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Low-rank matrix approximation is an important tool in data mining with a wide range of applications
including recommender systems, clustering, and identifying topics in documents. When the matrix to be
approximated originates from a large distributed system—such as a network of mobile phones or smart
meters—this is a very challenging problem due to the strongly conflicting, yet essential requirements of
efficiency, robustness, and privacy preservation. We argue that while collecting sensitive data in a central-
ized fashion may be efficient, it is not an option when considering privacy and efficiency at the same time.
Thus, we do not allow any sensitive data to leave the nodes of the network. The local information at each
node (personal attributes, documents, media ratings, etc.) defines one row in the matrix. This means that
all computations have to be performed at the edge of the network. Known parallel methods that respect the
locality constraint—such as synchronized parallel gradient search or distributed iterative methods—require
synchronized rounds or have inherent issues with load balancing, thus they are not robust to failure. Our
distributed stochastic gradient descent algorithm overcomes these limitations. During the execution, any
sensitive information remains local, while the global features (e.g., the factor model of movies) converge
to the correct value at all nodes. We present a theoretical derivation, as well as a thorough experimental
evaluation of our algorithm. We demonstrate that the convergence speed of our method is competitive while
not relying on synchronization and being robust to extreme and realistic failure scenarios. To demonstrate
the feasibility of our approach, we present trace-based simulations, real smartphone user behavior analysis,
and tests over real movie recommender system data.
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István Hegedűs, Árpád Berta, Levente Kocsis, András A. Benczúr, and Márk Jelasity, 2016. Robust Decen-
tralized Low-Rank Matrix Decomposition. ACM Trans. Intell. Syst. Technol. 7, 4, Article 62 (May 2016), 24
pages.
DOI: http://dx.doi.org/10.1145/2854157

1. INTRODUCTION

Finding a low-rank decomposition of a matrix is an essential tool in data mining
and information retrieval [Azar et al. 2001]. Prominent applications include recom-
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62:2 I. Hegedűs et al.

mender systems [Drineas et al. 2002], information retrieval via Latent Semantic In-
dexing [Berry et al. 1995; Papadimitriou et al. 2000], Kleinberg’s HITS algorithm for
graph centrality [Kleinberg 1999], clustering [Drineas et al. 2004; McSherry 2001],
and learning mixtures of distributions [Kannan et al. 2005; Achlioptas and McSherry
2005].

Low rank matrix approximation can naturally be applied for collaborative filtering.
Given n items and m users, one can generate recommendations based on the low-rank
decomposition of the m× n dimensional ratings matrix A with rows assigned to users
and columns to items. First, the essence of the ratings matrix A is computed by finding
a low-rank decomposition A ≈ XY T , where matrices X and Y T are of dimension m× k
and k × n, respectively, and where k is small [Koren et al. 2009]. A row of X and a
column of Y can be interpreted as a compressed representation of the corresponding
user and item, respectively, in a k-dimensional feature space. The low-rank represen-
tation can then be applied for making recommendations by predicting all the unknown
ratings in A by using the corresponding values in XY T . Additional applications of low-
rank approximation are found for adjacency matrices in social network analysis and
term-document matrices in text classification.

Our targeted application environments are large-scale networked systems of user
devices such as smartphones or smart meters. We identify three conflicting require-
ments. First, data on these devices such as movie ratings, lists of friends, personal
documents, or sensor readings are often very sensitive, hence privacy is a key con-
sideration in our algorithms. At the same time, the application also has to be robust.
Devices will leave or fail frequently, and they can join as well at any time. Lastly, the
solution has to be efficient enough to be practical. That is, fast convergence must be
achieved, while keeping the amount of messages sent affordable for realistic commu-
nication networks.

Achieving cryptographically sound privacy is impractically expensive in our target
systems. For example, a state-of-the-art secure multiparty computing solution by Niko-
laenko et al. requires powerful central servers, and its scalability is demonstrated only
for small examples [Nikolaenko et al. 2013]. This implies that in any robust and scal-
able server-based solution the central server will have access to some or all the sensi-
tive data of the nodes. Since we want to avoid this, in our solution we opt for storing
personal data only on personal devices that we process in a fully distributed way. While
this choice does not in itself offer privacy in a cryptographic sense, it is a necessary con-
dition of privacy in a practical setup.

Out of the three required properties, in this paper we focus on robustness and ef-
ficiency while using strictly local data, to the point that our solution is practically
applicable in realistic privacy sensitive scenarios. In Section 7 we outline a few ideas
on how to exploit the locality constraint to maximize privacy, but a detailed discussion
is beyond the scope of the paper.

1.1. Our contribution

We implement a family of efficient and robust distributed matrix decomposition tech-
niques. One of our algorithms applies for sparse matrices with undefined entries al-
lowed, such as user rating data sets in recommender systems. The algorithm supports
regularization. With another algorithm, we may compute the singular value decompo-
sition (SVD) for complete matrices. Note that SVD is a special low-rank decomposition
that exists for any fully defined matrix A with the attractive property that the decom-
position consists of orthogonal matrices.

Our algorithms use stochastic gradient descent (SGD) to find a low-rank matrix
decomposition A ≈ XY T , where we maintain several instances of the matrix Y that
we update at the nodes. For privacy considerations, nodes store their own rows of the
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matrices A and X . Each instance of Y performs a random walk over the network. When
Y visits a node, it gets updated based on the local row of A, and at the same time the
local row of X gets updated as well. We may assume that the matrix Y visible over the
network carries no sensitive information, as Y represents the publicly known items of
the recommender system.

To the best of our knowledge, we present the first fully distributed SGD algorithm
that keeps X and A strictly local. As a special feature, our algorithm updates several
versions of Y by sending them around the network, resulting in a convergence much
faster than a single instance of SGD. The algorithm is fully asynchronous: messages
can be delayed or lost. All we require from the network is a random walk mechanism
that can perform every transition in bounded time. We show that the only stable fixed
points of the search algorithm correspond to the desired decomposition.

In addition, we perform an experimental analysis to demonstrate the convergence
speed and the scalability of the protocol.We also present a thorough experimental
study over a trace of real smartphone user behavior. We demonstrate that our method
is practical in a realistic networking environment and a realistic application setup.

1.2. Related work

Calculating SVD and other matrix decompositions is a well-studied problem. One ap-
proach is based on treating it as an optimization problem (see Section 2) and using
gradient search to solve it [Gorrell 2006]. Guan et al. also follow this approach adapted
for the non-negative case and propose an efficient gradient algorithm [Guan et al.
2012a].

In general, parallel versions of gradient search often assume the MapReduce frame-
work [Chu et al. 2007] or a similar, less constrained, but still centralized model [Le
et al. 2012]. In these approaches, partial gradients are calculated over batches of data
in parallel, and these are either applied to blocks of X and Y in the map phase or
summed up in the reduce phase. Zinkevich et al. propose a different approach in which
SGD is applied on batches of data and the resulting models are then combined [Zinke-
vich et al. 2010]. Petroni et al. propose performance optimizations based on graph par-
titioning in a similar framework [Petroni and Querzoni 2014]. Gemulla et al. [Gemulla
et al. 2011] propose an efficient parallel technique in which blocks of X and Y are iter-
atively updated while only blocks of Y are exchanged. In contrast to these approaches,
we work with fully distributed data: we do not wish to make X public and we do not
rely on central components or synchronization—a set of requirements ruling out the
direct application of earlier approaches.

Another possibility is using fully distributed iterative methods. GraphLab [Low et al.
2010] supports iterative methods for various problems including SVD. In these ap-
proaches, the communication graph in the network is defined by the non-zero elements
of matrix A; in other words, A is stored as edge-weights in the network. This is fea-
sible only if A is (very) sparse and well balanced; a constraint rarely met in practice.
In addition, iterative methods need access to AT as well, which violates our constraint
that the rows of A are not shared. Using the same edge-weight representation of A,
one can implement another optimization approach for matrix decomposition: an itera-
tive optimization of subproblems over overlapping local subnetworks [Liao et al. 2010].
The drawback of this approach is, again, that the structure of A defines the communi-
cation network and access to AT is required. The approach of Ling et al. [Ling et al.
2012] also needs global information: in each iteration step, a global average needs to
be calculated.

The first fully distributed algorithm for spectral analysis was given in [Kempe and
McSherry 2004] where data is kept at the compute nodes and partial results are sent
through the network. That algorithm, however, only computes the user side singular
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vectors but not the item side ones and hence is insufficient, for example, to provide rec-
ommendations. Similarly, [Korada et al. 2011] computes the low-rank approximation
but not the decomposition. This drawback is circumvented in [Isaacman et al. 2011]
by assigning compute nodes not just for users but for items as well. In their gradient
descent algorithm, item vectors are also stored at peers, which means that all items
must know the ratings they receive, and this violates privacy.

We overcome the limitations of earlier fully distributed and gossip SVD algorithms
by providing an algorithm without item-based processing elements, i.e. our algorithm
is fully distributed in the sense that processing is carried out exclusively at the user
devices, and the users may access their own ratings and the approximations of their
own user factor vector as well as all the item factor vectors locally. Our approach is
based on a stochastic gradient algorithm similar to the online algorithm presented
in [Guan et al. 2012b], which calculates Y under an additional non-negativity con-
straint with the help of a constant-sized buffer of samples. We, however, work in a
different, non-streaming setting: we are given a fixed decentralized database where
we wish to calculate X as well. Also, in order to preserve data privacy, only one row
of A is processed in each step and X is strictly decentralized, so no buffering can be
implemented.

2. PROBLEM DEFINITION

The rank k matrix approximation problem is defined as follows. We are given a matrix
A ∈ R

m×n that holds our raw data, such as ratings of movies by users, or word statistics
in documents. We are looking for matrices X ∈ R

m×k and Y ∈ R
n×k such that the error

function

J(X,Y ) =
1

2
‖A−XY T ‖2F =

1

2

m
∑

i=1

n
∑

j=1

(aij −

k
∑

l=1

xilyjl)
2 (1)

is minimized. We say that the matrix XY T that minimizes this function is an optimal
rank-k approximation of A. Clearly, matrices X and Y T—and hence XY T—have a
rank of at most k. Normally we select k such that k ≪ min(m,n) in order to achieve a
significant compression of the data. As a result, matrices X and Y T can be thought of
as high level features (such as topics of documents or semantic categories for words)
that can be used to represent the original raw data in a compact way.

Singular value decomposition (SVD) is closely related to the above matrix decom-
position problem. The SVD of a matrix A ∈ R

m×n involves two orthogonal matrices
U ∈ R

m×m and V ∈ R
n×n such that

A = UΣV T =
r

∑

i=1

σiuiv
T
i , (2)

where the columns of the matrices U = [u1u2 · · ·um] and V = [v1v2 · · · vn] are the left
and right singular vectors, and Σ ∈ R

m×n is a diagonal matrix containing the singular
values σ1, σ2, . . . , σr ≥ 0 of A (r = min(m,n)). The relationship between SVD and-low
rank decomposition is that UkΣkV

T
k is an optimal rank-k approximation of A, where

the matrices Uk ∈ R
m×k and Vk ∈ R

n×k are derived from U and V by keeping the first
k columns, and Σk ∈ R

k×k is derived from Σ by keeping the top left k × k rectangular
area, assuming without loss of generality that σ1 ≥ σ2 ≥ · · · ≥ σr [Srebro and Jaakkola
2003]. In order to unify the notation, we use an alternate definition of SVD as a matrix
factorization A ≈ X∗Y ∗T with

X∗ = UkΣU , Y ∗ = VkΣV , (3)
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such that ΣU and ΣV are diagonal and ΣUΣV = Σk. In other words, although X∗ and
Y ∗ are not uniquely defined, we require that they contain orthogonal columns that are
scaled versions of left and right singular vectors of A, respectively.

An important practical extension of the problem is considering undefined or missing
values in A. In practice our knowledge of A is partial, yet we are interested in a de-
composition that reproduces at least the known values. A common approach to follow
is to define

J(X,Y ) =
1

2

∑

(i,j)∈I

(aij −

k
∑

l=1

xilyjl)
2 +

α

2
‖X‖2F +

α

2
‖Y ‖2F , (4)

where I contains those indices that are defined in A. The additional terms serve the
purpose of regularization and are multiplied by the regularization parameter α.

In practical applications, another technique is to include bias explicitly in the model.
Bias is expressed by the vector b ∈ R

m×1 that is included in the error function as

J(X,Y, b) =
1

2

∑

(i,j)∈I

(aij − bi −

k
∑

l=1

xilyjl)
2 +

α

2
‖X‖2F +

α

2
‖Y ‖2F , (5)

where we have kept the regularization terms as well for completeness. For example, in
recommender systems, bias represents the differences between users: some users tend
to give high scores, others tend to give lower scores. Intuitively, X and Y represent
relative differences in this context, and bias represents the average score. This often
leads to a better prediction performance. With bias, the approximation of matrix A is
thus given by XY T + b1 (where 1 is a row vector of n 1s). This approximation can be
used, for example, to predict missing items of A.

3. SYSTEM MODEL AND DATA DISTRIBUTION

Having defined the computational problem, we will now state our assumptions on the
network environment and the distribution of the data. Our network consists of nodes
that are individual computational units (e.g., personal computers or smartphones) and
have unique addresses. The number of nodes is potentially extremely large.

We assume that there is a membership service in our system. This service provides
unique identities to the participants that include public and private keys for public key
cryptography that are tied to the network address of the node. The membership service
also offers peer sampling. That is, all nodes are assumed to have access to addresses
of live nodes from the network. In practice, peer sampling can have a decentralized
implementation that can be dynamic [Tölgyesi and Jelasity 2009] or it can be based on
a static network with random neighbors [Roverso et al. 2013] that is able to deal with
NAT devices as well. It can also be implemented as a centralized service.

Ideally, the neighbors returned by the peer sampling service should be uniform ran-
dom samples of the live nodes, but in our application we may relax this assumption.
As we shall see, SGD convergence only requires that the probability of visiting a node
during a long random walk should not depend on its value, and all the nodes should
have a roughly equal chance to be visited.

Every node can pass messages to other nodes, provided the address and the public
key of the target node are known locally. Messages can be encrypted with the private
key of the target, so wiretapping is not possible. In addition, messages can be lost or
delayed and the nodes can leave the network and join again without prior notice. When
a node rejoins the network, it retains the state it had when leaving the network.

As for the data distribution, we assume that each node has exactly one row (but note
that our algorithms can be applied—and in fact profit from it—if a node has several
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Algorithm 1 P2P low–rank factorization at node i

1: ai ⊲ row i of A
2: initialize Y
3: receivedY.add(Y ) ⊲ initialize receivedY
4: initialize xi ⊲ row i of X
5: quiet← 0 ⊲ rounds without receiving models
6: loop
7: wait(∆)
8: if receivedY.isEmpty() then
9: quiet← quiet+1
10: if quiet ≥ ∆q then
11: p← selectPeer()
12: send Y to p
13: end if
14: else
15: quiet← 0
16: repeat ⊲ send all the received models
17: Ỹ ← receivedY.remove()
18: p← selectPeer()
19: send Ỹ to p
20: until receivedY.isEmpty()
21: end if
22: end loop

23: procedure ONRECEIVEY(Ỹ )
24: (Y, xi)← update(Ỹ , xi, ai)
25: receivedY.add(Y )
26: end procedure

rows). Our data distribution model is motivated by application scenarios, in which
potentially sensitive data is available locally, such as private documents or ratings
that naturally define rows of a matrix A, but where a decomposition needs to be found
collectively without blatantly exposing this private data.

4. ALGORITHM

Our algorithm has its roots in the GOLF framework [Ormándi et al. 2013]. Algorithm 1
contains a version of the GOLF algorithm adapted to our problem. Each node i has its
own approximation of the full matrix Y ∗ and an approximation xi of row i of X∗. Thus,
the nodes collectively store one version of the matrix X (the approximation of X∗)
distributed just like matrix A with each node storing one row. Note that at every point
in time, every node has its local approximation of the full matrix Y ∗ that may differ
across the nodes. As we will see, these approximations interact through the single
approximation of X∗ and should converge to the same matrix Y ∗. The output of the
algorithm at any point in time is readily available as the local approximation at each
node, so there is no need to explicitly combine the different approximations centrally.

All local approximate versions of Y ∗ perform a random walk in the network and get
updated by the local data (a row of A and X) when visiting a node. First, each node i in
the network initializes Y and xi uniformly at random from the interval [0, 1]. The nodes
then periodically send all the approximations of Y they received in the previous round
to a randomly selected peer from the network. To select a random peer, we rely on a
peer sampling service, as mentioned in Section 3. When receiving an approximation
Ỹ (see procedure ONRECEIVEY) the node updates both Y and xi using a stochastic
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Algorithm 2 rank-k update at node i

1: η ⊲ learning rate
2: procedure UPDATE(Y,xi, ai)
3: err← ai − xiY

T

4: x′

i ← xi + η · err · Y
5: Y ′

← Y + η · errT · xi

6: return (Y ′, x′

i)
7: end procedure

gradient rule and it subsequently stores this approximation in a list to be forwarded
in the next round.

The algorithm involves periodic message sending from every node with a period
of ∆. Later on, when we refer to one iteration or round of the algorithm, we simply
mean a time interval of length ∆. Note that we do not require any synchronization of
rounds over the network. Messages are sent independently, and they can be delayed
or dropped as well. We require only that the delays are bounded and that the message
drop probability is less than one. This allows the random walks to progress.

To avoid the termination of random walks due to failures, the algorithm includes
a restarting mechanism based on the length of time during which no models are re-
ceived. The timeout for this restart is ∆q ·∆. Unless otherwise stated, we use ∆q = 10.
Note that if peer sampling is uniform, the distribution of the number of received mod-
els in a round is Poisson(1), which means that not receiving models for 10 rounds has
a probability of e−10 ≈ 4.5 · 10−5.

Algorithm 1 requires an implementation of the procedure UPDATE that computes
the new approximations of Y ∗ and xi. We will now elaborate on three different versions
that implement different stochastic gradient update rules.

4.1. Update Rules for General Rank–k Factorization

Let us first consider the error function given in Equation (1) and derive an update rule
to optimize this error function. The partial derivatives of J(X,Y ) by X and Y based on
Equation (1) are

∂J

∂X
= (XY T −A)Y,

∂J

∂Y
= (Y XT −AT )X. (6)

Since only xi is available at node i, the gradient is calculated only w.r.t. xi instead
of X . Accordingly, the stochastic gradient update rule with a learning rate η can be
derived by substituting xi in the way shown in Algorithm 2. Although function J is
not convex, it has been shown that all the local optima of J are also global [Srebro
and Jaakkola 2003]. Thus, for a small enough η, any stable fix point of the dynamical
system implemented by Algorithm 1 with the update rule in Algorithm 2 is guaranteed
to be a global optimum.

In the case of real world applications such as recommender systems, where matrix
A contains several undefined elements, the update rule of Algorithm 2 is insufficient.
First of all, the gradient can be calculated only w.r.t. the elements of A that are known.
Furthermore, to avoid overfitting the model to the known elements, we need to add
regularization terms, as seen in Equation (4), to penalize extreme values in the model.
We may also add bias to the model as shown in Equation (5). The partial derivatives
based on Equation (5) are

∂J

∂X
= (XY T+b1−A)Y+αX,

∂J

∂Y
= (Y XT+b1T−AT )X+αY,

∂J

∂b
= XY T+b1−A, (7)
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Algorithm 3 rank-k update at node i with regularization [and bias]
1: η ⊲ learning rate
2: α ⊲ regularization rate
3: ⊲ If bias is handled, the optional parts in [] should be added
4: procedure UPDATE(Y,xi, ai[, bi])
5: for all j, where aij is defined do

6: err← aij − xiY
T
j [− bi]

7: x′

i ← (1− ηα)xi + η · err · Yj

8: Y ′

j ← (1− ηα)Yj + η · err · xi

9: [b′i ← bi + η · err]
10: end for
11: return (Y ′, x′

i[, b
′

i])
12: end procedure

where—for notational simplicity—we assume that all the values are defined. In prac-
tice, only those values that are defined are updated, so the gradient is evaluated only
w.r.t. defined values. The regularized update rule (with optional bias) is shown in Al-
gorithm 3.

4.2. Update Rule for Rank–k SVD

Apart from minimizing the error function given in Equation (1), let us now also set the
additional goal that the algorithm converges to the SVD in the form of X∗ and Y ∗, as
defined by Equation (3). This is indeed a harder problem: while (X∗, Y ∗) minimizes (1),
any other pair of matrices (X∗R−1, Y ∗RT ) will also minimize for any invertible matrix
R ∈ R

k×k, and Algorithm 2 is free to converge to any of them.
From now on, we will assume that the non-zero singular values of A are all unique,

and that the rank of A is at least k, that is, σ1 > · · · > σk > 0. This makes the discussion
simpler, but these assumptions can be relaxed, and the algorithm is applicable even if
these assumptions do not hold.

Our key observation is that any optimal rank-1 approximation X1Y
T
1 of A is such

that X1 ∈ R
m×1 contains the (unnormalized) left singular vector of A that belongs

to σ1, the largest singular value of A. Similarly, Y1 contains the corresponding right
singular vector. This is because for any optimal rank-k approximation XY T , there is
an invertible matrix R ∈ R

k×k such that X = X∗R and Y T = R−1Y ∗T [Srebro and
Jaakkola 2003]. For k = 1 this proves our observation because, as defined in Section 2,
X∗ ∼ u1 and Y ∗ ∼ v1. Furthermore, for k = 1,

X1Y
T
1 = X∗Y ∗T = σ1u1v

T
1 , (8)

which means that (using Equation (2)) we have

A−X1Y
T
1 =

r
∑

i=2

σiuiv
T
i . (9)

Thus, a rank-1 approximation of the matrix A −X1Y
T
1 will reveal the direction of the

singular vectors corresponding to the second largest singular value σ2. A simple ap-
proach based on these observations is to first compute X1Y

T
1 , a rank-1 approximation

of A. Subsequently, we compute a rank-1 approximation X2Y
T
2 of A−X1Y

T
1 . The rank-2

approximation of A containing the first two left and right singular vectors is obtained
as [X1, X2][Y1, Y2]

T according to the above observations. We then repeat this procedure
k times to get the desired decomposition X∗ and Y ∗ by filling in one column at a time
sequentially in both matrices.
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Algorithm 4 rank-k SVD update at node i

1: η ⊲ learning rate
2: procedure UPDATE(Y,xi, ai)
3: a′

i ← ai

4: for ℓ = 1 to k do ⊲ yℓ : column ℓ of Y
5: err← a′

i − xiℓ · y
T
ℓ

6: x′

iℓ ← xiℓ + η · err · yℓ
7: y′

ℓ ← yℓ + η · errT · xiℓ

8: a′

i = a′

i − xiℓ · y
T
ℓ

9: end for
10: return (Y ′, x′

i)
11: end procedure

Algorithm 5 Iterative synchronized rank–k SVD
1: A ⊲ The matrix to be factorized
2: η ⊲ learning rate
3: initialize Y
4: initialize X
5: while not converged do
6: A′ = A
7: for ℓ = 1 to k do
8: err← A′

− xℓ · y
T
ℓ ⊲ xℓ : column ℓ of X

9: ⊲ yℓ : column ℓ of Y
10: x′

ℓ ← xℓ + η · err · yℓ
11: y′

ℓ ← yℓ + η · errT · xℓ

12: A′ = A′
− xℓ · y

T
ℓ

13: end for
14: X = X ′; Y = Y ′

15: end while

A more efficient and robust approach is to let all rank-1 approximations in this se-
quential naive approach evolve at the same time. Intuitively, when there is a reason-
able estimate of the singular vector corresponding to the largest singular value, the
next vector can already start progressing in the right direction, and so on. This idea is
implemented in Algorithm 4.

4.3. Synchronized Rank–k SVD

As a baseline method in our experimental evaluation, we will use a synchronized ver-
sion of Algorithm 1 with the update rule in Algorithm 4. In this version (shown in
Algorithm 5), the rank-1 updates are done over the entire matrix A at once, and there
is only one central version of the approximation of Y as opposed to the several in-
dependent versions we had previously. As in Algorithm 1, the matrices X and Y are
initialized with uniform random values from [0, 1]. Note that in this algorithm, we re-
quire the columns of X and hence use a different notation: xℓ denotes the ℓ-th column,
not the ℓ-th row.

Although formulated as a centralized sequential algorithm, this algorithm yields a
simple MapReduce implementation, where the mappers compute parts of the gradi-
ents (e.g., the gradients of the rows of A as in Algorithm 4), while a single reducer
sums up the components of the gradient and executes the update steps.

5. EXPERIMENTS

In our first set of experiments, we demonstrate various properties of our algorithm in-
cluding convergence speed, scalability and robustness. Our test matrices include stan-
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Table I. The main properties of the real data sets

Iris Pendigits Segmentation
Number of instances (m) 150 10992 2310
Number of features (n) 4 16 19
Minimal k such that 2 10 5
∑k

i=1
σ2

i /
∑n

i=1
σ2

i > 0.9

Table II. Overview of the algorithm variants

Singular Value Low-Rank LRD with
Decomposition (SVD) Decomposition (LRD) Regularization (RLRD)

Decentralized Stochastic DSG-SVD DSG-LRD DSG-RLRD
Gradient descent (DSG) Algorithms 1 and 4 Algorithms 1 and 2 Algorithms 1 and 3
Stochastic SG-SVD — SG-RLRD
Gradient descent (SG) one rand. walk + Alg. 4 one rand. walk + Alg. 3
batch Gradient G-SVD — —
descent (G) Algorithm 5

dard machine learning data sets as well as synthetic matrices with controllable prop-
erties. The simulated network environment has been simplified so that we can focus on
the algorithmic properties under different parameter settings. A realistic trace-based
case study is presented in Section 6.

In the case of the distributed algorithms, the number of nodes in the network is
the same as the number of rows of the matrix to be factorized, since every node has
exactly one row of the matrix. We used the PeerSim [Montresor and Jelasity 2009] sim-
ulator with the event-based engine, and we implemented the peer sampling service by
the NEWSCAST [Tölgyesi and Jelasity 2009] protocol. Our implementation is publicly
available.1

5.1. Algorithms

First we provide names for the algorithms we include in our experiments. Table II
gives an overview of the algorithms and how they are combined from the different
components.

Algorithm 1 with the update rule of Algorithm 4 (our main contribution) will be
referred to as Decentralized Stochastic Gradient SVD (DSG-SVD). Replacing Algo-
rithm 4 with Algorithm 2 we get Decentralized Stochastic Gradient Low Rank Decom-
position (DSG-LRD). Recall that this algorithm will converge to a rank-k decompo-
sition that is not necessarily the SVD of A. Algorithm 5 will be called Gradient SVD
(G-SVD). Recall that this batch algorithm can be parallelized: for example, the gradi-
ent can be calculated row by row and then summed up to get the full gradient.

Note that the algorithm variant that applies the update rule in Algorithm 3 is not
tested here; in this section we assume that all the matrices are fully defined. The
regularized version of the method as tested in our recommender system case study
and is described in Section 6.

Finally, we introduce a baseline algorithm, Stochastic Gradient SVD (SG-SVD).
This algorithm uses the update rule of Algorithm 4, but we have only a single ap-
proximation Y at any point in time, and there is only one process, which repeatedly
gets random rows of A and then applies the update rule in Algorithm 4 to the current
approximation Y and the corresponding row of X .

1http://rgai.inf.u-szeged.hu/download/p2p14/svdsrc.zip,
https://github.com/RobertOrmandi/Gossip-Learning-Framework/tree/multicore
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Fig. 1. Convergence on the real data sets. Error is based on cosine similarity. In the scaled version of G-
SVD, the number of iterations is multiplied by log10 m (see text).
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Fig. 2. Convergence on the real data sets. Error is based on the Frobenius norm. Horizontal dashed lines
in top-down order show the FNORM value for the optimal rank-i approximations for i = 1, . . . , k.

5.2. Error measures

Cosine similarity. To measure the difference between the correct and the approxi-
mated singular vectors, we used cosine similarity, because it is not sensitive to the scal-
ing of the vectors (recall that our algorithm does not guarantee unit-length columns in
X and Y ). The formula for measuring the error of a rank-k decomposition XY T is

Error(X,Y ) =
1

2k

k
∑

i=1

1−

∣

∣

∣

∣

yTi vi
‖yi‖

∣

∣

∣

∣

+ 1−

∣

∣

∣

∣

xT
i ui

‖xi‖

∣

∣

∣

∣

, (10)

where xi, yi, ui and vi are column vectors of X,Y, Uk and Vk, respectively. Matrices Uk

and Vk are the orthogonal matrices defined in Section 2.

Frobenius norm. Another measure of error is given by function J(X,Y ) defined in
Equation (1). The advantage of this measure is that it can be applied to Algorithm 2
as well. However, this error measure obviously does not tell us whether the calculated
matrices X and Y contain scaled singular vectors or not; it simply measures the quality
of the rank-k approximation. We call this error measure FNORM.
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Fig. 3. Results on synthetic data sets using networks of different dimensions. We set k = 1, and all the
matrices had a rank of 16.

5.3. Data sets

Synthetic data. We included experiments on synthetic data so that we could evalu-
ate the scalability and the fault tolerance of our method in a fully controlled way. We
first generated random singular vectors producing matrices U and V with the help of
the butterfly technique [Genz 1999]. Since matrices to be decomposed often originate
from graphs, and since the node degrees and the spectrum of real graphs usually fol-
low a power law distribution [Mihail and Papadimitriou 2002; Chung et al. 2003], the
expected singular values in the diagonal of Σ were generated from a Pareto distribu-
tion with parameters xm = 1 and α = 1. This way, we construct a matrix A = UΣV T

where we know and can control the singular vectors and values.

Real data. These matrices were constructed from data sets taken from the well-
known UCI [Bache and Lichman 2013] machine learning repository. In these applica-
tions, the role of SVD is dimensionality reduction and feature extraction. The selected
data sets are the Iris, the Pendigits (Pen-Based Recognition of Handwritten Digits)
and the Segmentation (Statlog Image Segmentation) data sets. Parameter k was set
so that the approximation has at least 90% of the information in the data set. That is,
we set the minimal k such that

∑k

i=1 σ
2
i /

∑n

i=1 σ
2
i > 0.9 [Alpaydin 2010]. Table I illus-

trates the main properties of the selected data sets. In order to be able to compute the
error over these matrices, we computed the exact singular value decomposition using
the Jama [Nis 1999] library.
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5.4. Convergence

The experimental results are shown in Figures 1 and 2. Here, we tested the conver-
gence speed of the algorithms over the real data sets with the parameter k set accord-
ing to Table I.

Figure 1 illustrates the deviation from the exact singular vectors. G-SVD is the
fastest to converge, but it either needs a central database to store A or it requires
a synchronized master-slave communication model when parallelized. We have also
included a reference curve that is calculated by scaling the number of iterations by
log10 m for G-SVD. The motivation is a more scalable potential implementation of G-
SVD in which there is a hierarchical communication structure in place where nodes
propagate partial sums of the gradient up a tree (with a branching factor of 10) instead
of each node communicating with a central server as in [Benson et al. 2013]. This
curve almost completely overlaps with that of DSG-SVD, our fully distributed robust
algorithm.

We also illustrate the speedup w.r.t. SG-SVD. The major difference between SG-
SVD and DSG-SVD is that in DSG-SVD there are m different approximations of
Y , all of which keep updating the rows of X simultaneously, while in SG-SVD there
is only one version of Y . Other than that, both algorithms apply exactly the same
gradient update rule. In other words, in DSG-SVD any row of X experiences m times
as many updates per unit time as in SG-SVD.

Figure 2 illustrates the difference between DSG-LRD and DSG-SVD. Both opti-
mize the same error function (which is shown on the plots), however, DSG-SVD in-
troduces the extra constraint of looking for the singular vectors of A. Fortunately this
extra constraint does not slow down the convergence significantly in the case of the
data sets we examined, although it does introduce a bumpier convergence pattern.
The reason is that the singular vectors converge in a sequential order, and the vectors
that belong to smaller singular values might have to be completely re-oriented when
the singular vectors that precede them in the order of convergence have converged.

5.5. Scalability

To evaluate the scalability of DSG-SVD, we generated a range of synthetic matrices
of various sizes using the method described earlier. Figure 3 shows the results of our
experiments. Clearly, the method is somewhat more sensitive to varying the number of
nodes (that is, to varying the first dimension m) than to varying the second dimension
n (the length of a row). This is not surprising as the full row of A is always used in a
single update step irrespective of its length, whereas a larger m requires visiting more
nodes, which requires more iterations.

However, when m is large, we can apply sampling techniques [Drineas et al. 2006].
That is, we can consider only a small sample of the network drawn uniformly or from
an appropriately biased distribution and calculate a high quality SVD based on that
subset. To illustrate such a sampling technique, we implemented uniform sampling.
When we wish to select a given proportion p of the nodes, each node decides locally
about joining the sample with a probability p. The size of the resulting sample will
follow the binomial distribution B(N, p).

Figure 4 shows our experimental results with p = 1/2 and p = 1/3. Clearly, while
communication costs overall are decreased proportionally to the sample size, on our
benchmark both precision and convergence speed remain almost unchanged. The only
exception is the Iris data set. However, this is a relatively small data set over which
the variance of our uniform sampling method is relatively high (note, for example, that
the run with p = 1/3 resulted in a better performance than with p = 1/2).
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Fig. 4. Results when only the 50/33% randomly sampled instances were used from the data set.
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Fig. 5. Results in different failure scenarios using a 1024× 1024 synthetic matrix with a rank of 16. We set
k = 1.

5.6. Failure Scenarios

We used two different failure scenarios: a mild and a hard one. In the two scenarios,
message delay was drawn uniformly at random from between ∆ and 5∆ or 10∆ time
units, respectively. Messages were dropped with a probability of 20% or 50%, respec-
tively.

Node churn was modeled based on statistics from a BitTorrent trace [Roozenburg
2006] as well as known empirical findings [Stutzbach and Rejaie 2006]. We draw the
online session length for each node independently from a lognormal probability distri-
bution with parameters µ = 5∆ and σ = 0.5∆. Offline session lengths are determined
implicitly by fixing the number of nodes that are offline at the same time. For the two
scenarios, 50% or 80% of the nodes were offline at the same time, respectively.

The results of the algorithms in these extreme failure scenarios can be seen in Fig-
ure 5. As we observe, the different types of failures (whether examined separately or
taken together) only delay, but not prevent, convergence. This is in sharp contrast with
competing approaches that require synchronization, such as G-SVD.

An interesting observation is that when only churn is modeled, at the beginning
of the simulation convergence is actually faster. This effect is due to the fact that—
since most of the nodes are offline—the effective network is smaller, but this small
sample still allows for an approximation of the SVD. However, convergence eventually
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slows down as full precision cannot be achieved without taking most of the nodes into
account in the particular matrix we experimented with.

6. TRACE-BASED EXPERIMENTS WITH A RECOMMENDER SYSTEM

Here, our goal is to demonstrate that the proposed method can be applied to real-world
collaborative movie recommendation data. In order to achieve our goal, we simulate
node churn based on a real trace of smartphone user behavior. We also ensure that we
use the phone only when it is connected to a charger, so as to save the battery. Based on
the well-known MovieLens datasets we calculate the message size (the size of matrix
Y ) and we take into account the bandwidth limitations of smartphone connections as
well. As we will show, even on the largest available dataset of about 70,000 users,
our best algorithm variant achieves a competitive performance in 1-2 hours without
excessive bandwidth utilization, and reasonable prediction performance is attained
much sooner. To sum up, our setup is realistic, battery friendly, and the performance
is completely acceptable for a recommender system.

6.1. Trace Properties

The trace we used was collected by a locally developed openly available smartphone
app called STUNner [Berta et al. 2014]. In a nutshell, the app monitors and collects
information about charging status, battery level, bandwidth, and NAT type.

We have traces of varying lengths taken from 1191 different users. We divided these
traces into 2-day segments (with a one-day overlap), resulting in 40,658 segments alto-
gether. With the help of these segments, we were able to simulate a virtual 2-day period
by assigning a different segment to each simulated node. When we needed more users
than segments, we re-sampled the segments to inflate the number of users artificially.

To ensure our algorithm is phone and user friendly, we defined a user to be online
(available) when the user has a network connection and the phone is connected to a
charger, hence we never use battery power at all. In addition, we also treated those
users as offline who had a bandwidth of less than 1 Mbit/s, and we filtered out the
online sessions that lasted less than a minute as well.

The observed churn pattern is illustrated in Figure 6 based on all the 2-day periods
we identified. Although our sample contains users from all over the world, they are
mostly from Europe, and some are from the USA. The indicated time is GMT, thus
we did not convert times to local time. It is interesting to note that if we consider
only network availability (any battery level allowed), then the diurnal pattern becomes
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Table III. The main properties of the MovieLens data sets and algorithm parameters

100k 1m 10m
Number of users (m) 943 6,040 69878
Number of movies (n) 1682 3706 10677
Number of ratings 100,000 1,000,209 10,000,054
Density 0.059 0.042 0.014
Training / Test 90.57% / 9.43% 93.96% / 6.04% 93.01% / 6.99%
Time period 20.09.97 - 22.04.98 25.04.00 - 28.02.03 09.01.95 - 05.01.09
η/α/k 10−2/0.1/5 10−2/0.1/5 10−2/0.1/5
message size 0.5 Mbit 1.2 Mbit 3.4 Mbit
∆ for DSG-RLRD(/10) 60s (6s) 60s (6s) 60s (6s)
∆q for DSG-RLRD(/10) 10 (200) 10 (150) 10 (100)
∆∆q for HOTPOTATO 1200s 900s 600s

apparent in the login and logout frequencies due to short session lengths during the
day, and long sessions during the night. The network availability itself is static. If we
require the phone to be on a charger, then the diurnal pattern of availability becomes
clear. During the night, more phones are available (as they tend to be on a charger),
but the churn rate remains lower. Note that during the simulated 2-day period, about
30% of the users remain permanently offline based on our definition.

6.2. Data Sets and Algorithm Parameters

We used the well known and widely used MovieLens data sets [Resnick et al. 1994]2.
In these data sets, users rate movies from one to five stars that define the user-item
matrix we wish to decompose. We divided the data sets into training and test sets with
the script proposed by the authors of the data sets. The properties of the data sets
can be seen in Table III. The dimensions of the user-item matrices to be factorized are
determined by the number of users (the rows) and the number of movies (the columns).

Obviously, in this machine learning application we measured prediction error as
opposed to the approximation error of the entire matrix (i.e., Equation (1)). In our
experiments prediction error was defined as the root mean squared error (RMSE) over
the matrix entries in the test set.

The learning rate (η) and the regularization rate (α) were set to standard values
based on preliminary experiments for each data set. Figure 7 illustrates these prelim-
inary experiments. The plots are based on the SG-RLRD algorithm, which is identical
to SG-SVD except that we use Algorithm 3 as the update rule (no orthogonalization).
The algorithm passed over the whole dataset 100 times. The center of each heatmap
shows the values we selected to be used in the experiments (as shown in Table III). It
is clear that increasing η improves the performance up to a point where the algorithm
becomes unstable and we no longer have convergence. Increasing α stabilizes the con-
vergence, but reduces the performance. Increasing the network size favors smaller
learning rates more, since we have more updates during the 100 passes over the data.

An interesting question that remains is how to set parameter k for our low-rank de-
composition algorithms. In Figure 7, the RMSE for various values of k is shown (right)
by using a standard matrix decomposition algorithm to optimize Equation (4). As we
observe, after a certain point, increasing k has only a small effect on the prediction
performance. For this reason in our experiments we set k = 5 as a good compromise
between prediction performance and communication costs.

Table III shows the message sizes associated with the three data sets. In all the
experiments, we send each message at a rate of 1 Mbit/s. This sets an upper bound
on bandwidth utilization, because only one message is sent at a time by a node ac-

2Data sets were downloaded from: http://grouplens.org/datasets/movielens/

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 62, Publication date: May 2016.



Robust Decentralized Low-Rank Matrix Decomposition 62:17

MovieLens 100k

0.01

0.1

1

k
=

5
re

g
u

la
ri

za
ti

o
n

MovieLens 1m MovieLens 10m

 0.9

 1

 1.1

 1.2

0.1 0.01 0.001

learning rate

0.01

0.1

1

k
=

5
0

re
g

u
la

ri
za

ti
o

n

0.1 0.01 0.001

learning rate

0.1 0.01 0.001

learning rate

 0.9

 1

 1.1

 1.2

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1  2  5  10  20  50  100

R
M

S
E

k

100k
10m

1m

Fig. 7. RMSE with various hyperparameters (learning rate (η), regularization (α), rank (k)) on the Movie-
Lens data sets (on the heatmaps a darker color represents a better performance).

cording to each algorithm variant. However, the actual bandwidth utilization in our
experiments was set lower than 100 KBit/s. To control the bandwidth, a lower bound
can be set using the parameters ∆ and ∆q. Recall that the effect of these parameters
is that if no message arrives for ∆∆q seconds then the restart mechanism is triggered
(a new random walk is started). By limiting the maximum waiting time we control the
average waiting time, which in turn determines the bandwidth utilization.

6.3. Algorithms

The first algorithm variant we experimented with is DSG-RLRD with bias. As shown
in Table II, DSG-RLRD is Algorithm 1 with the update rule in Algorithm 3. Here,
we set ∆ to one minute. As we shall see, this variant performed rather poorly in our
realistic simulation scenario. Hence, we introduce here a number of additional variants
with the goal of speeding up convergence.

Our first idea is a slight modification of DSG-RLRD. In this variant, we initiate only
m/10 models (random walks) in the network (the original version starts m models), but
we reduce the period (round length) to ∆/10. This results in the same average network
traffic, while the fewer models perform faster walks. We will call this variant DSG-
RLRD/10. The restarting technique in Algorithm 1 is of key importance for DSG-
RLRD/10 because there are fewer models in the system. Here, we set the parameter
∆q as shown in Table III. This parameter was set by manual optimization so that the
actual overall amount of traffic in the system is the same as that of DSG-RLRD.

Our second modified version is called HOTPOTATO. This variant still uses Algo-
rithm 3 as an update rule, but instead of running Algorithm 1 the nodes immediately
forward each model they receive. To avoid saturating the bandwidth, and to recover
failed random walks, in HOTPOTATO we also need to control the number of models
that circulate in the network to get approximately the same average bandwidth—and
thus fewer random walks, since here random walks have a maximum speed—as in the
other two algorithm variants. We initiated m/10 models and adapted the same restart-
ing idea as in Algorithm 1 with the same timeout as used by DSG-RLRD/10. Our
preliminary results confirmed that this resulted in approximately the same amount of
traffic.

Our third idea is to apply continuous merging inspired by [Ormándi et al. 2013].
That is, we modify Algorithm 1 so that, instead of a queue of received models, we now
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Fig. 8. The effect of the number of neighbors (20, 30 and 100 neighbors) per node.

have exactly one local model at all times. When a model is received, it is averaged with
the local model, and the average will become the new local approximation. In addition,
we also keep track of how many models are received (to model the size of the queue).
This results in exactly the same communication pattern as that of Algorithm 1, yet
the models become rather homogeneous over the network: the effect of each update is
spread to each model quickly. Merging can be applied to any of the algorithm variants
above, with identical parameters.

Although in this study we needed to invest some effort into setting ∆q so that all the
variants generate similar traffic, in practice ∆q is not a sensitive parameter. As men-
tioned above, it simply guarantees a lower bound on the average number of messages
per round. In practice the actual average bandwidth per node used in the experiments
was less than 100 KBit/s.

As a baseline, we also include the batch gradient algorithm that simulates a cen-
tralized solution. Here, in each round, each online node uploads its gradients based
on its current approximation of xi, Y , and bi to a central server. The server then cal-
culates the sum of the gradients and sends the sum back to all the nodes. The nodes
then update their local model. We set the parameters of the batch gradient algorithm
so that the same amount of data is transferred by the nodes as in the other algorithms
(not counting the communication of the server, which would double the communication
complexity). The learning rate here was η = 10−4.

6.4. Peer Sampling

In these experiments, for simplicity, the peer sampling service is assumed to be based
on a static network, in which every node has a fixed number of random neighbors
out of the whole population. Most of these neighbors are offline at any point in time
(see Figure 6). This is a realistic setup on the real Internet, since in the case of stable
connections, it is more economical to perform NAT traversal potentially with the assis-
tance of a server in the connection phase. A more sophisticated peer sampling service
could also repair the network [Roverso et al. 2013]. Figure 8 shows our simulations
performed to explore the effect of the number of neighbors. We can quite clearly see
bumps in the performance for a neighborhood size of 20. These are caused by daily pe-
riodicity: overnight, fewer users are online, and many of them are newly joined nodes
(see Figure 6). Higher neighborhood sizes smooth these periods out. Based on this find-
ing, we opted for 100 random neighbors per node as with this setting there are enough
online neighbors in our churn scenario to allow for the random walks to proceed.
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Fig. 9. Results on the MovieLens data sets without the merging technique. The bottom row shows the first
hour of the same data on log-scale. User Average shows the error of always predicting the average rating for
each user.
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Fig. 10. Results on the MovieLens data sets with the merging technique. User Average shows the error of
always predicting the average rating for each user.
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6.5. Results

The results of our experiments are shown in Figures 9 and 10. The average of three
runs is shown for all the parameter settings. Note that at any given point in time, the
RMSE is calculated over the part of the testing set that resides at nodes online at that
point in time. We calculate RMSE for online nodes by using the local model of the node.
This is motivated by the fact that we wish to provide a service to online nodes, i.e., the
nodes that participate in the learning process. Even this way, the fastest algorithms
approximate the prediction performance of the model that was trained over the entire
dataset offline (shown as the “opt” level) as well as that of the batch model.

In the case of the algorithm variants without merging, it is apparent that, with the
same communication budget, it is preferable to have fewer models in the network that
move faster. On a larger network DSG-RLRD becomes slower because its slow random
walks are able to visit only a smaller part of the network. HOTPOTATO performs best
in each scenario, which clearly indicates that, at least during the first two days, it is
much better to try and visit as many nodes as possible and sacrifice the redundancy of
the other variants that maintain more, albeit slower, random walks.

Figure 10 contains our results with the merging variants. The results are quite strik-
ing: due to the spreading of the effect of each update by the averaging technique, all the
variants become almost identical. This is because each variant in effect now does the
same thing: it calculates the update starting from a very similar model Y at each node,
and spreads the effect of the update to every other node through a gossip algorithm.
The variants differ in the details of the averaging process, but since all the three ap-
proaches are similarly effective due to the quick broadcast implemented by gossip, the
difference is not significant in our experiments. The periodic variants clearly benefit
from averaging, as can be seen also in Figure 8. Still, HOTPOTATO without merging
slightly outperforms the variant with merging, which makes it the best choice over the
scenarios and time frames (both short and long) we examined.

Even in the case of the largest message size, we utilize about 6% of the bandwidth
on the lowest-bandwidth nodes. Increasing bandwidth utilization clearly results in a
linear speedup; that is, we could afford to run the algorithm 10 times faster at the cost
of using 10 times more bandwidth, which would still be within the affordable range.

Since the actual application scenario of a recommender system involves continuous
model training and update, the actual bandwidth utilization could be reduced even
further, given that user preferences do not change dramatically over short periods.

7. PRIVACY CONSIDERATIONS

In our computational model, private information never leaves the owner’s device. We
argued that this is a necessary condition of privacy in practice, otherwise we either
have to trust a server, which we wish to avoid, or else we need to rely on cryptographic
techniques that are not yet practical enough for an actual application of the scale and
type we target [Nikolaenko et al. 2013].

Evidently, decentralization is not a sufficient condition of privacy. There are, how-
ever, promising results on decentralized privacy. Yan et al. have shown [Yan et al.
2013] that a similar peer-to-peer algorithm for online convex optimization has intrin-
sic privacy-preserving properties that are derived from the properties of the under-
lying communication topology. That is, the gradients of the local function cannot be
reconstructed for various topologies of user communication graphs. In their case, the
full model was transmitted, while for matrix factorization, the user vectors are kept
locally. The inaccessibility of the user vectors and the non-convexity of the function to
be optimized makes it even more difficult to reconstruct the gradients.
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Wang et al. show a stronger theoretical result [Wang et al. 2015] in a slightly dif-
ferent context, namely that stochastic gradient updates actually implement the the-
oretical definition of differential privacy [Dwork 2011], which is the state-of-the-art
approach in privacy discussions.

However, if we use a peer sampling service that is not itself secure, then it might
become possible to isolate any node and learn both its input and output in the same
round. This problem is targeted in our parallel ongoing study [Birman et al. 2015]
where peer sampling is de-randomized and the continuous observation of both the
input and output of a node becomes very hard. For privacy considerations, we should
rely on static networks set up by a peer sampling server, as was done in Section 6,
because in that case only statistical attacks are possible: one needs to compromise a
sufficient number of devices so as to have a reasonable chance of collecting the input
and output of a given node in the same round. Such statistical attacks can be made
prohibitively expensive in a very large network, unless joining the network is free and
uncontrolled.

One can apply additional methods to harden privacy. Another idea we have devel-
oped [Danner and Jelasity 2015] involves mini-batch gradient search, in which we
create a relatively small group of nodes in every update where a certain novel secure
multiparty computation algorithm is executed to calculate the sum of the gradients
that is also robust to failure. This ensures that the members of the group become
indistinguishable. Similar algorithms have been proposed in [Ahmad and Khokhar
2006].

While in the distributed algorithm the input data is better protected than in a cen-
tralized approach, the recommendations based on the final model can be still used to
infer something about the original data. For centralized algorithms the standard ap-
proach to ensure differential privacy is to add noise to the gradient (see e.g., [Berlioz
et al. 2015] for differentially private matrix factorization). Noise can be added for the
distributed algorithms as well, in a similar manner (see e.g., [Huang et al. 2015]). In
this case the added noise protects not only the output model from deanonymization,
but the communication as well. An important difference between centralized and dis-
tributed algorithms with added noise is that while the output model is protected in
both cases, the original data may still have a single point of failure in the centralized
approach.

Overall, we argue that keeping private information local is a practical necessity, and
with additional measures privacy can be improved without sacrificing practicality.

8. CONCLUSIONS

In this paper, we proposed an SGD algorithm with an update rule that has stable fix
points only in the SVD of a matrix A. The output of the algorithm for rank k are two
matrices X and Y that contain scaled versions of the first k left and right singular
vectors of A, respectively. Matrices X and Y are unique apart from the scaling of the
columns. We also proposed regularized and non-regularized versions of low-rank ma-
trix decomposition techniques that can cope with partially defined matrices as well, by
calculating the gradient only over the matrix entries that are known.

The most important feature of the algorithms is that they simultaneously achieve
practical levels of privacy, efficiency and robustness. We operate over fully distributed
data where each network node stores one full row of A. The output matrix X is also
fully distributed: node i that stores row i of A computes row i of X , the private model
for the node. Matrices A and X are private in that only the node that stores a given row
has access to it. A version of the matrix Y is available in full at all nodes. Through ex-
perimental evaluation we studied the convergence speed of the algorithm, and demon-
strated that it is competitive with other gradient methods that require more freedom
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for data access. We also demonstrated the remarkable robustness of the method in
extreme failure scenarios.

We made clear the practicality of our approach using a case study where we sim-
ulated a recommender system over a trace collected from real smartphone users. We
made sure that our application respected the bandwidth limitations (we used at most
6% of the available bandwidth, usually less) and the battery was also protected by
just using devices that are plugged in to a charger. We demonstrated that the algo-
rithm attains close to optimal prediction accuracy in a reasonable time in a realistic
scenario.

Our ongoing work includes exploiting the potential sparsity of the matrix. In rec-
ommender systems, the user item matrix is typically very sparse, for example. One
idea in this direction is to only communicate the parts of the local approximations that
were changed during the update step. Exploiting sparsity would be a first step to im-
prove the scalability of the algorithm in terms of the number of features (or items in
recommender applications) as well.
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