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ABSTRACT
New technologies for computerized metering and data col-
lection in the electrical power grid promise to create a more
efficient, cost-effective, and adaptable smart grid. However,
naive implementations of smart grid data collection could
jeopardize the privacy of consumers, and concerns about
privacy are a significant obstacle to the rollout of smart grid
technology. Our work proposes a design for a smart me-
tering system that will allow utilities to use the collected
data effectively while preserving the privacy of individual
consumers.

1. INTRODUCTION
Smart grid technology has the potential to greatly improve

the electrical grid. Unlike traditional analog meters, smart
meters can be used to continuously measure, predict, and
even control power consumption within individual homes
and businesses, and a grid containing smart meters can use
this data to more dynamically and accurately adapt power
generation to power use. This can help utilities avoid un-
necessary power generation and unexpected overloads, and
allow consumers to reschedule their power consumption to
save money. A more informed and responsive electrical grid
is also necessary to better integrate renewable sources into
the energy supply, since they tend to generate power in
a fluctuating manner that is incompatible with the slow-
moving and rigid provisioning of the existing grid.

Unfortunately, the deployment of smart grid technology
faces a serious obstacle in the form of concerns about cus-
tomer privacy, which have already created vigorous opposi-
tion to smart meters [24]. Consumers are right to be worried
about their privacy, though, because the fine-grained power
usage data collected by smart meters can leak a surpris-
ing amount of personal information. Experiments in Non-
Intrusive Load Monitoring (NILM) [16] show that the time
of use of individual electrical appliances can be extracted
from meter data, and this information can be used to infer
much about the personal habits of the home’s occupants.
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Worse, the current approach of most smart grid projects
is to send this fine-grained smart meter data directly to a
centralized database at the utility, where it can easily be
accessed by employees and government regulators [2].

Our research addresses the problem of building a smart
grid that protects consumer privacy while still realizing the
benefits of computerized, fine-grained metering. In current
and upcoming work, we will propose a design for a smart
metering system that uses a combination of decentraliza-
tion and differential privacy techniques to keep customers’
private data hidden from the utility. We will show that
our system still allows the utility to learn useful informa-
tion about the electric grid and implement promising smart
grid features such as load forecasting, accurate time-of-use
billing, and demand-side management.

2. PROBLEM OVERVIEW
Before describing our proposal in detail, we will take a

moment to clarify the assumptions we are making about
the setup and environment of the system. The smart grid
can be thought of as a large distributed system under a
single administrative domain, namely that of the utility that
owns or operates the grid. There are many client nodes,
representing smart meters installed at individual homes or
businesses, and a few servers under the direct control of
the utility. This is an inherently centralized system, since
all clients are connected to the utility’s servers through a
network set up and maintained by the utility (see Figure 1).

We assume that the networking hardware is reliable, so
that any node in the network can send a message to any
other node at will. Also, in order to help secure communi-
cations between nodes, we assume that the utility provides
a membership server that clients can query for a reliable list
of valid peers, as well as a standard PKI for certifying the
public keys of client meters. We will expand on the necessity
of this assumption in Section 3.

In order to model the concerns consumers have about the
exposure of their private data, we treat the system operator
(i.e. the utility) as an honest-but-curious adversary, which
will run the system correctly but cannot be trusted with
access to data it does not need to know. Although client
systems will be owned and deployed by the system opera-
tor, public regulatory and oversight organizations routinely
monitor and audit any power components deployed directly
into the home. This creates a strong incentive for the util-
ity to supply client devices that conform to specifications,
rather than try and compromise them to achieve access to
customers’ private data.
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Figure 1: In the smart grid, a non-malicious but
curious infrastructure owner provides a number of
vital services: it connects clients with a routing net-
work, maintains a membership service, and operates
a PKI.

On the other hand, in any real-world system one must an-
ticipate that Internet-connected personal computers will be
subject to hacker and malware attacks. While we generally
trust client systems with private data, we assume that the
system may contain a small number of malicious, or Byzan-
tine, nodes, fewer than logn where n is the total number
of nodes in the system. Since the utility’s membership ser-
vice should enforce a policy of one identity per meter, the
malicious nodes cannot use a Sybil attack [9] to artificially
increase their numbers, but we still need to build a system
that can tolerate a few malicious participants.

The goal of protecting consumers’ privacy can be framed
more concretely as a goal of preventing the utility from learn-
ing the underlying parameters of the probabilistic models
that generate each home’s meter readings. Each measure-
ment recorded by a smart meter can be modeled as a ran-
dom variable, and the distribution of this random variable
depends partly on global parameters shared by all meters
(e.g. the time of day, weather conditions, or public holi-
days) and partly on local parameters unique to each meter
(e.g. the habits of the home’s residents). After making a
series of queries over these measurements, the utility should
learn the query results but not the individual measurements
or the local parameters that contributed to generating them.

In our work we make the simplifying assumption that dis-
tribution parameters are either fully local to an individual
meter or common to all meters being queried. Although in
reality there may be some factors that affect readings for
a subset of meters, we do not consider the effects of such
partially shared parameters.

As in many large distributed systems, we will organize
our smart grid system in layers of abstraction that are fairly
independent of one another. Of particular importance are
the communication layer, which is responsible for connect-
ing the meters and utility with a framework for distributing
queries and responses, the data mining layer, which deter-
mines how data is collected and analyzed by the utility, and
the control layer, which provides mechanisms for coopera-

tive interaction between the meters and utility that directly
affects power consumption. In the remainder of the paper,
we will describe our work in each of these areas.

3. COMMUNICATIONS LAYER
One of our key design decisions in creating this system was

that the data collected by smart meters should remain, as
much as possible, on the meters themselves, rather than be-
ing uploaded to a central server. This means that most com-
putation and aggregation of electricity consumption data
happens at the edge, on the meters themselves, rather than
within a utility-owned data center. We believe that keeping
data on the consumer’s device makes the problem of preserv-
ing privacy significantly more tractable, since we can then
choose to only reveal to the utility the data that it needs to
know instead of trying to prevent the utility from reading or
analyzing data it already possesses. While there has been
some work on preserving privacy in centralized data collec-
tion, it appears to be a much more difficult problem, and
existing solutions require either computationally expensive
cryptography (such as homomorphic encryption or secure
multiparty computation [7]) or a restrictive model for how
data can be aggregated [6].

The client-side computation approach is reminiscent of
peer-to-peer systems, and in fact we create an overlay net-
work that allows several existing peer-to-peer protocols to
run across the meters. However, since we are designing for
a system in which some nodes may be compromised or ma-
licious, we chose not to adopt a purely peer-to-peer archi-
tecture because of its many security vulnerabilities. Deter-
mining the membership of a peer-to-peer network is hard,
for example, since changes in membership may not be de-
tected and propagated in a timely fashion [1], and malicious
nodes can adopt multiple identities to masquerade as a large
majority of the system [9]. On the other hand, a simple
centralized membership server eliminates this problem, and
this can be provided by the honest-but-curious infrastruc-
ture owner without compromising any private data from the
clients. Thus in our communications layer, we combine peer-
to-peer communications with some elements of centralized
control, taking advantage of the existing centralized struc-
ture provided by the system operator.

In our upcoming paper [3], we present an overlay net-
work that can support message exchange in a manner se-
cure against many forms of manipulation or intrusion that
might threaten privacy. We will briefly describe its setup
here, though more details will be available in the paper.

Gossip protocols such as gossip-based aggregation [15] and
distributed peer-to-peer learning [21] are a natural approach
for analyzing data that remains on the client, and we wanted
our system to support these existing solutions. However, the
traditional random gossip algorithm that these protocols are
based on, in which each node selects a random peer to ex-
change data with at regular intervals, can be extremely vul-
nerable to Byzantine participants. Since honest nodes have
no way of determining whether their peers’ choices are truly
random, malicious nodes can send bogus gossip messages at
a rapid rate to any or all of the other nodes, which must
accept and process them if they are to correctly follow the
protocol. We describe in our paper how this can lead to data
corruption and denial-of-service attacks.

As a result, our communications system uses a completely
deterministic algorithm to exchange gossip-like messages.



When combined with a PKI that allows client nodes to dig-
itally sign their messages (and detect messages with invalid
signatures), this allows honest nodes to quickly reject gossip
messages that are not prescribed by the algorithm. Mali-
cious nodes can thus be easily detected if they misbehave,
and they can only affect the system at the same rate as the
honest nodes, which are in the majority.

Our communication system works as follows. Each client
node is assigned a unique integer ID between 0 and n, where
n is the total number of nodes in the system. This assign-
ment can be done by the utility’s central server in any ar-
bitrary fashion, since it already knows the identity of every
meter connected to the network. Then, for each round j of
gossip, each node i sends a message to the node with the ID
determined by this function:

g(i, j) = i+ 2j mod n

Before sending the message, the sending node signs it with
its private key and encrypts it with the recipient’s public key,
to ensure that the message cannot be observed by the utility
and the receiver will trust its validity. Since each node can
independently calculate g for any ID, each node only accepts
a message from the node that should be sending to it in
the current round. Of course, the “rounds” do not need to
be synchronous; we implement this system asynchronously,
with each node maintaining its own round counter and using
timeouts to automatically advance the round if the expected
sender’s message never arrives.

In order to ensure our deterministic system can replace
random gossip as the basis for distributed computation, it
should provide the same features as random gossip. Specifi-
cally, it should ensure that information can spread efficiently
through the network (at least as quickly as random gossip,
which converges in O(logn) rounds) and make nodes gossip
as evenly as possible with the other nodes in the network,
so that no one node’s failure can become a bottleneck.

We designed our deterministic gossip function to be both
perfectly efficient and perfectly uniform, provided the net-
work size n is a prime number such that 2 is a primitive root
modulo n.1 Specifically, data that starts at any node and is
forwarded upon receipt (as in standard epidemic gossip [8])
according to this function is guaranteed to reach all n nodes
in dlogne rounds. Also, for any two nodes a and b, there
is exactly one value of j in [0, n − 1] such that g(a, j) = b,
which means that each node gossips with every other node
exactly once before gossiping with the same node again. We
formally prove these properties in our paper.

Figure 2 shows the pattern of data propagation in our
system, visualized as if it was used to re-implement epidemic
gossip. Note that the second set of logn rounds produces
a different pattern of communication than the first set, so
nodes do not repeat gossip partners in the entire n rounds.

Although the requirement for n to be a specific type of
prime may seem like a difficult condition to meet, we experi-
mentally determined that suitable values of n are sufficiently
dense as to make it easy to find one that is very close to the
actual network size. The unused node IDs that result from
“rounding up” n to the nearest suitable prime can either be
doubly assigned (giving a few nodes a second ID) or treated
as failed nodes that immediately time out on all messages,
which works surprisingly well in practice. Our experiments

1In other words, the sequence 2, 4, 8, . . . , 2n−1 cycles
through each nonzero residue class modulo n exactly once.
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Figure 2: Information flow from node 0 in our
scheme, showing two full epidemic cycles of logn
rounds each. Every process sends and receives one
message per round; we omitted the extra messages
to reduce clutter. Similarly, although each round
can be viewed as a new epidemic, the figure just
shows two.

on an asynchronous implementation of gossip with our pro-
tocol show that it takes only a few extra rounds to converge
when 10% of nodes have failed, and is hardly affected at all
if those failures are known in advance (as they would be if
the “failed nodes” are really nonexistent).

4. DATA MINING LAYER
Now that we have a robust and Byzantine-tolerant gossip

system that the smart meters can use to communicate, we
can begin to address the problem of collecting data from the
meters in a way that preserves customer privacy. Assuming
we use our overlay to exchange data among the meters with-
out letting the utility observe any intermediate values, the
goal is to ensure that the utility cannot determine the con-
tribution of any single household by observing and analyzing
the aggregate data set.

Following the framework of differential privacy introduced
by Dwork in [10], we will use slightly noisy data to mask the
contributions of individual meters’ measurements to any ag-
gregate reported to the utility. Each client should add noise
to the meter readings it contributes to any aggregate being
gossiped by drawing from a Laplacian distribution centered
on the true value of the measurement. As Dwork explains
in her work, properly calibrated Laplacian noise can prevent
the utility from learning about the presence or absence of a
single household with more than ε probability (where ε is a
small, public parameter), while still keeping the data useful
for making large-scale predictions.

However, standard differential privacy may not be enough
to preserve customer privacy if we consider the fact that the
utility will get to make many queries over data that come
from relatively stable probability distributions. As we men-
tioned in Section 2, the measurements from each meter come
from probability distributions whose parameters reflect per-
sonally-identifying characteristics of the household. Even if



each query the utility makes is independent from the oth-
ers and the results hide individual contributions, the utility
may be able to infer the underlying distribution parameters
that generated these measurements once it has taken enough
samples.

We explored this further complication, which we call dis-
tributional differential privacy, in [13]. In this work, we for-
mally define the probabilistic model that generates a series
of smart meter readings, and build a definition of distribu-
tional differential privacy from a definition of ordinary dif-
ferential privacy. At a high level, we consider the series of
readings taken by the set of smart meters to be a series of
databases (one per unit of time), and the queries made by
the utility to be an algorithm that returns a single output
per input database. We assume these series to be infinite, in
order to model the fact that privacy should be maintained
no matter how many queries the utility makes. The algo-
rithm is ε-differentially private if the probability of a given
output changes by less than exp(ε) when the input database
is changed by a single record. In other words, the output of
a query should not be significantly different with or without
a single household’s meter data.

We define distributional differential privacy in terms of
distributional adjacency, which is based on the formaliza-
tion of meter data as coming from probability distributions
with household-specific parameters. Two series of databases
are called distributionally adjacent if they contain the same
set of readings except for one series of records, which is gen-
erated by a different distribution (i.e. a different hidden
parameter) in the two series. This represents the situation
where one household is replaced with another in a series of
readings; the records from that household change, and the
probability distribution they came from changes since each
household has its own distribution parameter.

An algorithm is distributionally ε-differentially private if
the probability of a given series of query outputs over a series
of databases changes by less than exp(ε) when the database
series is replaced by a distributionally adjacent series. Intu-
itively, this means that the results of any queries on a series
of readings should not change significantly if exactly one of
the hidden distribution parameters changes. So the util-
ity could not detect the replacement of one household with
another (and thus cannot infer a single household’s distri-
bution) no matter how many queries it makes.

Note that this is a rather pessimistic definition of pri-
vacy, since it assumes that the public, global parameters
that affect the distribution of each household’s readings re-
main constant over an infinite number of readings. Since
these parameters actually represent factors such as level of
daylight and weather conditions, they are likely to change
within the time that the utility could be making queries.
In that case, the effect of changing public parameters (and
hence a changing distribution) on the query results could
mask the effect of a single household’s contribution, and the
utility might be unable to detect that household’s presence
even if K was not differentially private by this definition.

This definition also assumes that the private, per-house-
hold distribution parameters are constant, which is more
realistic since they represent the usage habits of the house-
hold’s occupants. Nonetheless, it is still a worst-case as-
sumption, because over an infinite number of queries even
“static characteristics” will change, if the occupants change
their lifestyle or move away. Such changes to the hidden

parameters during the course of the utility’s queries would
make it more difficult for the utility to infer their value.

In our work we explore a few ways to achieve distributional
differential privacy, even for this pessimistic definition. It
turns out that if the meters’ readings come from Gaussian
distributions, the same noise-generation techniques that are
commonly used to achieve differential privacy can be ex-
tended to hide distributional parameters. Namely, a noise
variable drawn from a Laplacian distribution with the same
mean as the underlying meter distribution is added to the
query result. Although in reality the readings’ distributions
will not be Gaussian, we show how the meters can trans-
form their readings to Gaussian distributions before report-
ing them, so that the Laplacian noise will be effective at
preserving distributional privacy.

The practice of adding noise to meter readings in order
to preserve privacy seems problematic when it comes to
billing customers for electricity usage. Customers would be
unhappy if they were billed based on intentionally-inaccu-
rate meter readings, but showing the utility accurate data
at billing time defeats the purpose of adding noise during
other queries. Fortunately, the problem of generating a bill
while preserving privacy is smaller in scope than privacy-
preserving data mining, and it has been well-studied.

For example, Rial and Danezis [23] show how exact read-
ings can be used to create an exact bill, and send that bill
to the utility, without revealing the readings to the utility.
Their protocol uses zero-knowledge proofs and commitments
to guarantee to the utility that the meter faithfully applied
the utility-supplied pricing function to its readings. While
this adds a significant amount of cryptographic overhead,
and might not be applicable to general-purpose data min-
ing, it is practical and effective for a once-per-month bill
generating operation.

Thus in our proposed system, differential privacy noise is
only applied to meter readings that are collected for data
mining purposes, such as predicting load, that do not affect
a customer’s bill. Bill generation will use the original pre-
noise readings, and we will employ a system similar to Rial
and Danezis’s to ensure that the utility does not learn the
readings during billing.

5. CONTROL LAYER
We see our smart meter communication and data aggre-

gation system as part of a broader ecosystem of coopera-
tive control involving the utility company and its customers.
Both parties have an incentive to cooperate in using the data
collected by smart meters to implement demand-side man-
agement of power usage. The utility can use data supplied
by the meters to predict demand far enough in advance to
avoid expensive last-minute purchases of electricity, thus re-
ducing its operating costs. If clients can also adjust their
demand in response to requests by the utility, the utility can
smooth out power demand to more closely match capacity,
or adjust it to follow fluctuations in power from renewable
sources. Meanwhile, customers can benefit by saving money
on electricity (assuming the price of energy reflects its cost to
the utility) and receiving better protection from brownouts.
Customers that want to be environmentally friendly would
also encourage the utility to use renewable power by partic-
ipating in cooperative control.

The most basic way in which our communication and data
mining layers can be used to help manage the grid is by



predicting load. Currently, most electric utility companies
determine when to schedule power generation based on gen-
eral historical trends for the region at the given time of year,
but during the course of a day power demand inevitably
differs from this coarse-grained prediction. When demand
is lower than expected electricity is wasted, and when de-
mand is higher than expected electricity must be purchased
from other utility companies at great expense, because most
power plants take at least four hours to be activated or de-
activated. By using our privacy-preserving data aggregation
system, however, the utility could regularly ask the meters
to build a machine learning model predicting their usage for
the next several hours. This model would be more accurate
than a prediction from general historical trends (though it
could use historical trends as a prior) because it would incor-
porate the specific usage data being recorded that day, and
it would give the utility enough advance notice of higher-
than-usual demand to activate additional power sources.

A smart grid system such as ours can achieve even more
benefits if customers have smart devices, appliances that can
wirelessly connect to a smart meter and be programmed to
turn on at a time scheduled by the meter. These are usu-
ally appliances such as dishwashers, laundry machines, or
hot water heaters that can be run any time within a range
of hours without inconveniencing the user. With this setup,
the utility can use our communications system to advise
such devices on when to run, and the cumulative effect of
scheduling all the appliances within a region can reshape en-
ergy demand. One possible implementation is for the utility
to send out a “schedule” at the beginning of each day, indi-
cating its desired total demand for each hourly interval and
the increase in energy price that will result if demand crosses
this threshold. The meters would then communicate with
each other in a peer-to-peer fashion to agree on when they
will run each of their devices, possibly using an auction-like
bidding system or a cost-minimization algorithm (such as
the one proposed by Mohsenian-Rad et al. in [20]). Since
the meters would use our secure overlay for communication,
the utility would only learn the final overall schedule (which
it could use as a reliable prediction of demand), not the times
any individual household will be running its appliances.

Although most work on smart grid systems designs for
the situation in which the entire grid has the same smart
features, it is important to remember that the rollout of
smart meters and smart devices will take several years. Dur-
ing that period, only some communities or neighborhoods
within a utility’s region of service will be connected to the
smart grid network. The question then arises whether the
utility can still derive the promised benefits of a smart grid
while there is only partial penetration of the technology. In
order to answer this question, and determine what the min-
imal level of rollout is to see noticeable benefits, we have
implemented a software simulation of a power grid using
the probabilistic models of household demand created by
Paatero and Lund in [22]. Our preliminary results are in-
conclusive, but this is still a work in progress.

Another caveat is that both the data aggregation and de-
mand response layers will need to take into account com-
promised or malicious nodes, like the communications layer
does. We have a solution in hand for Byzantine-tolerant ag-
gregation of data, and should be able to implement a similar
solution for the control system.

6. RELATED WORK
The privacy problems related to smart metering have been

studied before. McDaniel and McLaughlin [19] surveyed
many of the security and privacy concerns that can arise
in smart grids, and Lisovich and Wicker [18] identify many
of the concrete technical challenges to preserving privacy.

Our communications layer is based on years of work in
gossip protocols, starting with Demers et al.’s work in [8].
Bimodal multicast [4] and LPBcast [12] are two notable gos-
sip multicast systems that inspired our overlay network’s
design. The problem of malicious participants in gossip net-
works has been studied extensively, and systems such as
Brahms [5] and Secure Peer Sampling [14] use a purely peer-
to-peer approach to stop Byzantine nodes from poisoning
honest nodes’ view of system membership. BAR Gossip [17]
is one of the earliest gossip systems that tolerates malicious
nodes. The authors assume that gossip is being used specifi-
cally to deliver a streaming broadcast from some origin node,
and they propose a model in which some nodes are Byzan-
tine while others are “rational adversaries” that will attempt
to receive as much of the streaming broadcast as possible
without doing their part to transmit it. They use a simi-
lar approach to ours to limit the damage that can be done
by Byzantine nodes, namely requiring digital signatures on
messages and using a protocol that limits the rate at which
nodes can send legitimate messages.

There has been much prior work on privacy-preserving
data mining from the cryptography community. The most
similar to our work is the algorithm developed by Dwork et
al. in [11]. It uses a secret sharing scheme to allow a dis-
tributed system of participants to mix measurements and
noise in an oblivious fashion, such that the final result can
only be viewed once it can hide any participant’s contribu-
tion. This system works well, but we wanted to develop a
simpler system with less cryptographic overhead that could
still provide the privacy needed for the smart grid.

7. CONCLUSION
Widespread deployment of smart grid technology has the

potential to revolutionize the electric power system, but
smart grids create risks because electricity is so closely inte-
grated with our personal lives. Power utilities need to care-
fully consider the privacy and security problems associated
with a proposed smart grid system before deploying it if they
are to avoid serious system compromises and consumer out-
rage over intrusive surveillance. We provide a road map for
building a privacy-preserving smart metering system that
can be used for data collection, load prediction, and coop-
erative demand management. Rather than collect all smart
meter data in a central location, our design keeps data on the
meters themselves and uploads only aggregate data to the
utility. We use differential privacy techniques to ensure that
the aggregated data cannot reveal the contribution of an in-
dividual meter, and use Byzantine fault-tolerant algorithms
to ensure that our client-focused system is not vulnerable to
a few hacked or malicious meters.
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Gossip learning with linear models on fully distributed
data. Concurrency and Computation: Practice and
Experience, 25(4):556–571, 2013.

[22] Jukka V. Paatero and Peter D. Lund. A model for
generating household electricity load profiles.
International Journal of Energy Research,
30(5):273–290, April 2006.

[23] Alfredo Rial and George Danezis. Privacy-preserving
smart metering. In Proceedings of the 10th Annual
ACM Workshop on Privacy in the Electronic Society,
WPES ’11, page 49–60, New York, NY, USA, 2011.
ACM.

[24] G. Pascal Zachary. Saving smart meters from a
backlash. IEEE Spectrum, 48(8):8–8, August 2011.


