone trace
to simulate churn.We demonstrated on a number of learning
tasks that the approach is indeed practically viable evenwith a
key size of 2048.We also demonstrated that the gradients can
be compressed by an order of magnitude without sacrificing
prediction accuracy.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the Hungarian Govern-
ment and the European Regional Development Fund under
Grant no. GINOP-2.3.2-15-2016-00037 (“Internet of Living
Things”).

References

[1] J. Konecny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving
communication efficiency,” in Private Multi-Party Machine
Learning (NIPS 2016 Workshop), pp. 1–6, 2016.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
fromdecentralized data,” inProceedings of the 20th International
Conference on Artificial Intelligence and Statistics, A. Singh and
J. Zhu, Eds., vol. 54, pp. 1273–1282, Machine Learning Research,
PMLR, Fort Lauderdale, FL, USA, 2017.

[3] R. Ormandi, I. Hegedus, and M. Jelasity, “Gossip learning
with linear models on fully distributed data,” Concurrency and

Computation: Practice and Experience, vol. 25, no. 4, pp. 556–
571, 2013.

[4] G. P. Jesi, A. Montresor, and M. Van Steen, “Secure peer sam-
pling,” Computer Networks, vol. 54, no. 12, pp. 2086–2098, 2010.

[5] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal
distributed online prediction using mini-batches,” Journal of
Machine Learning Research (JMLR), vol. 13, pp. 165–202, 2012.

[6] A. C. Yao, “Protocols for secure computations,” in Proceedings
of the 23rd Annual Symposium on Foundations of Computer
Science, pp. 160–164, 1982.

[7] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu,
“Tools for privacy preserving distributed data mining,” ACM
SIGKDD Explorations Newsletter, vol. 4, no. 2, pp. 28–34, 2002.

[8] A. Berta, V. Bilicki, and M. Jelasity, “Defining and understand-
ing smartphone churn over the internet: Ameasurement study,”
in Proceedings of the 14th IEEE International Conference on Peer-
to-Peer Computing, IEEE P2P 2014, UK, September 2014.

[9] J. Saia and M. Zamani, “Recent results in scalable multi-party
computation,” in SOFSEM 2015: theory and practice of computer
science, vol. 8939 of Lecture Notes in Comput. Sci., pp. 24–44,
Springer, Heidelberg, 2015.

[10] D. Bickson, T. Reinman, D. Dolev, and B. Pinkas, “Peer-to-peer
secure multi-party numerical computation facing malicious
adversaries,” Peer-to-Peer Networking and Applications, vol. 3,
no. 2, pp. 129–144, 2010.

[11] J. A. Naranjo, L. G. Casado, and M. Jelasity, “Asynchronous
privacy-preserving iterative computation on peer-to-peer net-
works,” Computing: Archives for Scientific Computing, vol. 94,
no. 8-10, pp. 763–782, 2012.

[12] S. Han, W. K. Ng, L. Wan, and V. C. S. Lee, “Privacy-preserving
gradient-descent methods,” IEEE Transactions on Knowledge
and Data Engineering, vol. 22, no. 6, pp. 884–899, 2010.

[13] K. Bonawitz, V. Ivanov, B. Kreuter et al., “Practical Secure
Aggregation for Privacy-Preserving Machine Learning,” in
Proceedings of the the 2017 ACM SIGSAC Conference, pp. 1175–
1191, Dallas, Texas, USA, October 2017.

[14] W. Ahmad and A. Khokhar, “Secure aggregation in large scale
overlay networks,” in Proceedings of the IEEEGLOBECOM2006
- 2006 Global Telecommunications Conference, USA, December
2006.

[15] C. Dwork, “A firm foundation for private data analysis,” Com-
munications of the ACM, vol. 54, no. 1, pp. 86–95, 2011.

[16] A. Rajkumar and S. Agarwal, “A differentially private stochastic
gradient descent algorithm for multiparty classification,” in
Proceedings of the JMLRWorkshop and Conference, AISTATS’12,
vol. 22, pp. 933–941, 2012.

[17] C.Dwork, K.Kenthapadi, F.McSherry, I.Mironov, andM.Naor,
“Our data, ourselves: privacy via distributed noise generation,”
in Advances in cryptology-EUROCRYPT, vol. 4004 of Lecture
Notes in Comput. Sci., pp. 486–503, Springer, Berlin, 2006.

[18] G. Danner and M. Jelasity, “Fully distributed privacy preserv-
ing mini-batch gradient descent learning,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics): Preface, vol.
9038, pp. 30–44, 2015.

[19] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Will-
inger, “On unbiased sampling for unstructured peer-to-peer
networks,” IEEE/ACM Transactions on Networking, vol. 17, no.
2, pp. 377–390, 2009.

[20] U. Maurer, “Secure multi-party computation made simple,”
Discrete Applied Mathematics: The Journal of Combinatorial

Security and Communication Networks 15

Algorithms, Informatics and Computational Sciences, vol. 154,
no. 2, pp. 370–381, 2006.

[21] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying
suspicious URLs: An application of large-scale online learning,”
in Proceedings of the 26th International Conference On Machine
Learning, ICML 2009, pp. 681–688, can, June 2009.

[22] L. Bottou, “Stochastic Gradient Descent Tricks,” in Neural
Networks: Tricks of the Trade, vol. 7700 of Lecture Notes in
Computer Science, pp. 421–436, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[23] L. Bottou and Y. LeCun, “Large scale online learning,” in
Advances in Neural Information Processing Systems 16, S.Thrun,
L. Saul, and B. Scholkopf, Eds., MIT Press, Cambridge, MA,
2004.

[24] K. Gimpel, D. Das, and N. A. Smith, “Distributed asynchronous
online learning for natural language processing,” in Proceed-
ings of the Fourteenth Conference on Computational Natural
Language Learning (CoNLL’10), pp. 213–222, Association for
Computational Linguistics, Stroudsburg, PA, USA, 2010.

[25] P. Paillier, “Public-key cryptosystems based on compos-
ite degree residuosity classes,” in Advances in cryptology-
EUROCRYPT ’99 (Prague), vol. 1592 of LectureNotes in Comput.
Sci., pp. 223–238, Springer, Berlin, 1999.

[26] M. Lichman, UCI machine learning repository, 2013, http://
archive.ics.uci.edu/ml.

[27] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, New York, NY, USA, 2006.

[28] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos:
primal estimated sub-gradient solver for SVM,” Mathematical
Programming, vol. 127, no. 1, Ser. B, pp. 3–30, 2011.

[29] A. Montresor andM. Jelasity, “PeerSim: A Scalable P2P Simula-
tor,” in Proceedings of the IEEE P2P’09 - 9th International Con-
ference on Peer-to-Peer Computing, pp. 99-100, USA, September
2009.

[30] Speedtest: Market reports, 2017, http://www.speedtest.net/
reports/.

[31] R. Roverso, J. Dowling, andM. Jelasity, “Through thewormhole:
Low cost, fresh peer sampling for the Internet,” in Proceedings
of the 13th IEEE International Conference on Peer-to-Peer Com-
puting, IEEE P2P 2013, Italy, September 2013.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.speedtest.net/reports/
http://www.speedtest.net/reports/

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

