
12

A Distributed Algorithm For Large-Scale Graph Partitioning

Fatemeh Rahimian, KTH - Royal Institute of Technology and Swedish Institute of Computer Science

(SICS), Sweden

Amir H. Payberah, Swedish Institute of Computer Science (SICS), Sweden

Sarunas Girdzijauskas, KTH - Royal Institute of Technology, Sweden

Mark Jelasity, MTA SZTE Research Group on AI, Szeged, Hungary

Seif Haridi, KTH - Royal Institute of Technology and Swedish Institute of Computer Science (SICS),

Sweden

Balanced graph partitioning is an NP-complete problem with a wide range of applications. These applica-

tions include many large-scale distributed problems including the optimal storage of large sets of graph-

structured data over several hosts. However, in very large-scale distributed scenarios, state-of-the-art algo-

rithms are not directly applicable, because they typically involve frequent global operations over the entire

graph. In this paper, we propose a fully distributed algorithm, called JA-BE-JA, that uses local search and

simulated annealing techniques for two types of graph partitioning: edge-cut partitioning, and vertex-cut

partitioning. The algorithm is massively parallel: there is no central coordination, each vertex is processed

independently, and only the direct neighbors of a vertex, and a small subset of random vertices in the graph

need to be known locally. Strict synchronization is not required. These features allow JA-BE-JA to be easily

adapted to any distributed graph-processing system from data centers to fully distributed networks. We

show that the minimal edge-cut value empirically achieved by JA-BE-JA is comparable to state-of-the-art

centralized algorithms such as METIS. In particular, on large social networks JA-BE-JA outperforms METIS.

We also show that JA-BE-JA computes very low vertex-cuts, which are proved significantly more effective

than edge-cuts for processing most real-world graphs.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: Network Protocols

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: graph partitioning, edge-cut partitioning, vertex-cut partitioning, dis-

tributed algorithm, load balancing, simulated annealing

ACM Reference Format:

Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, Mark Jelasity, and Seif Haridi, 2014, A Dis-

tributed Algorithm For Large-Scale Graph Partitioning ACM Trans. Autonom. Adapt. Syst. 10, 2, Article 12

(June 2015), 24 pages.

DOI:http://dx.doi.org/10.1145/2714568

1. INTRODUCTION

A wide variety of real-world data can be naturally described as graphs. Take for in-
stance communication networks, social networks, or biological networks. With the ever
increasing size of such networks, it is crucial to exploit the natural connectedness of
their data in order to store and process them efficiently. Hence, we are now observing
an upsurge in the development of distributed and parallel graph processing tools and
techniques. Since the size of the graphs (in terms of both vertices and edges) can grow
very large, sometimes we have to partition them into multiple smaller clusters that can
be processed efficiently in parallel. Unlike the conventional parallel data processing,
parallel graph processing requires each vertex or edge to be processed in the context
of its neighborhood. Therefore, it is important to maintain the locality of information
while partitioning the graph across multiple (virtual) machines. It is also important to
produce equal-size partitions that distribute the computational load evenly between
clusters.

Finding good partitions is a well-known and well-studied problem in graph the-
ory [Hendrickson and Leland 1995]. In its classical form, graph partitioning usually
refers to edge-cut partitioning, that is, to divide vertices of a graph into disjoint clus-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:2 F. Rahimian et al.

0

0

0

1

1

1

1

1

2

2

2

0

0

0

1

2

2

0

0

1

2

2

0

1

1

2

2

0
1

1

0

0

1

2

1

2

2

1

2

0

0

0

0

1

1

1

1

1

1

2

2

2

0

0

0

1

2

2

2

0

1

1

0

2

1

1

2

0

0

2

0

2

0

0

0

0

1

1

1

2

2

2

0

0

0

1

2

1

1

2

1

1

2

2

0

2

0

2

1

2

(a) A poor edge-cut partitioning.

Vertices are assigned to partitions

at random, thus, there are many

inter-partition links.

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

0

0

0

0

2

0

0

0

0

1
1

0

1

0

0

0

2

0

0

1

1

2

1

2

2

2

0

2

1

1
1

2

1

2

2

2

2

1

2

1

1

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

1

1

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

(b) A good edge-cut of the same

graph, where vertices that are

highly connected are assigned to

the same partition.

Fig. 1: Illustration of graph partitioning. The color of each vertex represents the partition it

belongs to. The colored links are connections between two vertices in the same partition. The

gray links are inter-partition connections.

ters of nearly equal size, while the number of edges that span separated clusters is
minimal. Figures 1(a) and 1(b) are examples of a poor and a good edge-cut partitioning
of a graph, respectively. Note, if each partition in this graph represent, for instance, a
server that stores and maintains data of the vertices it holds, then the inter-partition
links are translated into communication overhead between the servers, which should
be kept as small as possible. While a good edge-cut partitioning can reduce such com-
munication overheads and also balance the number of vertices in each partition, there
are some studies [Abou-Rjeili and Karypis 2006; Lang 2004; Leskovec et al. 2009] that
show tools that utilize edge-cut partitioning do not achieve good performance on real-
world graphs (which are mostly power-law graphs). This is mainly due to an unbal-
anced number of edges in each cluster combined with the fact that the complexity of
most graph computations is influenced by the order of edges.

In contrast, both theory [Albert et al. 2000] and practice [Gonzalez et al. 2012; Xin
et al. 2013] prove that power-law graphs (e.g., social networks or collaboration net-
works) can be efficiently processed in parallel if vertex-cuts are used. As opposed to
edge-cut partitioning, a vertex-cut partitioning divides edges of a graph into equal size
clusters. The vertices that hold the endpoints of an edge are also placed in the same
cluster as the edge itself. However, the vertices are not unique across clusters and
might have to be replicated (cut), due to the distribution of their edges across differ-
ent clusters. A good vertex-cut is one that requires a minimum number of replicas.
Figure 2 illustrates the difference between these two types of partitioning.

In this paper, we focus on processing extremely large-scale graphs, e.g., user relation-
ship and interaction graphs from online social networking services such as Facebook or
Twitter, resulting in graphs with billions of vertices and hundreds of billions of edges.
The very large scale of the graphs we target poses a major challenge. Although nu-
merous algorithms are known for graph partitioning [Enright et al. 2002; Karypis and
Kumar 1999a; 1998; Kernighan and Lin 1970; Meyerhenke et al. 2008; Meyerhenke
et al. 2009; Sanders and Schulz 2012; 2011], including parallel ones, most of the tech-
niques involved assume a form of cheap random access to the entire graph. In contrast
to this, large scale graphs do not fit into the main memory of a single computer, in fact,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

A Distributed Algorithm For Large-Scale Graph Partitioning 12:3

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

(a) Edge-cut

���
���
���

���
���
���

����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

(b) Vertex-cut

Fig. 2: Partitioning a graph into three clusters

they often do not fit on a single local file system either. Worse still, the graph can be
fully distributed as well, with only very few vertices hosted on a single computer.

We provide a distributed balanced graph partitioning algorithm, called JA-BE-JA,
both for edge-cut and vertex-cut partitioning. Choosing between edge-cut and vertex-
partitioning depends on the application, and JA-BE-JA, to the best of our knowledge,
is the only algorithm that can be applied in both models. JA-BE-JA is a decentralized
local search algorithm and it does not require any global knowledge of the graph topol-
ogy. That is, we do not have cheap access to the entire graph and we have to process it
with only partial information. Each vertex of the graph is a processing unit, with local
information about its neighboring vertices, and a small subset of random vertices in
the graph, which it acquires by purely local interactions. Initially, every vertex/edge
is assigned to a random partition, and over time vertices communicate and improve
upon the initial assignment.

Our algorithm is uniquely designed to partition extremely large graphs. The algo-
rithm achieves this through its locality, simplicity and lack of synchronization require-
ments, which enables it to be easily adapted to graph processing frameworks such as
Pregel [Malewicz et al. 2010] or GraphLab [Low et al. 2012]. Furthermore, JA-BE-JA

can be applied on fully distributed graphs, where each network node represents a sin-
gle graph vertex.

To evaluate JA-BE-JA for edge-cut partitioning, we use multiple datasets of differ-
ent characteristics, including a few synthetically generated graphs, some graphs that
are well-known in the graph partitioning community [Walshaw 2012b], and some sam-
pled graphs from Facebook [Viswanath et al. 2009] and Twitter [Galuba et al. 2010].
We first investigate the impact of different heuristics on the resulting partitioning of
the input graphs, and then compare JA-BE-JA to METIS [Karypis and Kumar 1999a],
a well-known centralized solution. We show that, although JA-BE-JA does not have
cheap random access to the graph data, it can work as good as, and sometimes even
better than, a centralized solution. In particular, for large graphs that represent real-
world social network structures, such as Facebook and Twitter, JA-BE-JA outperforms
METIS [Karypis and Kumar 1999a].

For vertex-cut partitioning, we will compare our solution with [Guerrieri and Mon-
tresor 2014], and show that JA-BE-JA not only guarantees to keep the size of the par-
titions balanced, but also produces a better vertex-cut.

In the next section we define the exact problems that we are targeting, together with
the boundary requirements of the potential applications. Then, in Section 3 we explain
JA-BE-JA in detail, and evaluate it in Section 4. In Section 5 we study the related work
of graph partitioning. Finally, in Section 6 we conclude the work.

2. PROBLEM STATEMENT

The problem that we address in this paper is distributed balanced k-way graph parti-
tioning. In this section we define two variations of this problem, namely edge-cut and
vertex-cut partitioning. We also formulate the optimization problem and describe our
assumptions about the system we operate in.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:4 F. Rahimian et al.

2.1. Balanced Edge-cut Partitioning

Given an undirected graph G = (V,E), where V is the set of vertices and E is the
set of edges, a k-way edge-cut partitioning divides V into k subsets. Intuitively, in a
good partitioning the number of edges that cross the boundaries of components is min-
imized. Balanced (uniform) partitioning refers to the problem of partitioning a graph
into equal-sized components with respect to the number of vertices in each component.
The equal size constraint can be softened by requiring that the partition sizes differ
only by a factor of a small ǫ.

A k-way edge-cut partitioning can be given with the help of a partition function
π : V → {1, . . . , k} that assigns a color to each vertex. Hence, π(p), or πp for short,
refers to the color of vertex p. Vertices with the same color form a partition. We denote
the set of neighbors of vertex p by Np, and define Np(c) as the set of neighbors of p that
have color c:

Np(c) = {q ∈ Np : πq = c} (1)

The number of neighbors of vertex p is denoted by dp = |Np|, and dp(c) = |Np(c)|
is the number of neighbors of p with color c. We define the energy of the system as
the number of edges between vertices with different colors (equivalent to edge-cut).
Accordingly, the energy of a vertex is the number of its neighbors with a different
color, and the energy of the graph is the sum of the energy of the vertices:

E(G, π) =
1

2

∑

p∈V

(dp − dp(πp)) , (2)

where we divide the sum by two since the sum counts each edge twice. Now we can
formulate the balanced optimization problem: find the optimal partitioning π∗ such
that

π∗ = argminπ E(G, π)
s.t. |V (c1)| = |V (c2)|, ∀ c1, c2 ∈ {1, . . . , k}

(3)

where V (c) is the set of vertices with color c.

2.2. Balanced Vertex-cut Partitioning

Given an undirected graph G = (V,E), where V is the set of vertices and E is the set of
edges, a k-way balanced vertex-cut partitioning divides the set of edges E into k sub-
sets of equal size. Each partition also has a subset of vertices that hold at least one of
the edges in that partition. However, vertices are not unique across partitions, that is,
some vertices have to be replicated in more than one partition, due to the distribution
of their edges across several partitions. A good vertex-cut partitioning strives to min-
imize the number of replicated vertices. Figure 3 shows a graph with three different
vertex-cut partitionings. The graph edges are partitioned into two clusters. Two col-
ors, yellow and red, are representing these two partitions. Vertices that have edges of
one color only, are also colored accordingly, and the vertices that have to be replicated
are cut. A very naı̈ve solution is to randomly assign edges to partitions. As shown in
Figure 3(a), in a random assignment, nearly all the vertices have edges of different
colors, thus, they have to be replicated in both partitions. Figure 3(b) illustrates what
happens if we use an edge-cut partitioner, and then randomly assign the cut edges to
one of the partitions. As shown, the vertex-cut improves significantly. However, the
number of edges in the partitions is very unbalanced. What we desire is depicted in
Figure 3(c), where the the number of replicated vertices is kept as low as possible,
while the size of the partitions, with respect to the number of edges, is balanced.

A k-way balanced vertex-cut partitioning can be given with the help of a partition
function π : E → {1, . . . , k} that assigns a color to each edge. Hence, π(e), or πe for

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

A Distributed Algorithm For Large-Scale Graph Partitioning 12:5

(a) A random vertex-cut. Edges are

evenly distributed, but nearly all the

vertices have to be replicated.

(b) Partitioning based on edge-cut

and then assigning the cut edges

randomly to one partition. Only one

vertex is replicated, but edges are

not evenly distributed.

(c) A good vertex-cut partitioning.

Three vertices are replicated and the

number of edges in the two partitions

is balanced.

Fig. 3: Vertex-cut partitioning into two clusters. The color of each edge/vertex represents the
partition it belongs to. The cut vertices belong to both partitions.

short, refers to the color of edge e. Edges with the same color form a partition. We
denote the set of edges that are connected (or incident) to vertex p by Ep. Accordingly,
Ep(c) indicates the subset of edges incident with p that have color c:

Ep(c) = {e ∈ Ep : πe = c} (4)

We refer to |Ep(c)| as the cardinality of color c at vertex p. Then, the energy of a
vertex p, denoted by γ(p, π), is defined as the number of different colors assigned to the
edges incident with p, i.e., the number of colors with |Ep(c)| greater than zero.

γ(p, π) =
∑

|Ep(c)|>0

1, ∀ c ∈ {1, . . . , k} (5)

In other words, the energy of a vertex is equivalent to the number of required repli-
cas for that vertex (i.e., the number of times the vertex has to be cut). The energy of
the graph is then the sum of the energy of all its vertices:

Γ(G, π) =
∑

p∈V

γ(p, π) (6)

Now we can formulate an optimization problem as follows: find the optimal parti-
tioning π∗ such that:

π∗ = argminπ Γ(G, π)
s.t. |E(c1)| = |E(c2)|, ∀ c1, c2 ∈ {1, . . . , k}

(7)

where |E(c)| is the number of edges with color c.

2.3. Data Distribution Model

We assume that the vertices of the graph are processed periodically and asyn-
chronously, where each vertex only has access to the state of its immediate neighbors
and a small set of random vertices in the graph. The vertices could be placed either
on an independent host each, or processed in separate threads in a distributed frame-
work. This model, which we refer to as the one-host-one-node model, is appropriate for
frameworks like GraphLab [Low et al. 2012] or Pregel [Malewicz et al. 2010], Google’s
distributed framework for processing very large graphs. It can also be used in peer-to-
peer overlays, where each vertex is an independent computer. In both cases, no shared
memory is required. Vertices communicate only through messages over edges of the
graph, and each message adds to the communication overhead.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:6 F. Rahimian et al.

The algorithm can take advantage of the case when a computer hosts more than
one graph vertex. We call this the one-host-multiple-nodes model. Here, vertices on the
same host can benefit from a shared memory on that host. For example, if a vertex
exchanges some information with other vertices on the same host, the communication
cost is negligible. However, information exchange across hosts is costly and constitutes
the main body of the communication overhead. This model is interesting for data cen-
ters or cloud computing environments, where each computer can emulate thousands
of vertices at the same time.

3. SOLUTION

We propose JA-BE-JA1, a distributed heuristic algorithm for the balanced k-way graph
partitioning problem. We use different colors to identify distinct partitions. The colors
are assigned to either vertices or edges, for edge-cut and vertex-cut partitioning, re-
spectively. We use the term color exchange in both cases, which means the exchange
of colors between vertices for edge-cut partitioning, and between edges for vertex-cut
partitioning. However, in both cases it is always the vertices that act as processing
units and run the algorithm, and edges are only treated as passive elements.

3.1. The Basic Idea

The basic idea is to assign colors uniformly at random and then to apply a local search
to push the configuration towards lower energy states (min-cut).

The local search operator is executed by all the graph vertices in parallel: each vertex
attempts to change either its own color (in edge-cut partitioning), or the color of one
of the edges that is connected to it (in vertex-cut partitioning), to the most dominant
color in the neighborhood. However, in order to preserve the size of the partitions, the
colors cannot change independently. Instead, colors can only be swapped. Each vertex
iteratively selects another vertex among either its neighbors or a random sample, and
investigates the pair-wise utility of a color exchange. If the color exchange decreases
the energy, then the two vertices proceed with the color exchange. Otherwise, they
preserve their colors.

To implement this idea, JA-BE-JA combines two main components: (i) a sampling
component that enables a vertex to choose other vertices for color exchange, and (ii)
a swapping component that indicates if the color swap should happen. The sampling
component is identical in both edge-cut and vertex-cut partitioning, whereas the swap-
ping components are different due to inherent differences in their objective functions.
We will explain these two components in the following sections.

Before delving into the details, however, it is important to note that when ap-
plying local search, the key problem is to ensure that the algorithm does not get
stuck in a local optimum. For this purpose, we employ the simulated annealing tech-
nique [Van Laarhoven and Aarts 1987; Talbi 2009] as we will describe below. Later, in
the evaluation section (Section 4), we show the impact of this technique on the quality
of the final partitioning.

Note, since no color is added to/removed from the graph, the distribution of colors
is preserved during the course of optimization. Hence, if the initial random coloring
of the graph is uniform, we will have balanced partitions at each step. We stress that
this is a heuristic algorithm, so it cannot be proven (or, in fact, expected) that the
globally minimal energy value is achieved. Exact algorithms are not feasible since the
problem is NP-complete [Andreev and Räcke 2004], so the min-cut cannot be computed
in a reasonable time, even with a centralized solution and a complete knowledge of

1JA-BE-JA means “swap” in Persian.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

A Distributed Algorithm For Large-Scale Graph Partitioning 12:7

the graph. In Section 4.1.5, however, we compare our results with the best known
partitioning solutions over a number of benchmark problem instances.

3.2. Sampling Component

In both edge-cut partitioning and vertex-cut partitioning, a vertex should first select a
set of candidate vertices for potential color exchanges. We consider three possible ways
of selecting the candidate set:

— Local (L): every vertex considers its directly connected vertices (neighbors) as candi-
dates for color exchange.

— Random (R): every vertex selects a uniform random sample of the vertices in the
graph. Note that there exist multiple techniques for taking a uniform sample of a
given graph at a low cost [Awan et al. 2006; Dowling and Payberah 2012; Jelasity
et al. 2005; Massoulié et al. 2006; Payberah et al. 2011; Voulgaris et al. 2005].

— Hybrid (H): in this policy first the immediate neighbor vertices are selected (i.e., the
local policy). If this selection fails to improve the pair-wise utility, the vertex is given
another chance for improvement, by letting it select vertices from its random sample
(i.e., the random policy).

We will show later in Section 4.1.2 that the hybrid policy performs better than the
other two in most cases, thus, it is considered as the prime policy in the sampling
component.

3.3. Swapping Component: Edge-cut Partitioning

After finding a set of candidates for a color exchange, a vertex selects the best one from
the set as the swap partner. To decide if two vertices should exchange their colors, we
require: (i) a function to measure the pairwise utility of a color exchange, and (ii) a
policy for escaping local optima. The utility function should be such that it reduces the
energy of the graph, thus, it is different for edge-cut and vertex-cut partitioning. In
both cases, however, the vertex that maximizes the utility function is selected from the
candidate set.

In order to minimize the edge-cut of the partitioning, we try to maximize dp(πp) for
all vertices p in the graph, which only requires local information at each vertex. Two
vertices p and q with colors πp and πq, respectively, exchange their colors only if this
exchange decreases their energy (increases the number of neighbors with a similar
color to that of the vertex):

dp(πq)
α
+ dq(πp)

α
> dp(πp)

α
+ dq(πq)

α
(8)

where α is a parameter of the energy function, which takes on real values greater than
or equal to 1. If α = 1, a color exchange is accepted if it increases the total number of
edges with the same color at two ends. For example, color exchange for vertices p and
q in Figure 4(a) is accepted, as the vertices change from a state with 1 and 0 neighbors
of a similar color, to 1 and 3 such neighbors, respectively. However, vertices u and v in
Figure 4(b), each in a state with 2 neighbors of a similar color, do not exchange their
colors, if α = 1, because 1 + 3 6> 2 + 2. However, if α > 1, then vertices u and v will
exchange their colors. Although this exchange does not directly reduce the total size of
the edge-cut of the graph, it increases the probability of future color exchanges for the
two yellow vertices, currently in the neighborhood of vertex v. In section 4 we evaluate
the effect of the parameter α. Based on this relation, we can define the utility of the
swap as:

U = [dp(πq)
α + dq(πp)

α]− [dp(πp)
α + dq(πq)

α] (9)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:8 F. Rahimian et al.

q♣

(a) Color exchange between p and

q is accepted if α ≥ 1.

✈✉

(b) Color exchange between u and

v is accepted only if α > 1.

Fig. 4: Examples of two potential color exchanges.

The swap will take place if the utility is greater than zero. In Section 4.1.3 we will
discuss about the appropriate value for α.

To avoid becoming stuck in a local optimum, we use the well-known simulated an-
nealing technique [Van Laarhoven and Aarts 1987; Talbi 2009]. We introduce a temper-
ature (T ∈ [1, T0]), which starts at T0 and is decreased over time, similar to the cooling
process in [Van Laarhoven and Aarts 1987; Talbi 2009]. The updated utility functions
becomes:

U = [dp(πq)
α
+ dq(πp)

α
]× Tr − [dp(πp)

α
+ dq(πq)

α
] (10)

As a result, in the beginning we might move in a direction that degrades the energy
function, i.e., vertices exchange their color even if the edge-cut is increased. Over time,
however, we take more conservative steps and do not allow those exchanges that re-
sult in a higher edge-cut. The two parameters of the simulated annealing process are
(i) T0, the initial temperature, which is greater than or equal to one, and (ii) δ, that
determines the speed of the cooling process. The temperature in round r is calculated
as Tr = max{1, Tr−1 − δ}. When the temperature reaches the lower bound 1, it is not
decreased anymore. From then on, the decision procedure falls back on using Equation
(8). Algorithms 1, 2, and 3 show the edge-cut partitioning process.

3.4. Swapping Component: Vertex-cut Partitioning

The swapping component in vertex-cut partitioning and edge-cut partitioning are sim-
ilar, but their difference is in the utility function calculation. The main idea of this
heuristic is to check whether exchanging the color of two edges decreases the energy
of their incident vertices or not. If it does, the two edges swap their colors, otherwise
they keep them.

To every edge e (with two endpoints p and q) we assign a value υ, with respect to
color c, that indicates the relative number of neighboring edges of e with color c. That
is:

υ(e, c) =

{

|Ep(c)|−1
|Ep|

+
|Eq(c)|−1
|Eq|

if c = πe

|Ep(c)|
|Ep|

+
|Eq(c)|
|Eq|

otherwise
(11)

Note that in the first case, Ep(c) and Eq(c) include edge e, and that is why we need
to decrement them by one.

First of all, a vertex selects one of its edges for color exchange. A naı̈ve policy for
edge selection is random selection, but, as explained in [Rahimian et al. 2014], this
policy will not lead our local search in the right direction. Therefore, we consider a
more effective policy, i.e., greedy policy for edge selection. With this policy, a vertex
selects one of its edges, e.g., e, which has a color with the minimum cardinality:

e ∈ Ep(c
∗), c∗ = argmin

c
|Ep(c)| (12)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

A Distributed Algorithm For Large-Scale Graph Partitioning 12:9

Algorithm 1 Edge/Vertex Cut
procedure cut(graph, policy)

// policy identifies the partitioning algorithm, i.g., edge-cut or vertex-cut;
bestPartner ← getBestPartner(self.getNeighbours(), policy, Tr);
if (bestPartner = null) then

bestPartner ← getBestPartner(graph.getRandomV ertices(), policy, Tr);

if (bestPartner 6= null) then
if (policy = EdgeCut) then

swapV ertexColor(self, bestPartner);

else
swapEdgeColor(self, bestPartner);

Tr ← Tr − δ;
if (Tr < 1) then

Tr ← 1;

Algorithm 2 Select Best Partner
procedure getBestPartner(candidates, policy, Tr)

highestUtility ← 0;
bestPartner ← null;
forall (partner ∈ candidates) do

if (policy = EdgeCut) then
utility ← swapV ertexUtility(self, partner, Tr);

else
utility ← swapEdgeUtility(self, partner, Tr);

if ((utility > 0) ∧ (utility > higestUtility)) then
bestPartner ← partner;
highestUtility ← utility;

return bestPartner;

Algorithm 3 Calculate Vertex Utility
procedure swapV ertexUtility(vertex1, vertex2, Tr)

c1← vertex1.getColor();
c2← vertex2.getColor();
u1c1← getV ertexV alue(vertex1, c1);
u2c2← getV ertexV alue(vertex2, c2);
u1c2← getV ertexV alue(vertex1, c2);
u2c1← getV ertexV alue(vertex2, c1);
return ((u1c2α + u2c1α)× Tr)− (u1c1α + u2c2α);

Next, the objective is to maximize the overall value of edges during the color ex-
change process. More precisely, vertex p exchanges the color of its edge e with the color
of another edge e′ owned by node p′, if and only if:

υ(e, c′) + υ(e′, c) > υ(e, c) + υ(e′, c′), (13)

where c = πe and c′ = π′e. Accordingly we can define the utility function as:

U = [υ(e, c′) + υ(e′, c)]− [υ(e, c) + υ(e′, c′)]. (14)

Similar to edge-cut partitioning, we use the simulated annealing technique [Talbi
2009] to prevent getting stuck in a local optimum. Therefore, as shown in Algorithm 4
the updated utility function becomes:

U = [υ(e, c′) + υ(e′, c)]× Tr − [υ(e, c) + υ(e′, c′)] (15)

3.5. Ja-Be-Ja

Algorithm 1 presents the core of JA-BE-JA, which is run periodically by all vertices of
a graph. As it shows, we use the hybrid heuristic for vertex selection, which first tries

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:10 F. Rahimian et al.

Algorithm 4 Calculate Edge Utility
procedure swapEdgeUtility(vertex1, vertex2, Tr)

c1← vertex1.getColorWithMinCardinality();
c2← vertex2.getColorWithMinCardinality();
edg1← vertex1.getEdges(c1).getOneRandom();
edg2← vertex2.getEdges(c2).getOneRandom();
u1c1← getEdgeV alue(edge1.src, edge1.dest, c1);
u2c2← getEdgeV alue(edge2.src, edge2.dest, c2);
u1c2← getEdgeV alue(edge1.src, edge1.dest, c2);
u2c1← getEdgeV alue(edge2.src, edge2.dest, c1);
return ((u1c2 + u2c1)× Tr)− (u1c1 + u2c2);

the local policy, and if it fails it follows the random policy. Algorithms 3 and 4 show
how we calculate the two sides of Equations (10) and (15) for edge-cut and vertex-
cut partitioning, respectively. Also, the current temperature, Tr, biases the comparison
towards selecting new states (in the initial rounds).

Note that the actual swapping operation is implemented as an optimistic transac-
tion, the details of which are not included in the algorithm listing to avoid distraction
from the core algorithm. The actual swap is done after the two vertices perform a hand-
shake and agree on the swap. This is necessary, because the deciding vertex might have
outdated information about the partner vertex. During the handshake, the initiating
vertex sends a swap request to the partner vertex, along with all the information that
the partner vertex needs to verify the swap utility. For example, in case of edge-cut par-
titioning this information includes the current color (πp), the partner’s color (πpartner),
the number of neighbors with the same color (dp(πp)), and the number of neighbors
with the color of the partner vertex (dp(πpartner)). If the verification succeeds, the part-
ner vertex replies with an acknowledgment (ACK) message and the swap takes place.
Otherwise, a negative acknowledgment message (NACK) is sent and the existing color
of the two vertices or edges will be preserved. These sample and swap processes are
periodically repeated by all the vertices, in parallel, and when no more swaps take
place in the graph, the algorithm has converged.

We also use a multi-start search [Talbi 2009], by running the algorithm many times,
starting from different initial states. Note that this technique is applied in a dis-
tributed way. More precisely, after each run, vertices use a gossip-based aggregation
method [Jelasity et al. 2005] to calculate the edge-cut (vertex-cut) in the graph. If the
new edge-cut (vertex-cut) is smaller than the previous one, they update the best so-
lution found so far by storing the new edge-cut (vertex-cut) value together with the
current local color.

In the one-host-multiple-nodes model, the only change required is to give preference
to local host swaps when selecting the best partner, i.e., in Algorithm 2. That is, if
there are several vertices as potential partners for a swap, the vertex selects the one
that is located on the local host, if there is such a candidate. Note that in this model
not each and every vertex requires to maintain a random view for itself. Instead, the
host can maintain a large enough sample of the graph to be used as a source of samples
for all hosted vertices. In Section 4.1.4, we study the trade-off between communication
overhead and the edge-cut with and without considering the locality.

3.6. Generalizations of Ja-Be-Ja

So far, we have discussed the case when the graph edges are not weighted and the
partition sizes are equal. However, JA-BE-JA is not limited to these cases. In this sec-
tion, we briefly describe how it can deal with weighted graphs and produce arbitrary
pre-defined partition sizes.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

A Distributed Algorithm For Large-Scale Graph Partitioning 12:11

Weighted graphs. In real world applications, vertices and/or edges are often
weighted. For example, in a graph database some operations are performed more fre-
quently, thus, some edges are accessed more often [Dominguez-Sal et al. 2010]. In order
to prioritize such edges for edge-cut partitioning of a graph, we change the definition
of dp, such that, instead of just counting the number of neighboring vertices with the
same color, we sum the weights of these edges:

dp(c) =
∑

q∈Np(c)

w(p, q) (16)

where w(p, q) is the weight of the edge between p and q.
A similar approach can be taken, in order to enable vertex-cut partitioning for

graphs with weighted vertices.

Arbitrary partition sizes. Assume we want to split the data over two machines that
are not equally powerful. If the first machine has twice as much resources than the
second one, we need a 2-way partitioning with one component being twice as large as
the other. To do that, we can initialize the graph partitioning with a biased distribution
of colors. For example, for edge-cut partitioning, if vertices initially choose randomly
between two partitions c1 and c2, such that c1 is twice as likely to be chosen, then the
final partitioning will have a partition c1, which is twice as big. This is true for any
distribution of interest, as JA-BE-JA is guaranteed to preserve the initial distribution
of colors. Likewise, for vertex-cut partitioning, any given distribution for the edge col-
ors can be used for initialization, and from then on this distribution will remain an
invariant.

4. EXPERIMENTAL EVALUATION

We have implemented JA-BE-JA on PEERSIM [Montresor and Jelasity 2009], a dis-
crete event simulator for building P2P protocols. We used multiple graphs of different
nature and size for evaluating JA-BE-JA. In particular, we have considered four types
of graphs: (i) two synthetically generated graphs, (ii) several graphs from the Walshaw
archive [Walshaw 2012b], (iii) sampled graphs from two well-known social networks:
Twitter [Galuba et al. 2010] and Facebook [Viswanath et al. 2009], and (iv) two collab-
oration networks from the Stanford snap dataset [Leskovec 2011]. These graphs and
some of their properties are listed in Table I.

Synthetic Graphs. We generated two different graphs synthetically. The first one is
based on the Watts-Strogatz model [Watts and Strogatz 1998], with 1000 vertices and
average degree 8 per vertex. First, a lattice is constructed and then some edges are
rewired with probability 0.02. We refer to this graph as Synth-WS. The second graph,
Synth-SF, is an implementation of the Barabási-Albert model [Albert and Barabási
2002] of growing scale-free networks. This graph also includes 1000 vertices with an
average degree of 16. Both graphs are undirected and there are no parallel edges ei-
ther.

The Walshaw Archive. The Walshaw archive [Walshaw 2012b] consists of the best
partitioning found to date for a set of graphs, and reports the partitioning algorithms
that achieved those best results. This archive, which has been active since the year
2000, includes the results from most of the major graph partitioning software pack-
ages, and is kept updated regularly by receiving new results from the researchers in
this field. For our experiments, we have chosen graphs add20, data, 3elt, 4elt, and
vibrobox, which are the small and medium size graphs in the archive, listed in Table I.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:12 F. Rahimian et al.

Table I: Datasets.

Dataset |V| |E| Type Power-law Reference

Synth-WS 1000 4147 Synth. No -
Synth-SF 1000 7936 Synth. No -
add20 2395 7462 Walshaw No [Walshaw 2012b]
data 2851 15093 Walshaw No [Walshaw 2012b]
3elt 4720 13722 Walshaw No [Walshaw 2012b]
4elt 15606 45878 Walshaw No [Walshaw 2012b]
vibrobox 12328 165250 Walshaw No [Walshaw 2012b]
Twitter 2731 164629 Social Yes [Galuba et al. 2010]
Facebook 63731 817090 Social Yes [Viswanath et al. 2009]
Astroph 17903 196972 Collaboration Yes [Leskovec 2011]
Email-Enron 36692 367662 Collaboration Yes [Leskovec 2011]

The Social Network Graphs. Since social network graphs are one of the main tar-
gets of our partitioning algorithm, we investigate the performance of JA-BE-JA on two
sampled datasets, which represent the social network graphs of Twitter and Face-
book. We sampled our Twitter graph from the follower network of 2.4 million Twit-
ter users [Galuba et al. 2010]. There are several known approaches for producing
an unbiased sample of a very large social network, such that the sample has simi-
lar graph properties to those of the original graph. We used an approach discussed
in [Kurant et al. 2010] sampling nearly 10000 vertices by performing multiple breadth
first searches (BFS). We also used a sample graph of Facebook, which is made available
by Viswanath et al. [Viswanath et al. 2009]. This data is collected by crawling the New
Orleans regional network during December 29th, 2008 and January 3rd, 2009, and
includes those users who had a publicly accessible profile in the network. The data,
however, is anonymized.

The Collaboration Network Graphs. Two graphs among our input dataset fall into
this category: Astroph and Email-Enron. We have selected these two graphs only
for the sake of comparison with the state-of-the-art work on vertex-cut partition-
ing [Guerrieri and Montresor 2014]. Therefore, the result for edge-cut partitioning of
these graphs is not reported.

We organize the rest of this section in two main parts, one for edge-cut partitioning
and the other for vertex-cut partitioning.

4.1. Edge-cut Partitioning

First, we investigate the impact of different heuristics and parameters on different
types of graphs. Then, we conduct an extensive experimental evaluation to compare
the performance of JA-BE-JA to (i) METIS [Karypis and Kumar 1999a], a well-known
efficient centralized solution, and (ii) the best known available results from the Wal-
shaw benchmark [Walshaw 2012b] for several graphs. Unless stated otherwise, we
compute a 4-way partitioning of the input graph with initial temperature T0 = 2, the
temperature is reduced by δ = 0.003 in each step until it reaches value 1. However, the
algorithm will continue to run until there are no changes/swaps anymore. The param-
eter α is set to 2. In Section 4.1.3 we will show how we have come to select these values
for these parameters.

4.1.1. Metrics. Although the most important metric for edge-cut graph partitioning is
the size of the edge-cut (or energy), there are a number of studies [Hendrickson 1998]

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

A Distributed Algorithm For Large-Scale Graph Partitioning 12:13

that show that this metric alone is not enough to measure the partitioning quality.
Several metrics are, therefore, defined and used in the literature [Meyerhenke et al.
2008; Meyerhenke et al. 2009], among which we selected the following ones in our
evaluations:

— edge-cut: the number of inter-partition edges, as given in Formula 2, i.e., E(G, π).
— swaps: the number of swaps that take place between different hosts during run-time

(that is, swaps between graph vertices stored on the same host are not counted).
— data migration: the number of vertices that need to be migrated from their initial

partition to their final partition.

While the size of the edge-cut is a quality metric for partitioning, the number of
swaps defines the cost of the algorithm. Moreover, the data migration metric makes
sense only in the one-host-multiple-nodes model, where some graph vertices have to
migrate from one physical machine to another after finding the final partitioning. If
the graph vertices that are initially located at a given host get the same initial color,
then this metric is given by the number of vertices that end up with a different color
by the time the algorithm has converged.

In all the experiments that follow, we have executed the algorithm 10 times for each
graph. The only exception is the Facebook graph, for which we only ran the experi-
ments 3 times. The value reported for the edge-cut in all the tables and plots is the
minimum edge-cut among different runs. For the number of swaps and migrations,
we report the ones associated with the reported (minimum) edge-cut. Note that in all
cases, we could also report the average and the standard deviation or variance of the
edge-cut across different runs. But we observed a similar trend for the average and
minimum when it came to tuning the parameters and drawing conclusions. Therefore,
to be consistent with the related work, and at the same time not to overwhelm read-
ers with numbers, we report the minimum edge-cut only. For the sake of completion
however, we report the average edge-cut and the standard deviation of different runs
in Section 4.1.5, where we compare JA-BE-JA with the state-of-the-art.

4.1.2. The impact of the sampling policies. In this section, we study the effect of different
sampling heuristics on the edge-cut. These heuristics were introduced in Section 3.2
and are denoted by L, R, and H . Here, we evaluate the one-node-one-host model, and to
take uniform random samples of the graph we applied Newscast [Jelasity et al. 2005;
Tölgyesi and Jelasity 2009] in our implementation. As shown in Table II, all heuristics
significantly reduce the initial edge-cut that belongs to a random partitioning. Even
with heuristic L, which only requires the information about direct neighbors of each
vertex, the edge-cut is reduced to 30% of the initial number for the Facebook graph.
The random selection policy (R) works even better than local (L) for all the graphs,
as it is less likely to get stuck in a local optimum. The best result for most graphs,
however, is achieved with the combination of L and R: the hybrid heuristic (H).

4.1.3. The impact of the swapping policies. In these experiments, we study the effect of the
parameters that define the swapping policies, introduced in Section 3.3. We investigate
the impact of the parameters on the final edge-cut, as well as on the number of swaps.

Table III contains the edge-cut values achieved with different values of α, a param-
eter of the swapping condition in Equation (8). The setting α = 2 gives the best result
for most of the graphs. Previously, we explained that it is good to use an α greater
than 1, because it encourages swaps that do not change the edge-cut, but only change
the distribution of color around the two negotiating vertices, in favor of vertices with
a higher degree. For example, instead of having two vertices with 3 neighbors of simi-
lar color each, we prefer to have one vertex with 5 similar neighbors and another one
with 1 similar neighbor. The sum will still be the same, i.e., 6. However, if α is set to a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:14 F. Rahimian et al.

Table II: The minimum edge-cut achieved with different sampling heuristics. α = 2 and simu-

lated annealing is used.

Graph initial Local Random Hybrid

Synth-WS 3127 1051 600 221
Synth-SF 5934 4571 4151 4169
add20 5601 3241 1446 1206
data 11326 3975 1583 775
3elt 10315 4292 1815 390
4elt 34418 14304 6315 1424
vibrobox 123931 42914 22865 23174
Twitter 123683 45568 41079 41040
Facebook 612585 181661 119551 117844

Table III: The minimum edge-cut achieved with different values for α. Hybrid sampling and

simulated annealing are used.

Graph initial α = 1 α = 2 α = 3

Synth-WS 3127 265 221 290
Synth-SF 5934 4190 4169 4215
add20 5601 1206 1206 1420
data 11326 618 775 1241
3elt 10315 601 390 1106
4elt 34418 1473 1424 2704
vibrobox 123931 23802 23174 25602
Twitter 123683 40775 41040 41247
Facebook 612585 124328 117844 133920

Table IV: The minimum edge-cut achieved with and without simulated annealing, while α = 2

and Hybrid sampling is used.

Graph initial without simulated annealing with simulated annealing

Synth-WS 3127 503 221
Synth-SF 5934 4258 4169
add20 5601 1600 1206
data 11326 1375 775
3elt 10315 1635 390
4elt 34418 6240 1424
vibrobox 123931 26870 23174
Twitter 123683 41087 41040
Facebook 612585 152670 117844

high value, then it can also encourage swaps that decrease this sum, thus, increase the
edge-cut. For example, with α = 3 we could end up in a state where the two vertices
have 4 and 1 similar neighbors, respectively; because 43+13 > 33+33, while the initial
state with 3 and 3 similar neighbors was a better state. The higher α gets, the more
likely such wrong swaps will take place. This is confirmed in the experiments that we
conducted. As shown in Table III, even with α = 3 vertices seem to overestimate the
value of some swaps and end up in an inferior state. Note, this effect could happen
even in case of α = 2, but the number of wrong decision will be far lower than the good
decisions. Therefore, we use α = 2 in the rest of our experiments.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

A Distributed Algorithm For Large-Scale Graph Partitioning 12:15

 0

 500

 1000

 1500

 2000

 2500

0.001

0.003

0.01
0.03

0.1
0.3

1
 0

 100000

 200000

 300000

 400000

 500000

 600000

e
d
g
e
-c

u
t
(Y

1
)

n
u
m

.
o
f
s
w

a
p
s
 (

Y
2
)

delta

edge-cuts (Y1-axis)
num. of swaps (Y2-axis)

(a) add20 graph.

 0

 500

 1000

 1500

 2000

 2500

0.001

0.003

0.01
0.03

0.1
0.3

1
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

e
d
g
e
-c

u
t
(Y

1
)

n
u
m

.
o
f
s
w

a
p
s
 (

Y
2
)

delta

edge-cuts (Y1-axis)
num. of swaps (Y2-axis)

(b) 3elt graph.

 0

 10000

 20000

 30000

 40000

 50000

0.001

0.003

0.01
0.03

0.1
0.3

1
 0

 100000

 200000

 300000

 400000

 500000

e
d
g
e
-c

u
t
(Y

1
)

n
u
m

.
o
f
s
w

a
p
s
 (

Y
2
)

delta

edge-cuts (Y1-axis)
num. of swaps (Y2-axis)

(c) Twitter graph.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

0.001

0.003

0.01
0.03

0.1
0.3

1
 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

e
d
g
e
-c

u
t
(Y

1
)

n
u
m

.
o
f
s
w

a
p
s
 (

Y
2
)

delta

edge-cuts (Y1-axis)
num. of swaps (Y2-axis)

(d) Facebook graph.

Fig. 5: The number of swaps and edge-cut over δ.

Table IV lists the edge-cut with and without simulated annealing (SA). In the simu-
lations without SA, we set T0 = 1, which is the lowest allowed temperature in our case
(see Equation (10)). Although the improvements due to SA might be minor for some
graphs, for other graphs with various local optima SA can lead to a much smaller edge-
cut. We also ran several experiments to investigate the effect of T0 and observed that
T0 = 2 gives the best results in most cases.

The other parameter of the simulated annealing technique is δ, the speed of the
cooling process. We investigate the impact of δ on the edge-cut and on the number of
swaps. Figure 5 shows the results as a function of different values for δ. The higher δ is,
the higher the edge-cut is (Y1-axis) and the smaller the number of swaps is (Y2-axis).
In other words, δ represents a trade-off between the number of swaps and the quality of
the partitioning (edge-cut). Note that a higher number of swaps means both a longer
convergence time and more communication overhead. For example, for δ = 0.003, it
takes around 334 rounds for the temperature to decrease from 2 to 1, and in just very
few rounds after reaching the temperature of 1, the algorithm converges. Interestingly,
the social network graphs are very robust to δ in terms of the edge-cut value, so in the
case of highly clustered graphs the best choice seems to be a relatively fast cooling
schedule.

4.1.4. Locality. Here, we investigate the evolution of the edge-cut, the number of
swaps, and the number of migrations over time, assuming the one-host-multiple-nodes
model. Recall, that swaps between vertices within the same host are not counted. We
assume there are four hosts in the systems, where each host gets a random subset

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:16 F. Rahimian et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

50 100
150

200
250

300
350

400
450

500

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

e
d
g
e
-c

u
t

C
D

F
 o

f
n
u
m

.
o
f
in

te
r-

h
o
s
t
s
w

a
p
s

cycles

edge-cut (with locality)
swaps (with locality)

edge-cut (no locality)
swaps (no locality)

(a) add20 graph.

 0

 2000

 4000

 6000

 8000

 10000

 12000

50 100
150

200
250

300
350

400
450

500

 0

 50000

 100000

 150000

 200000

 250000

 300000

e
d
g
e
-c

u
t

C
D

F
 o

f
n
u
m

.
o
f
in

te
r-

h
o
s
t
s
w

a
p
s

cycles

edge-cut (with locality)
swaps (with locality)

edge-cut (no locality)
swaps (no locality)

(b) 3elt graph.

 0

 20000

 40000

 60000

 80000

 100000

 120000

50 100
150

200
250

300
350

400
450

500

 0

 50000

 100000

 150000

 200000

e
d
g
e
-c

u
t

C
D

F
 o

f
n
u
m

.
o
f
in

te
r-

h
o
s
t
s
w

a
p
s

cycles

edge-cut (with locality)
swaps (with locality)

edge-cut (no locality)
swaps (no locality)

(c) Twitter graph.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

50 100
150

200
250

300
350

400
450

500

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

e
d
g
e
-c

u
t

C
D

F
 o

f
n
u
m

.
o
f
in

te
r-

h
o
s
t
s
w

a
p
s

cycles

edge-cut (with locality)
swaps (with locality)

edge-cut (no locality)
swaps (no locality)

(d) Facebook graph.

Fig. 6: Evolution of edge-cut and the number of swaps over time.

of vertices initially. They run the algorithm to find a better partitioning by repeating
the sample and swap steps periodically, until no more swaps occur (convergence). As
shown in Figure 6, in both models, the algorithm converges to the final partitioning
in round 350, that is, shortly after the temperature reaches 1. We also observe that
the convergence time is mainly dependent on the parameters of the simulated anneal-
ing process, and so it can be controlled by the initial temperature T0 and the cooling
schedule parameter δ.

Although (as we have seen) we can achieve a much lower number of swaps in Twitter
and Facebook graphs with higher values of δ without sacrificing the solution quality
(Figures 5(c) and 5(d)), we have performed these experiments with the same setting of
δ = 0.003 for all the graphs. As shown in Figure 6(b), locally biased swapping results
in relatively more inter-host swaps over the 3elt graph. Fortunately, in the rest of the
graphs—that include the practically interesting social network samples as well—we
can see the opposite (and more favorable) trend, namely that JA-BE-JA achieves the
same edge-cut with much fewer inter-host swaps. We speculate that this is due to the
fact that in the latter group of graphs there are various partitionings of the graph with
a similar edge-cut value, thus, local swaps will be more likely to be good enough.

When the goal is to re-arrange the graph, data is not actually moved before the algo-
rithm has converged to the final partitioning. Instead, on a given host, all vertices are
initialized with the same color. During run-time, only the color labels are exchanged.
The color of a vertex may change several times before convergence. When the algo-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

A Distributed Algorithm For Large-Scale Graph Partitioning 12:17

Table V: The number and the fraction of vertices that need to migrate.

graph |V | |mig| fraction

Synth-WS 1000 720 72%
add20 2395 1740 72.6%
3elt 4720 3436 72.7%
Twitter 2731 2000 73%
Facebook 63731 47555 74.6%

Table VI: The average and minimum edge-cut achieved by JA-BE-JA vs. METIS vs. the best

known edge-cut.

Graph JA-BE-JA JA-BE-JA METIS Best known edge-cut
AVG (STD) MIN

Synth-WS 264 (27) 221 210 -
Synth-SF 4183 (13) 4169 4279 -
add20 1376(114) 1206 1276 1159 ([Chardaire et al. 2007])
data 974 (84) 775 452 382 ([Benlic and Hao 2011b])
3elt 516 (87) 390 224 201 ([Soper et al. 2004])
4elt 1690 (133) 1424 374 326 ([Walshaw 2012a])
vibrobox 24501 (767) 23174 22526 19098 ([Benlic and Hao 2011b])
Twitter 41251 (186) 41040 65737 -
Facebook 125395 (7124) 117844 117996 -

rithm converges, each data item (vertex) is migrated from its initial partition to its
final partition indicated by its color.

Note that migration could be optimized given the final partitioning, but we simply
assume that vertices with a color different from the original color will migrate. Table V
shows the number of data items that need to be migrated after the convergence of the
algorithm. As expected, this number constitutes nearly 75% of the vertices for a 4-
way partitioning. This is because each vertex initially selects one out of four partitions
uniformly at random, and the probability that it is not moved to a different partition
is only 25%. Equivalently, 25% of the vertices stay in their initial partition and the
remaining 75% have to migrate.

4.1.5. Comparison With the State-of-the-Art. In this section, we compare JA-BE-JA to
METIS [Karypis and Kumar 1999a] on all the input graphs. We also compare these
results to the best known solutions for the graphs from the Walshaw benchmark [Wal-
shaw 2012b]. Table VI shows the edge-cut produced for the 4-way partitioning of the
input graphs. In this table, we have also reported the average edge-cut achieved by
JA-BE-JA, as well as the standard deviation across multiple runs. However, to be fair,
we always compare the minimum edge-cut achieved by any of the solutions against
each other. As shown, for some graphs, METIS produces better results, and for some
others JA-BE-JA works better. However, the advantage of JA-BE-JA is that it does not
require all the graph data at once, and therefore, it is more practical when processing
very large graphs.

Next, we investigate the performance of the algorithms, in terms of edge-cut, when
the number of the required partitions grows. Figure 7 shows the resulting edge-cut of
JA-BE-JA versus METIS for 2 to 64 partitions. Naturally, when there are more parti-
tions in the graph, the edge-cut will also grow. However, as shown in most of the graphs
(except for 3elt), JA-BE-JA finds a better partitioning compared to METIS, when the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:18 F. Rahimian et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 4 8 16 32 64

e
d
g
e
-c

u
ts

number of partitions

Ja-be-Ja
METIS

(a) add20 graph.

 0

 500

 1000

 1500

 2000

 2500

 3000

2 4 8 16 32 64

e
d
g
e
-c

u
ts

number of partitions

Ja-be-Ja
METIS

(b) 3elt graph.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

2 4 8 16 32 64

e
d
g
e
-c

u
ts

number of partitions

Ja-be-Ja
METIS

(c) Twitter graph.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

2 4 8 16 32 64

e
d
g
e
-c

u
ts

number of partitions

Ja-be-Ja
METIS

(d) Facebook graph.

Fig. 7: The minimum edge-cut achieved with JA-BE-JA vs. METIS for various number of parti-

tions (k)

number of partitions grows. In particular, JA-BE-JA outperforms METIS in the social
network graphs. For example, as shown in Figure 7(d) the edge-cut in METIS is nearly
20K more than JA-BE-JA. Note that unlike METIS, JA-BE-JA does not make use of any
global information or operation over the entire graph.

4.2. Vertex-cut partitioning

In this section, we first introduce the metrics that we used for evaluating our solution.
Then, we study the impact of our simulated annealing parameters on the partitioning
quality. Next, we show how different policies, introduced in Section 3.4, perform. We
also measure the performance of these policies in scale, and compare them to two state
of the art solutions.

4.2.1. Metrics. We measure the following metrics to evaluate the quality of the vertex-
cut partitioning:

— Vertex-cut: this metric counts the number of times that graph vertices have to be
cut. That is, a vertex with one cut has replicas in two partitions, and a vertex with
two cuts is replicated over three partitions. This is an important metric for when
we want to put the partitioned graph in use (e.g., let’s assume we want to compute
Page Rank algorithm on an already partitioned graph). If a graph vertex is repli-
cated over several partitions, every computation that involves a modification to that
vertex, should be propagated to all the other replicas of that vertex, for the sake of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

A Distributed Algorithm For Large-Scale Graph Partitioning 12:19

✥

� ✥ ✥

✁ ✥ ✥

✂ ✥ ✥

✄ ✥ ✥

☎ ✥ ✥

✆ ✥ ✥

✥ ✵ ✥ ✥ ☎ ✥ ✵ ✥ ✥ ✁ ☎ ✥ ✵ ✥ ✥ � ✥ ✵ ✥ ✥ ✥ ✝ ☎ ✥ ✵ ✥ ✥ ✥ ☎

❱
✞
✟
✠✞
✡
☛
☞
✌
✠

❞

❚
✍

✎ ✁

❚
✍

✎ ✂

❚
✍

✎ ✄

❚
✍

✎ ☎

(a) Vertex-cut

✥

� ✥ ✥ ✥

✁ ✥ ✥ ✥

✂ ✥ ✥ ✥

✄ ✥ ✥ ✥

☎ ✥ ✥ ✥ ✥

✥ ✵ ✥ ✥ ✆ ✥ ✵ ✥ ✥ � ✆ ✥ ✵ ✥ ✥ ☎ ✥ ✵ ✥ ✥ ✥ ✝ ✆ ✥ ✵ ✥ ✥ ✥ ✆

◆
✞
✟

✠
✡
☛
☞
✡
✞
✌
✍
✎

❞

❚
✏

✑ �

❚
✏

✑ ✒

❚
✏

✑ ✁

❚
✏

✑ ✆

(b) Rounds to Converge

Fig. 8: Tuning simulated annealing parameters on data graph from the Walshaw archive (K=2)

consistency. Therefore, vertex-cut directly affects the communication cost imposed by
the partitioned graph.

— Normalized vertex-cut: this metric calculates the vertex-cut of the final partitioning
relative to the random partitioning, thus, it shows to what extent the algorithm can
reduce the vertex-cut.

— Standard deviation of partition sizes: this metric measures the Standard Deviation
(STD) of normalized size of the partitions. More precisely, we first measure the size of
the partitions, in terms of the number of edges, relative to the average (expected) size.
In a perfect balanced partitioning the normalized size should be 1. We then calculate
how much the normalized size deviates from 1.

Each experiment is repeated 3 times per graph, and for the sake of consistency we
report the values associated with the minimum vertex-cut achieved among the 3 runs.
Note that the trends and conclusions would remain the same should we had used the
average values instead.

4.2.2. Tuning the parameters. We conducted several experiments to tune the two param-
eters of the simulated annealing, namely T0 and δ. For these experiments we selected
the Data graph (Table I) and k = 2. As shown in Figure 8(a), the vertex-cut decreases
when T0 increases. However, Figure 8(b) illustrates that this improvement is achieved
in a higher number of rounds, that is, a bigger T0 delays the convergence time. Sim-
ilarly, a smaller δ results in a better vertex-cut, at the cost of more rounds. In other
words, T0 and δ are parameters of a trade-off between vertex-cut and the convergence
time and can be tuned based on the priorities of the applications (see Section 4.1.3
for a similar argument). Moreover, we found that for a larger k, it is better to choose a
smaller δ, because when the number of partitions increases, the solution space expands
and it is more likely for the algorithm to get stuck in local optima. Unless otherwise
mentioned, in the rest of our experiments, we use δ = 0.0005 for k = 32 and k = 64, and
δ = 0.001 for other values of k.

4.2.3. Performance. Figure 9(a) depicts how the vertex-cut changes for various num-
bers of partitions. To better understand this result, we also report the vertex-cut of
JA-BE-JA relative to that of a random partitioning in Figure 9(b). As shown, JA-BE-
JA reduces the vertex-cut to nearly 10-15% for Data and 4elt graphs, and to 20-30%
for our power-law graphs. Note, in general the vertex-cut is expected to increase with
higher number of partitions. If we only had one partition, there would be no vertex-
cut. As soon as we have more than one partition, the vertices on the border of those
partitions have to be cut. The more the partitions, the bigger the bordering region gets,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:20 F. Rahimian et al.

✥

� ✥ ✥ ✥ ✥

✁ ✥ ✥ ✥ ✥

✂ ✥ ✥ ✥ ✥

✄ ✥ ✥ ✥ ✥

☎ ✥ ✥ ✥ ✥ ✥

☎ � ✥ ✥ ✥ ✥

☎ ✥ � ✥ ✆ ✥ ✁ ✥ ✝ ✥ ✂ ✥

❱
✞
✟✠
✞
✡
☛☞
✌
✠

◆ ✍ ✎ ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✗ ✖ ✗ ✑ ✘ ✙ ✚ ✛ ✜

❞ ✔ ✖ ✔

✁ ✹ ✢ ✖

✹ ✎ ✔ ✗ ✢ ❡ ✹ ✘ ✕ ✑ ✘

✔ ✙ ✖ ✕ ✑ ❛ ✣

(a) Vertex-cuts.

✥

✥ � ✁

✥ � ✂

✥ � ✄

✥ � ☎

✥ � ✆

✁ ✥ ✂ ✥ ✄ ✥ ☎ ✥ ✆ ✥ ✝ ✥

◆
✞
✟✠
✡
☛☞
✌
✍
✎
✏
✍
✟✑
✍
✒
✓✔
✕
✑

✖ ✗ ✘ � ✙ ✚ ✛ ✜ ✢ ✣ ✤ ✣ ✤ ✙ ✦ ✧ ★ ✩ ✪

❞ ✜ ✣ ✜

☎ ✹ ✫ ✣

✹ ✘ ✜ ✤ ✫ ❡ ✹ ✦ ✢ ✙ ✦

✜ ✧ ✣ ✢ ✙ ❛ ✬

(b) Normalized vertex-cut

Fig. 9: The improvements for different number of partitions.

thus, the more vertices are cut. In the extreme case, where every edge has a distinct
color, all the vertices have to be cut over and over (depending on their degree), and no
improvement would be possible compared to a random partitioning.

4.2.4. Comparisons to the state of the art. In this section, to distinguish JA-BE-JA for
edge-cut partitioning and vertex-cut partitioning, we call the former one JA-BE-JA-
EC, and the latter one JA-BE-JA-VC. We compare JA-BE-JA-VC to JA-BE-JA-EC, and
also to a vertex-cut partitioner by Guerrieri et al. [Guerrieri and Montresor 2014],
which employs one of the two policies, namely D-fep or D-fep Variant. We also show
how it would be to employ an edge-cut partitioner, e.g., JA-BE-JA-EC, to partition the
graph, and then, assign the cut edges randomly to one of the partitions, where their
endpoints belong to. This is similar to the example in Figure 3(b). This experiment is
performed on Astroph and Email-Enron graphs with k = 20. To make the comparisons
easier, instead of reporting the raw numbers for vertex-cut, we report the normalized
vertex-cut, that is the vertex-cut relative to that of a random partitioning. As shown in
Figure 10(a), JA-BE-JA-EC produces the minimum vertex-cut. However, Figure 10(b)
shows that the partition sizes are very unbalanced. Note, JA-BE-JA-EC balances the
number of vertices across partitions, and here we are measuring the partition size
in terms of the number of edges. That is why JA-BE-JA-EC deviates from balanced
partition sizes. The vertex-cuts of D-fep and its variant are more than JA-BE-JA-EC,
but their partition sizes are much more balanced. JA-BE-JA-VC has a better vertex cut
than D-fep and its variant, while the partition sizes are nearly equal.

As explained in Section 4.2.2, the convergence time of JA-BE-JA-VC is independent
of the graph size and is mainly affected by the parameters of the simulated annealing
process. While this is true for JA-BE-JA-VC, [Guerrieri and Montresor 2014] shows
that both D-fep and its variant converge in only very few rounds and produce very
good vertex-cuts for graphs Astroph and Email-Enron. However, as depicted in Fig-
ure 10(b) these algorithms do not maintain the balance of the partition sizes. In fact,
without proper coordination, the standard deviation of the partition size distribution
could grow to prohibitively large levels. JA-BE-JA-VC, however, maintains the initial
distribution of edge colors, and can even be used to produce partitions of any desired
size distribution, with a better vertex-cut. This comes, however, at the cost of a longer
running time.

5. RELATED WORK

In this section we study some of the existing work on both edge-cut and vertex-cut
partitioning.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

A Distributed Algorithm For Large-Scale Graph Partitioning 12:21

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Astroph Email-Enron

N
o
rm

a
liz

e
d
 v

e
rt

e
x
-c

u
t

Graph

Random
D-fep

D-fep variant
Ja-be-Ja-VC
Ja-be-Ja-EC

(a) Normalized vertex-cuts.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Astroph Email-Enron

S
T

D
 o

f
p

a
ti
to

n
 s

iz
e

 d
is

tr
ib

u
ti
o

n

Graph

Random
D-fep

D-fep variant
Ja-be-Ja-VC
Ja-be-Ja-EC

(b) Standard deviation of partition sizes

Fig. 10: Comparisons (k=20)

5.1. Edge-cut Partitioning

A significant number of algorithms exist for edge-cut partitioning [Baños et al. 2003;
Bui and Moon 1996; Hendrickson and Leland 1995; Karypis and Kumar 1998; 1999b;
Walshaw and Cross 2000; Sanders and Schulz 2011]. These algorithms can be classi-
fied into two main categories: (i) centralized algorithms, which assume cheap random
access to the entire graph, and (ii) distributed algorithms.

A common approach in the centralized edge-cut partitioning is to use Multilevel
Graph Partitioning (MGP) [Hendrickson and Leland 1995]. METIS [Karypis and Ku-
mar 1998] is a well-known algorithm based on MGP that combines several heuris-
tics during its coarsening, partitioning, and un-coarsening phases to improve the cut
size. KAFFPA [Sanders and Schulz 2011] is another MGP algorithm that uses local
improvement algorithms based on flows and localized searches. There exist also other
works that combined different meta-heuristics with MPG, e.g., Soper et al. [Soper et al.
2004] and Chardaire et al. [Chardaire et al. 2007] used a Genetic Algorithm (GA) with
MPG, and Benlic et al. [Benlic and Hao 2011a] utilized Tabu search.

Parallelization is a technique used by some systems to speed up the partitioning
process. For example, PARMETIS [Karypis and Kumar 1999b] is the parallel version of
METIS, KAFFPAE [Sanders and Schulz 2012] is a parallelized version of its ancestor
KAFFPA [Sanders and Schulz 2011], and [Talbi and Bessiere 1991] is a parallel graph
partitioning technique based on parallel GA [Luque and Alba 2011].

Although the above algorithms are fast and produce good min-cuts, they require
access to the entire graph at all times, which is not feasible for large graphs. Ja-be-
Ja [Rahimian et al. 2013] is a recent algorithm, which is fully distributed and uses
local search and simulated annealing techniques [Talbi 2009] for graph partitioning.
In this algorithm each vertex is processed independently, and only the direct neighbors
of the vertex, and a small subset of random vertices in the graph need to be known
locally. DIDIC [Gehweiler and Meyerhenke 2010] and CDC [Ramaswamy et al. 2005]
are two other distributed algorithms for graph partitioning, which eliminate global
operations for assigning vertices to partitions. However, DIDIC does not guarantee
to produce equal-size partitions. Moreover, while it can enforce an upper bound on
the number of created partitions, it does not have control over the exact number of
partitions [Averbuch and Neumann 2013].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:22 F. Rahimian et al.

5.2. Vertex-cut Partitioning

While there exist numerous solutions for edge-cut partitioning, very little effort has
been made for vertex-cut partitioning. SBV-Cut [Kim and Candan 2012] is one of the
few algorithms for vertex-cut partitioning. First, a set of balanced vertices are identi-
fied for bisecting a directed graph. Then, the graph is further partitioned by a recur-
sive application of structurally-balanced cuts to obtain a hierarchical partitioning of
the graph.

PowerGraph [Gonzalez et al. 2012] is a distributed graph processing framework that
uses vertex-cuts to evenly assign edges of a graph to multiple machines, such that
the number of machines spanned by each vertex is small. PowerGraph reduces the
communication overhead and imposes a balanced computation load on the machines.
GraphX [Xin et al. 2013] is another graph processing system on Spark [Zaharia et al.
2010; Zaharia et al. 2012] that uses a vertex-cut partitioning.

DFEP [Guerrieri and Montresor 2014] is the most recent distributed vertex-cut par-
titioning algorithm. It works based on a market model, where the partitions are buy-
ers of vertices with their funding. Initially, all partitions are given the same amount of
funding. Then, in each round, a partition p tries to buy edges that are neighbors of the
already taken edges by p, and an edge will be sold to the highest offer. There exists a
coordinator in the system that monitors the size of each partition and sends additional
units of funding to the partitions, inversely proportional to the size of each partition.

6. CONCLUSION

We provided an algorithm that, to the best of our knowledge, is the first distributed
algorithm for balanced graph partitioning that does not require any global knowledge.
To compute the partitioning, nodes of the graph require only some local information
and perform only local operations. Therefore, the entire graph does not need to be
loaded into memory, and the algorithm can run in parallel on as many computers as
available. We showed that our algorithm can achieve a quality partitioning as good
as a centralized algorithm. We also studied the trade-off between the quality of the
partitioning versus the cost of it, in terms of the number of swaps during the run-time
of the algorithm.

REFERENCES

Amine Abou-Rjeili and George Karypis. 2006. Multilevel algorithms for partitioning power-law graphs. In
Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 10–
pp.

Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex networks. Reviews of mod-
ern physics 74, 1 (2002), 47.

Réka Albert, Hawoong Jeong, and Albert-László Barabási. 2000. Error and attack tolerance of complex
networks. Nature 406, 6794 (2000), 378–382.

Konstantin Andreev and Harald Räcke. 2004. Balanced Graph Partitioning. In Proceedings of ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA). ACM, 120–124.

Alex Averbuch and Martin Neumann. 2013. Partitioning Graph Databases-A Quantitative Evaluation.
arXiv preprint arXiv:1301.5121 (2013).

Asad Awan, Ronaldo A Ferreira, Suresh Jagannathan, and Ananth Grama. 2006. Distributed uniform sam-
pling in unstructured peer-to-peer networks. In Proceedings of Hawaii International Conference on Sys-
tem Sciences (HICSS), Vol. 9. IEEE, 223c–223c.

Raul Baños, Consolación Gil, Julio Ortega, and Francisco G Montoya. 2003. Multilevel heuristic algorithm
for graph partitioning. In Proceedings of Applications of Evolutionary Computing. Springer, 143–153.

Una Benlic and Jin-Kao Hao. 2011a. An effective multilevel tabu search approach for balanced graph parti-
tioning. Computers & Operations Research 38, 7 (2011), 1066–1075.

Una Benlic and Jin-Kao Hao. 2011b. A multilevel memetic approach for improving graph k-partitions. IEEE
Transactions on Evolutionary Computation (TEC) 15, 5 (2011), 624–642.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

A Distributed Algorithm For Large-Scale Graph Partitioning 12:23

Thang Nguyen Bui and Byung Ro Moon. 1996. Genetic algorithm and graph partitioning. IEEE Transactions
on Computers (TC) 45, 7 (1996), 841–855.

Pierre Chardaire, Musbah Barake, and Geoff P McKeown. 2007. A probe-based heuristic for graph parti-
tioning. IEEE Trans. Comput. 56, 12 (2007), 1707–1720.

David Dominguez-Sal, P Urbón-Bayes, Aleix Giménez-Vañó, Sergio Gómez-Villamor, Norbert Martı́nez-
Bazán, and Josep-Lluis Larriba-Pey. 2010. Survey of graph database performance on the HPC scalable
graph analysis benchmark. (2010), 37–48.

Jim Dowling and Amir H Payberah. 2012. Shuffling with a croupier: Nat-aware peer-sampling. In Proceed-
ings of IEEE International Conference on Distributed Computing Systems (ICDCS). IEEE, 102–111.

Anton J Enright, Stijn Van Dongen, and Christos A Ouzounis. 2002. An efficient algorithm for large-scale
detection of protein families. Nucleic acids research 30, 7 (2002), 1575–1584.

Wojciech Galuba, Karl Aberer, Dipanjan Chakraborty, Zoran Despotovic, and Wolfgang Kellerer. 2010. Out-
tweeting the twitterers-predicting information cascades in microblogs. In Proceedings of Workshop on
Online Social Networks (WOSN). USENIX Association, 3–3.

Joachim Gehweiler and Henning Meyerhenke. 2010. A distributed diffusive heuristic for clustering a virtual
P2P supercomputer. In Proceedings of IEEE International Parallel & Distributed Processing Symposium
Workshops and Phd Forum (IPDPSW). IEEE, 1–8.

Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph:
Distributed Graph-Parallel Computation on Natural Graphs.. In Proceedings of USENIX Symposium
on Operating System Design and Implementation (OSDI), Vol. 12. USENIX, 2.

Alessio Guerrieri and Alberto Montresor. 2014. Distributed Edge Partitioning for Graph Processing. arXiv
preprint arXiv:1403.6270 (2014).

Bruce Hendrickson. 1998. Graph partitioning and parallel solvers: Has the emperor no clothes?. In Proceed-
ings of Solving Irregularly Structured Problems in Parallel. Springer, 218–225.

Bruce Hendrickson and Robert W Leland. 1995. A Multi-Level Algorithm For Partitioning Graphs. SC 95
(1995), 28.

Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. 2005. Gossip-based aggregation in large dynamic
networks. ACM Transactions on Computer Systems (TOCS) 23, 3 (2005), 219–252.

George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing 20, 1 (1998), 359–392.

George Karypis and Vipin Kumar. 1999a. Parallel multilevel series k-way partitioning scheme for irregular
graphs. SIAM Rev. 41, 2 (1999), 278–300.

George Karypis and Vipin Kumar. 1999b. Parallel multilevel series k-way partitioning scheme for irregular
graphs. SIAM Rev. 41, 2 (1999), 278–300.

Brian W Kernighan and Shen Lin. 1970. An efficient heuristic procedure for partitioning graphs. Bell system
technical journal 49, 2 (1970), 291–307.

Mijung Kim and K Selçuk Candan. 2012. SBV-Cut: Vertex-cut based graph partitioning using structural
balance vertices. Data & Knowledge Engineering 72 (2012), 285–303.

Maciej Kurant, Athina Markopoulou, and Patrick Thiran. 2010. On the bias of BFS (breadth first search).
In Proceedings of International Teletraffic Congress (ITC). IEEE, 1–8.

Kevin Lang. 2004. Finding good nearly balanced cuts in power law graphs. Tech. Rep. YRL-2004-036, Yahoo!
Research Labs (2004).

Jure Leskovec. 2011. Stanford large network dataset collection. URL http://snap. stanford.
edu/data/index. html (2011).

Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009. Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathemat-
ics 6, 1 (2009), 29–123.

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M Hellerstein.
2012. Distributed GraphLab: a framework for machine learning and data mining in the cloud. Proceed-
ings of International Conference on Very Large Databases (VLDB) 5, 8 (2012), 716–727.

Gabriel Luque and Enrique Alba. 2011. Parallel Genetic Algorithms: Theory and Real World Applications.
Vol. 367. Springer.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty Leiser, and Grze-
gorz Czajkowski. 2010. Pregel: a system for large-scale graph processing. In Proceedings of ACM Special
Interest Group on Management Of Data (SIGMOD). ACM, 135–146.

Laurent Massoulié, Erwan Le Merrer, Anne-Marie Kermarrec, and Ayalvadi Ganesh. 2006. Peer counting
and sampling in overlay networks: random walk methods. In Proceedings of ACM Symposium on Prin-
ciples of Distributed Computing (PODC). ACM, 123–132.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

12:24 F. Rahimian et al.

Henning Meyerhenke, Burkhard Monien, and Thomas Sauerwald. 2008. A new diffusion-based multilevel
algorithm for computing graph partitions of very high quality. In Proceedings of IEEE International
Symposium on Parallel and Distributed (IPDPS). IEEE, 1–13.

Henning Meyerhenke, Burkhard Monien, and Stefan Schamberger. 2009. Graph partitioning and disturbed
diffusion. Parallel Comput. 35, 10 (2009), 544–569.

Alberto Montresor and Márk Jelasity. 2009. PeerSim: A scalable P2P simulator. In Proceedings of IEEE
International Conference on Peer-to-Peer Computing (P2P). IEEE, 99–100.

Amir H Payberah, Jim Dowling, and Seif Haridi. 2011. Gozar: Nat-friendly peer sampling with one-hop
distributed nat traversal. In Proceedings of IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS). Springer, 1–14.

Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, and Seif Haridi. 2014. Distributed Vertex-
Cut Partitioning. In Proceedings of IFIP International Conference on Distributed Applications and In-
teroperable Systems (DAIS). Springer.

Fatemeh Rahimian, Amir H Payberah, Sarunas Girdzijauskas, Mark Jelasity, and Seif Haridi. 2013. Ja-
be-Ja: A distributed algorithm for balanced graph partitioning. In Proceedings of IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO). IEEE, 51–60.

Lakshmish Ramaswamy, Bugra Gedik, and Ling Liu. 2005. A distributed approach to node clustering in
decentralized peer-to-peer networks. IEEE Transactions on Parallel and Distributed Systems (TPDS)
16, 9 (2005), 814–829.

Peter Sanders and Christian Schulz. 2011. Engineering multilevel graph partitioning algorithms. In
Algorithms–ESA 2011. Springer, 469–480.

Peter Sanders and Christian Schulz. 2012. Distributed Evolutionary Graph Partitioning. In Proceedings of
ALENEX. SIAM, 16–29.

Alan J Soper, Chris Walshaw, and Mark Cross. 2004. A combined evolutionary search and multilevel opti-
misation approach to graph-partitioning. Journal of Global Optimization 29, 2 (2004), 225–241.

El-Ghazali Talbi. 2009. Metaheuristics: from design to implementation. Vol. 74. John Wiley & Sons.

E-G Talbi and Pierre Bessiere. 1991. A parallel genetic algorithm for the graph partitioning problem. In
Proceedings of ACM International Conference on Supercomputing (ICS). ACM, 312–320.

Norbert Tölgyesi and Márk Jelasity. 2009. Adaptive peer sampling with newscast. In Proceedings of Inter-
national Conference on Parallel Processing (Euro-Par). Springer, 523–534.

Peter JM Van Laarhoven and Emile HL Aarts. 1987. Simulated annealing. Springer.

Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P Gummadi. 2009. On the evolution of user
interaction in facebook. In Proceedings of ACM Workshop on Online Social Networks (WOSN). ACM,
37–42.

Spyros Voulgaris, Daniela Gavidia, and Maarten Van Steen. 2005. Cyclon: Inexpensive membership man-
agement for unstructured p2p overlays. Journal of Network and Systems Management 13, 2 (2005),
197–217.

C. Walshaw. 2012a. FocusWare NetWorks MNO - a commercialised version of JOSTLE:
http://http://focusware.co.uk. (Sep 2012).

C. Walshaw. 2012b. The graph partitioning archive: http://staffweb.cms.gre.ac.uk/˜wc06/partition. (Aug
2012).

Chris Walshaw and Mark Cross. 2000. Mesh partitioning: a multilevel balancing and refinement algorithm.
SIAM Journal on Scientific Computing 22, 1 (2000), 63–80.

Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of small-world networks. Nature 393,
6684 (1998), 440–442.

Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013. Graphx: A resilient distributed
graph system on spark. In Proceedings of International Workshop on Graph Data Management Experi-
ences and Systems (GRADES). ACM, 2.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J
Franklin, Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In Proceedings of USENIX Conference on Networked Systems
Design and Implementation (NSDI). USENIX, 2–2.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. 2010. Spark:
cluster computing with working sets. In Proceedings of USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud). USENIX, 10–10.

Received February 2014; revised ; accepted

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 2, Article 12, Publication date: June 2015.

