
Grassroots Approach to Self-Management in

Large-Scale Distributed Systems⋆

Ozalp Babaoglu, Márk Jelasity, and Alberto Montresor

Department of Computer Science, University of Bologna, Italy
e-mail: babaoglu,jelasity,montreso@cs.unibo.it

Abstract. Traditionally, autonomic computing is envisioned as replac-
ing the human factor in the deployment, administration and mainte-
nance of computer systems that are ever more complex. Partly to ensure
a smooth transition, the design philosophy of autonomic computing sys-
tems remains essentially the same as traditional ones, only autonomic
components are added to implement functions such as monitoring, error
detection, repair, etc. In this position paper we outline an alternative
approach which we call “grassroots self-management”. While this ap-
proach is by no means a solution to all problems, we argue that recent
results from fields such as agent-based computing, the theory of complex
systems and complex networks can be efficiently applied to achieve im-
portant autonomic computing goals, especially in very large and dynamic
environments. Unlike traditional compositional design, in the grassroots
approach, desired properties like self-healing and self-organization are
not programmed explicitly but rather “emerge” from the local interac-
tions among the system components. Such solutions are potentially more
robust to failures, are more scalable and are extremely simple to imple-
ment. We discuss the practicality of grassroots autonomic computing
through the examples of data aggregation, topology management and
load balancing in large dynamic networks.

1 Introduction

The desire to build fault-tolerant computer systems with an intuitive and simple
user interface has always been part of the computer science research agenda.
Yet, the current scale and complexity of computer systems is becoming alarm-
ing, especially because our everyday life has come to depend on such systems
to an increasing degree. There is a general feeling in the research community
that coping with this new situation—which emerged as a result of Moore’s Law,
the widespread adoption of the Internet and computing becoming pervasive in
general—calls for radically new approaches to achieve seamless and efficient func-
tioning of computer systems.

⋆ The original publication is available at www.springerlink.com. In UPP 2004, LNCS
3566, pp. 286–296, 2005, Springer (doi:10.1007/11527800 22). This work was par-
tially supported by the EC FET Projects BISON (IST-2001-38923) and DELIS
(IST-001907). M. Jelasity is also with RGAI, MTA SZTE, Szeged, Hungary.



Accordingly, significant effort is being devoted to tackle the problem of self-
management. One of the most influential and widely publicized approaches is
IBM’s autonomic computing initiative, launched in 2001 [11]. The term “auto-
nomic” is a biological analogy referring to the autonomic nervous system. The
function of this system in our body is to control “routine” tasks such as blood
pressure, hormone levels, heart rate, breathing rate, etc. allowing our conscious
mind to focus on higher level tasks like planning and problem solving. The idea
is that autonomic computing is just that: computer systems should take care of
routine tasks themselves while system administrators and users can focus on the
actual task instead of spending most of their time troubleshooting and tweaking
their systems.

Since the original initiative, the term has been adopted by the wider research
community [1, 3] although it is still strongly associated with IBM and, more
importantly, IBM’s specific approach to autonomic computing. This is somewhat
unfortunate because the term autonomic would allow for a much deeper and
more far-reaching interpretation, as we explain soon. In short, we should not
only consider what the autonomic nervous system does but also how it does it.
We believe that the remarkably successful self-management of the autonomic
nervous system, and biological organisms in general, lies exactly in the way they
achieve this functionality. Ignoring the exact mechanisms and stopping at the
shallow analogy at the level of functional description misses some important
possibilities and lessons that can be learned by computer science.

1.1 The Meaning of “Self”

The traditional approach to autonomic computing is to replace human system
administrators with software or hardware components that continuously moni-
tor some subsystem assigned to them, forming so-called control loops [11] which
involve monitoring, knowledge based planning and execution (see Figure 1).
Biological systems, however, achieve self-management and control through en-
tirely different, often fully distributed and emergent ways of processing infor-
mation. In other words, the usual biological interpretation of self-management
involves no managing and managed entities. There is often no subsystem respon-
sible for self-healing or self-optimization; instead, these properties simply arise
from some simple local behavior of the components typically in a highly non-
trivial way. The term “self” is meant truly in a grassroots sense, and we believe
that this fact might well be the reason for many desirable properties such as
extreme robustness and adaptivity, despite very simple implementations.

1.2 Trust

There are a few practical obstacles in the deployment of grassroots self-management.
One of them is due to the entirely different and somewhat un-natural thinking
that self-organization and emergence require and the relative lack of our under-
standing of the principles behind them [14]. Accordingly, trust delegation rep-
resents a problem: psychologically it is more comforting to have a single point



Decide

Resource

c
o
n
t
r
o
l

m
e
a
s
u
r
e

Resource

Grassroots Conceptual

Fig. 1. Models of self-management.

of control, an explicit controlling entity. In the case of the autonomic nervous
system we cannot do anything else but trust it, although probably many people
would prefer to have more control, especially when things go wrong. Indeed,
the tendency in engineering is to try to isolate and create central units that
are responsible for a function. A good example is the car industry that uses
computers in increasing numbers in our cars to explictly control the different
functions, thereby replacing old-and-proven mechanisms that were often based
on self-optimizing mechanism (like the carburetor). To some extent, this results
in sacrificing the self-healing and robustness features for these functions.

1.3 Modularity

To exploit the power and simplicity of emergent behavior and yet ensure that
these mechanisms can be trusted and be incorporated in systems in an informed
manner, we believe that a modular paradigm is required. The idea is to identify
a collection of simple and predictable services as building blocks and combine
them in arbitrarily complex functions and protocols. Such a modular approach
presents several attractive features. Developers will be allowed to plug different
components implementing a desired function into existing or new applications,
being certain that the function will be performed in a predictable and depend-
able manner. Research may be focused on the development of simple and well-
understood building blocks, with a particular emphasis on important properties
like robustness, scalability, self-organization and self-management.

The goal of this position paper is to promote this idea by describing some
of our preliminary experiences. Our recent work has resulted in a collection of
simple and robust building blocks, which include data aggregation [9, 13], mem-

bership management [8], topology construction [6,12] and load balancing [10]. Our



do forever

wait(T time units)
p← getPeer()
send s to p

sp ← receive(p)
s← update(s, sp)

(a) active thread

do forever

sp ← receive(*)
send s to sender(sp)
s← update(s, sp)

(b) passive thread

Fig. 2. The skeleton of a gossip-based protocol. Notation: s is the local state, sp is the
state of the peer p.

building blocks are typically no more complicated than a cellular automaton or
a swarm model which makes them ideal objects for research. Practical applica-
tions based on them can also benefit from a potentially more stable foundation
and predictability, a key concern in fully distributed systems. Most importantly,
they are naturally self-managing, without dedicated system components. In the
rest of the paper, we briefly describe these components.

2 A Collection of Building Blocks

In the context of the BISON project [2], our recent activity has focused on
the identification and development of protocols for several simple basic func-
tions. The components produced so far can be informally subdivided into two
broad categories: overlay protocols and functional protocols. An overlay protocol
is aimed at maintaining application-layer, connected communication topologies
over a set of distributed nodes. These topologies may constitute the basis for
functional protocols, whose task is to compute specific functions over the data
maintained at nodes.

Our current bag of protocols includes: (i) protocols for organizing and man-
aging structured topologies such as super-peer based networks (SG-1 [12], grids
and tori (T-Man [6]); (ii) protocols for building unstructured networks based
on the random topology (newscast [8]); (iii) protocols for the computation of
a large set of aggregate functions, including maximum and minimum, average,
sum, product, geometric mean, variance, etc [9, 13]; and (iv) protocols for load
balancing [10].

The relationships between overlay and functional protocols may assume sev-
eral different forms. Topologies may be explicitly designed to optimize the per-
formance of a specific functional protocol (this is the case of newscast [8] used to
maintain a random topology for aggregation protocols). Or, a functional protocol
may be needed to implement a specific overlay protocol (in superpeer networks,
aggregation can be used to identify the set of superpeers).

All the protocols we have developed so far are based on the gossip-based
paradigm [4, 5]. Gossip-style protocols are attractive since they are extremely



structured topology

T−Man, SG−1
data aggregation

load balancing
unstructured topology

newscast

monitoring

control

clustering

sortingsearch

Fig. 3. Dependence relations between components.

robust to both computation and communication failures. They are also extremely
responsive and can adapt rapidly to changes in the underlying communication
structure without any additional measures.

The skeleton of a generic gossip-based protocol is shown in Figure 2. Each
node possesses a local state and executes two different threads. The active one
periodically initiates an information exchange with a peer node selected ran-
domly, by sending a message containing the local state and waits for a response
from the selected node. The passive thread waits for messages sent by an initiator
and replies with its local state.

Method update builds a new local state based on the previous local state
and the state received during the information exchange. The output of update
depends on the specific function implemented by the protocol. The local states at
the two peers after an information exchange are not necessarily the same, since
update may be non-deterministic or may produce different outputs depending
on which node is the initiator.

Even though our system is not synchronous, it is convenient to talk about
cycles of the protocol, which are simply consecutive wall clock intervals during
which every node has its chance of performing an actively initiated information
exchange.

In the following we describe the components. Figure 3 illustrates the depen-
dence relations between them as will be described.



2.1 Newscast

In newscast [8], the state of a node is given by a partial view, which is a set
of peer descriptors with a fixed size c. A peer descriptor contains the address of
the peer, along with a timestamp corresponding to the time when the descriptor
was created.

Method getPeer returns an address selected randomly among those in the
current partial view. Method update merges the partial views of the two nodes
involved in an exchange and keeps the c freshest descriptors, thereby creating
a new partial view. New information enters the system when a node sends its
partial view to a peer. In this step, the node always inserts its own, newly created
descriptor into the partial view. Old information is gradually and automatically
removed from the system and gets replaced by newer information. This feature
allows the protocol to “repair” the overlay topology by forgetting dead links,
which by definition do not get updated because their owner is no longer active.

In newscast, the overlay topology is defined by the content of partial views.
We have shown in [8] that the resulting topology has a very low diameter and
is very close to a random graph with out-degree c. According to our experi-
mental results, choosing c = 20 is already sufficient for very stable and robust
connectivity. We have also shown that, within a single cycle, the number of
exchanges per node can be modeled through a random variable with the distri-
bution 1 + Poisson(1). The implication of this property is that no node is more
important (or overloaded) than others.

2.2 T-Man

Another component of our collection is T-Man [6], a protocol for creating a
large class of topologies. The idea behind the protocol is very similar to that of
newscast. The difference is that instead of using the creation date (freshness)
of descriptors, T-Man applies a ranking function that ranks any set of nodes
according to increasing distance from a base node. Method getPeer returns
neighbors with a bias towards closer ones, and, similarly, update keeps peers
that are closer, according to the ranking.

Figure 4 illustrates the protocol, as it constructs a torus topology. In [6] it
was shown that the protocol converges in logarithmic time even for networks of
106 nodes and for other topologies including rings and binary trees. With the
appropriate ranking function, T-Man can also be used to sort a set of numbers.

T-Man relies on another component for generating an initial random topology
which is later evolved into the desired one. In our case this service is provided
by newscast.

2.3 SG-1

SG-1 [12] is yet another component based on newscast, whose task is to self-
organize a superpeer-based network. This special kind of topology is organized
through a two-level hierarchy, as illustrated in Figure 5: nodes that are faster



after 3 cycles after 5 cycles

after 8 cycles after 15 cycles

Fig. 4. Illustrative example of T-Man constructing a torus over 50×50 = 2500 nodes,
starting from a uniform random topology with c = 20. For clarity, only the nearest 4
neighbors (out of 20) of each node are displayed.

and/or more reliable than “normal” nodes take on server-like responsibilities and
provide services to a set of clients. The superpeer paradigm allows decentralized
networks to run more efficiently by exploiting heterogeneity and distributing
load to machines that can handle them. On the other hand, it avoids the flaws
of the client-server model since no bottleneck or single point of failure exist.

In our model, each node is characterized by a capacity parameter, that defines
the maximum number of clients that can be served by the node. The task of SG-

1 is to form a network where the role of superpeers is played by the nodes with
highest capacity. All other nodes become clients of one or more superpeers. The
goal is to identify the minimal set of superpeers that are able to provide the
desired quality of service, based on their capacity.

In SG-1, newscast is used in two ways. First, it provides a robust underly-
ing topology that guarantees connectivity of the network in spite of superpeer
failures. Second, newscast is used to maintain, at each node, a partial view
containing a random sample of superpeers that are currently underloaded with
respect to their capacity. At each cycle, each superpeer s tries to identify a su-
perpeer t that (i) has more capacity than s, and (ii) is underloaded. If such
superpeer exist and can be contacted, s transfers the responsibility of parts of
its clients to t. If the set of clients of s becomes empty, s becomes a client of t.



Fig. 5. A superpeer topology. Superpeers (thick circles) are connected together through
a random network, while clients (thin circles) are associated to a single superpeer.

Experimental results show that this protocol converges to the target super-
peer topology in logarithmic time for network sizes as large as 106 nodes, pro-
ducing very good approximations of the target topology in a constant number
of cycles.

2.4 Gossip-Based Aggregation

In the case of gossip-based aggregation [9, 13], the state of a node is a numeric
value. In a practical setting, this value can be any attribute of the environment,
such as the load or the storage capacity. The task of the protocol is to calculate
an aggregate value over the set of all numbers stored at nodes. Although several
aggregate functions may be computed by our protocol, in this paper we provide
only the details for the average function.

In order to work, this protocol needs an overlay protocol that provides an im-
plementation of method getPeer. Here, we assume that this service is provided
by newscast, but any other overlay could be used.

To compute the average, method update(a, b) must return (a + b)/2. After
one state exchange, the sum of the values maintained by the two nodes does
not change, since they have just balanced their values. So the operation does
not change the global average either; it only decreases the variance over all the
estimates in the system.

In [9] it was shown that if the communication topology is not only connected
but also sufficiently random, at each cycle the empirical variance computed over
the set of values maintained by nodes is reduced by a factor whose expected
value is 2

√

e. Most importantly, this result is independent of the network size,
confirming the extreme scalability of the protocol.

In addition to being fast, our aggregation protocol is also very robust. Node
failures may perturb the final result, as the values stored in crashed nodes are



lost; but both analytical and empirical studies have shown that this effect is
generally marginal [13]. As long as the overlay network remains connected, link
failures do not modify the final value, they only slow down the aggregation
process.

2.5 A Load-Balancing Protocol

To a certain extent, the problem of load balancing is similar to the problem of
aggregation. Each node has a certain amount of load and the nodes are allowed
to transfer portions of their load between themselves. The goal is to reach a
state where each node has the same amount of load. To this end, nodes can make
decisions for sending or receiving load based only on locally available information.
Unlike aggregation, however, the amount of load that can be transfered in a given
cycle is bounded: the transfer of a unit of load may be an expensive operation.
In our present discussion, we use the term quota to identify this bound and we
denote it by Q. Furthermore, we assume that the quota is the same at each node.

A simple, yet far from optimal idea for a completely decentralized algorithm
could be based on the aggregation mechanism illustrated above. Periodically,
each node contacts a random node among its neighbors. The loads of the two
nodes are compared; if they differ, a quantity q of load units is transfered from
the node with more load to the node with less load. q is clearly bounded by the
quota Q and the amount of load units needed to balance the nodes.

If the network is connected, this mechanism will eventually balance the load
among all nodes. In fact, in a connected network a path exist between any pair of
overloaded and underloaded nodes, allowing a flow of load between them. Never-
theless, it fails to be optimal with respect to load transfers. The reason is simple:
if the loads of two nodes are both higher than the average load, transferring load
units from one to the other is useless. Instead, they should contact nodes whose
load is smaller than the average, and perform the transfer with them.

Our load-balancing algorithm is based exactly on this intuition. The nodes
obtain an estimate of the current average load through the aggregation pro-
tocol described above. This estimate is the target load; based on its value, a
node may decide if it is overloaded, underloaded, or balanced. Overloaded nodes
contact their underloaded neighbors in order to transfer their excess load and
underloaded nodes contact their overloaded neighbors to perform the opposite
operation. Nodes that have reached the target load stop participating in the
protocol. Although this was a simplified description, it is easy to see that this
protocol is optimal with respect to load transfer, because each node transfers
exactly the amount of load needed to reach its target load. As we show in [10],
the protocol is also optimal with respect to speed under some conditions on the
initial load distribution.

3 Notes on Combining the Building Blocks

The combination of the building blocks is done in the traditional way: a building
block has a local interface (within one node) towards the other components, and



it has a protocol and an implementation associated with it. The implementation
can differ over different nodes, just like the local interface. For this reason, we
have focused on protocols in the above discussion. Nodes using the same pro-
tocol (for example, aggregation) form a “layer” in the system. This, however,
is not a layer in the usual sense: we allow for arbitrary dependency relations
between the building blocks. In general, the directed graph that describes the
dependencies (such as the example shown in Figure 3) will not contain cycles,
however, this is not strictly required. Two “layers” can mutually depend on each
other’s services; for instance, in a bootstrapping phase when they can catalyze
each other’s performance.

Having said that, we need to mention one exception. There is a “lowest
layer” in our framework, which in a sense represents the group abstraction:
the set of nodes that form the domain of the other components. This layer
is the random network component, which provides the peer sampling service

(see Section 2.1 and [7]). The main requirement for this service is that it must
return all nodes with equal probability, in particular, no nodes are to be excluded
forever. The peer sampling service is used to support and bootstrap other services
like aggregation or structured topologies.

Finally, the aspect of time-scale should also be noted. While all of the pro-
tocols are based on the scheme given in Figure 2, the waiting time T can be
different for different building blocks. This degree of freedom allows for certain
architectures that otherwise would not be possible. For example, if an up-to-date
aggregate value is needed “instantly” according to the timescale of a relatively
slow layer, like load balancing, then we can simply apply aggregation at a rela-
tively faster timescale.

4 Conclusions

We have presented examples of simple protocols that exhibit self-managing prop-
erties without any explicit management component or control loops; in other
words, without increased complexity. We argued that a modular approach might
be the way towards efficient deployment of such protocols in large distributed
systems. To validate our ideas, we have briefly presented gossip-based protocols
as possible building blocks: topology and membership management (T-Man,
SG-1 and newscast), aggregation, and load balancing.

References

1. M. Agarwal, V. Bhat, Z. Li, H. Liu, B. Khargharia, V. Matossian, V. Putty,
C. Schmidt, G. Zhang, S. Hariri, and M. Parashar. AutoMate: Enabling Autonomic
Applications on the Grid. In Proceedings of the Autonomic Computing Workshop,
5th Annual International Active Middleware Services Workshop (AMS2003), pages
48–57, Seattle, WA, USA, June 2003.

2. The Bison Project. http://www.cs.unibo.it/bison.



3. A. Brown and D. Patterson. Embracing Failure: A Case for Recovery-Oriented
Computing (ROC). In 2001 High Performance Transaction Processing Symposium,
Asilomar, CA, USA, October 2001.

4. Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-
cated database management. In Proceedings of the 6th Annual ACM Symposium on
Principles of Distributed Computing (PODC’87), pages 1–12, Vancouver, August
1987. ACM.

5. Patrick Th. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent Mas-
soulié. Epidemic information dissemination in distributed systems. IEEE Com-
puter, 37(5):60–67, May 2004.

6. Márk Jelasity and Ozalp Babaoglu. T-Man: Fast gossip-based construction of large-
scale overlay topologies. Technical Report UBLCS-2004-7, University of Bologna,
Department of Computer Science, Bologna, Italy, May 2004. http://www.cs.

unibo.it/techreports/2004/2004-07.pdf.
7. Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten van Steen.

The peer sampling service: Experimental evaluation of unstructured gossip-based
implementations. In Hans-Arno Jacobsen, editor, Middleware 2004, volume 3231
of Lecture Notes in Computer Science. Springer-Verlag, 2004.

8. Márk Jelasity, Wojtek Kowalczyk, and Maarten van Steen. Newscast comput-
ing. Technical Report IR-CS-006, Vrije Universiteit Amsterdam, Department of
Computer Science, Amsterdam, The Netherlands, November 2003.

9. Márk Jelasity and Alberto Montresor. Epidemic-style proactive aggregation in
large overlay networks. In Proceedings of The 24th International Conference on
Distributed Computing Systems (ICDCS 2004), pages 102–109, Tokyo, Japan, 2004.
IEEE Computer Society.

10. Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. A modular paradigm for
building self-organizing peer-to-peer applications. In Giovanna Di Marzo Seru-
gendo, Anthony Karageorgos, Omer F. Rana, and Franco Zambonelli, editors,
Engineering Self-Organising Systems, volume 2977 of Lecture Notes in Artificial
Intelligence, pages 265–282. Springer, 2004. invited paper.

11. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, January 2003.

12. Alberto Montresor. A robust protocol for building superpeer overlay topologies.
In Proceedings of the 4th IEEE International Conference on Peer-to-Peer Comput-
ing (P2P’04), pages 202–209, Zurich, Switzerland, August 2004. IEEE Computer
Society.

13. Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Robust aggregation pro-
tocols for large-scale overlay networks. In Proceedings of The 2004 International
Conference on Dependable Systems and Networks (DSN), pages 19–28, Florence,
Italy, 2004. IEEE Computer Society.

14. Julio M. Ottino. Engineering complex systems. Nature, 427:399, January 2004.


