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ABSTRACT

We propose a registration method to find affine transforma-

tions between 3D objects by constructing and solving an

overdetermined system of polynomial equations. We utilize

voxel coverage information for more precise object boundary

description. An iterative solution enables us to easily adjust

the method to recover e.g. rigid-body and similarity trans-

formations. Synthetic tests show the advantage of the voxel

coverage representation, and reveal the robustness properties

of our method against different types of segmentation errors.

The method is tested on a real medical CT volume.

Index Terms— 3D registration, affine transformation,

system of polynomial equations, voxel coverage

1. INTRODUCTION

3D imaging in medical and industrial applications is common

nowadays. Taking 3D images of the same or similar objects

at different times raises the problem of registration, i.e. es-

tablishing the geometric correspondence between these im-

ages. Many approaches have been proposed for a wide range

of problems in the past decades [1].

Classical methods solve the registration problem by ei-

ther extracting geometric features or using the image inten-
sities directly, and try to establish correspondences by usu-

ally applying an iterative technique. Geometric features can

be e.g. points, surfaces [2] or skeletons. Speed is always an

important factor; on-line registration may be required, e.g.

during surgery, for registering pre-operative volumes to intra-

operative ones. Zhang et al. give an overview of surface based

registration techniques and propose a 15 times faster method

than standard Iterative Closest Point (ICP) methods [2]. How-

ever, it still takes around one minute to register object models
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segmented from high resolution CT images. Intensity sim-

ilarity methods are used mainly for non-binary single- and

multi-modality medical registration problems, but can also be

applied for registration of binary images [3]. Since the it-

erative search in these methods uses the features/intensities

in each step, they suffer from considerably increased compu-

tational complexity in case of large amount of data. A direct

method of Burel et al. uses spherical harmonics to recover the

orientational differences between surfaces of 3D objects [4].

It provides fast registration in case of rigid-body problems.

In this paper we propose the extension of our 2D affine

method [5] to 3D objects. The extension is not trivial; the cor-

responding polynomial system of equations consists of more

equations and its exact solution does not exist, least-squares

solution is found by a Levenberg-Marquardt solver. The sys-

tem is generated by a single pass over the image, no corre-

spondences are required, thus the solution does not depend

on the size of the objects. This makes our method especially

suitable for registering large volume images. Voxel coverage

information further improves the registration accuracy.

2. REGISTRATION FRAMEWORK

Let us denote the object points of the template and the ob-
servation volume images by x,y ∈ P3, respectively in the

projective space. Let A denote the unknown, non-singular

4 × 4 homogeneous matrix of the affine transformation that

we want to recover. It relates the template and observation as

Ax = y ⇔ x = A−1y.

The above equations still hold when a properly chosen func-

tion 𝜔 : P3 → P3 is acting on both sides of the equations [6]:

𝜔(Ax) = 𝜔(y) ⇔ 𝜔(x) = 𝜔(A−1y). (1)

In order to avoid the need for point correspondences, we

integrate over the foreground domains ℱ𝑡 and ℱ𝑜 of the tem-
plate and the observation, respectively, yielding

∣A∣
∫
ℱ𝑡

𝜔(x) 𝑑x =

∫
ℱ𝑜

𝜔(A−1y) 𝑑y , and (2)∫
ℱ𝑡

𝜔(Ax) 𝑑x =
1

∣A∣
∫
ℱ𝑜

𝜔(y) 𝑑y. (3)
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The Jacobian of the transformation is ∣A∣ = ∫
ℱ𝑜

𝑑y/
∫
ℱ𝑡

𝑑x .

A 3D affine transformation is determined by 12 parame-

ters, thus we need at least 12 equations. The basic idea of

the proposed approach is to generate sufficiently many lin-

early independent equations by making use of the relations

in Eq. (2)–(3). To achieve this goal, we select polynomial

𝜔 functions such that their 𝑘-th coordinate is of the form

𝜔(x)
(𝑘)
𝑓,𝑔,ℎ = 𝑥𝑓

1 ⋅ 𝑥𝑔
2 ⋅ 𝑥ℎ

3 , where 𝑓, 𝑔, ℎ ∈ N, 𝑓 + 𝑔 + ℎ = 𝑑,

and 𝑑 ∈ {1, 2, 3}. From Eq. (2) these functions generate the

following polynomial equations:

∣A∣
∫
ℱ𝑡

𝑥𝑎 𝑑x =
4∑

𝑖=1

𝑞𝑎𝑖

∫
ℱ𝑜

𝑦𝑖 𝑑y , (4)

∣A∣
∫
ℱ𝑡

𝑥𝑎𝑥𝑏 𝑑x =

4∑
𝑖=1

4∑
𝑗=1

𝑞𝑎𝑖𝑞𝑏𝑗

∫
ℱ𝑜

𝑦𝑖𝑦𝑗 𝑑y , (5)

∣A∣
∫
ℱ𝑡

𝑥𝑎𝑥𝑏𝑥𝑐 𝑑x =

4∑
𝑖=1

4∑
𝑗=1

4∑
𝑘=1

𝑞𝑎𝑖𝑞𝑏𝑗𝑞𝑐𝑘

∫
ℱ𝑜

𝑦𝑖𝑦𝑗𝑦𝑘 𝑑y (6)

where 1 ≤ 𝑎, 𝑏, 𝑐 ≤ 3, 𝑎 ≤ 𝑏 ≤ 𝑐, and 𝑞𝑖𝑗 denote the un-

known elements of the inverse transformation A−1. This

gives 3 + 6 + 10 = 19 equations. In order to increase nu-

merical stability, we add another 19 similar equations using

Eq. (3), i.e. by changing the role of the point sets x and y.

Note, that this step introduces no new unknown parameters,

since A is uniquely determined by parameters 𝑞𝑖𝑗 in the non-

singular case. The system of equations is up to third order and

is overdetermined.

2.1. Voxel coverage object representation

Digital image space provides only limited precision, thus the

integrals in Eq. (4)–(6) can only be approximated by a dis-

crete sum over the voxels. To maximally utilize the informa-

tion available in the data, we propose to use voxel coverage

representations of the objects, where the value of a voxel is

set to be proportional to its coverage by the imaged object.

It was proved that such representation provides higher preci-

sion of feature estimates compared to binary representations

at the same spacial resolutions [7]. Details about this type of

representations can be found in [8].

Similarly as in [5], we are interested in high precision esti-

mates of geometric moments, considering that the coefficients

of the system of equations in Eq. (4)–(6) are (continuous) ge-

ometric moments of the template and observation. Analo-

gously as in [7], the geometric moments of order 𝑖 + 𝑗 + 𝑘
of a continuous 3D object, i.e. the integrals in Eq. (4)–(6), are

approximated by∫
ℱ𝑡

𝑥𝑖
1𝑥

𝑗
2𝑥

𝑘
3 𝑑x ≈

∑
x∈𝑋𝑡

𝜇𝑡(x) 𝑥
𝑖
1𝑥

𝑗
2𝑥

𝑘
3 , (7)

where 𝜇𝑡(x) is the partial coverage of voxel x in the template

image. Similar approximation holds for ℱ𝑜 using coverage

𝜇𝑜. The Jacobian is approximated as

∣A∣ =
∑

y∈𝑋𝑜
𝜇𝑜(y)∑

x∈𝑋𝑡
𝜇𝑡(x)

. (8)

𝑋𝑡 and 𝑋𝑜 are the discrete domains of the template and obser-

vation image, respectively. The approximating discrete sys-

tem of polynomial equations can now be produced by insert-

ing these approximations into Eq. (4)–(6).

Estimations of the coverage values 𝜇 can be obtained from

a voxel coverage segmentation, such as e.g., the 3D extension

of the method presented in [8].

3. NUMERICAL SOLUTION

The system of polynomial equations of Eq. (4)–(6) can be

solved in the least-squares sense (LSE) using a standard

Levenberg-Marquardt (LM) method. Compared to methods

that provide a closed form solution, a drawback of the itera-

tive LM method is that it may get stuck in local minima and

usually takes longer running time. On the other hand it has

the advantage of being able to give a (local) solution even

when the algebraic error of the system of equations is well

above zero.

To increase numerical stability, the object coordinates are

mapped into [−0.5, 0.5] by applying normalizing transforma-

tions N𝑡 and N𝑜 (scaling and translations) before registration.

Also notice that all unknowns are outside of the integrals in

Eq. (4)–(6), thus integrals have to be evaluated only once. Its

time complexity is 𝒪(𝑁), where 𝑁 is the number of the vox-

els of the object, since all the summations can be computed in

a single pass over the volume image.

We found that the initial rotational parameters have a

strong influence on the registration result. To reduce the risk

of getting trapped in a sub-optimal local minimum, the LM

solver is started from 27 different positions, corresponding to

rotations of 120∘ around each spatial axis. Scaling, shearing

and translational parameters are set to their identity values.

When started near the optimal rotation, the algebraic error

decreases fast, allowing to terminate the search after a few

iterations; we terminate each initial search after 20 iterations.

Having found the orientation that provided the smallest error,

we continue with a full search. If, for any of the starting ori-

entations, after 20 iterations, an algebraic error below a given

threshold is found, checking other starting orientations is not

necessary. We set this threshold to a constant value of 100.

These parameters were determined by experimental tests.

A general transformation A may contain reflections too,

which is undesirable in many practical applications. To avoid

reflections we can impose the following condition during the

search: if ∣A∣ < 0, i.e. A contains reflections, then we assign

a high value as algebraic error (1050 was used).

Since A can also define geometric transformations of

lower degrees of freedom than affine, we can easily construct
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methods for such, e.g. rigid-body or similarity problems.

When computing the algebraic error, the 12 necessary param-

eters can be derived from the parameters of the transformation

with a lower degree of freedom (e.g. shearing and scaling is

set to identity for rigid-body transformations).

Algorithm 1 summarizes the steps of our proposed method.

Algorithm 1: Affine registration of 3D objects

Input: Template and observation volume images.

Output: Transformation parameters A.

Step 1 Extract foreground voxels and apply normalizing

transformations N𝑡, N𝑜

Step 2 Construct system of equations using Eq. (7)–(8)

Step 3 Least-squares solution

∙ Initialize LM solver (27 orientations, 20 iterations)

∙ At each iteration compute algebraic error 𝐸
Apply constraints to the parameters if applicable

If 𝐸 < 100 is obtained, then skip other orientations

∙A∗ = Transformation parameters given by a full

search starting from the best orientation

Step 4 Unnormalize: A = N−1
𝑜 ⋅A∗ ⋅N𝑡

4. EXPERIMENTAL RESULTS

The performance of the proposed algorithm is quantitatively

evaluated on a database of 3D volume objects. The data-

set consists of 15 different objects and their transformed ver-

sions, a total of 1500 objects. The objects typically consist

of 200000–2 million voxels. The transformation parameters

are randomly selected in the following ranges: Rotation an-

gle: [0, 2𝜋); Scale factor: [0.5, 1.5]; Shear: [−1, 1]; Transla-

tion vector magnitude: [0, 1] (larger translations are irrelevant

since coordinates are transformed into [−0.5, 0.5] before reg-

istration).

For each template, we apply 100 transformations, of

which 25 are rigid-body, 25 with non-uniform scaling, and 50

full affine. Fig. 1 shows some examples from this database.

In order to quantitatively evaluate the results, we use the

following two error measures:

𝜖 =
1

∣𝑇 ∣
∑
p∈𝑇

∥(A− Â)p∥, and 𝛿 =
∣𝑅△𝑂∣
∣𝑅∣+ ∣𝑂∣ ⋅ 100%,

where △ denotes symmetric difference, while 𝑇 , 𝑅 and 𝑂
are the sets of voxels of the template, registered object and

observation respectively. The algorithm is implemented in

Matlab 7.7 and is run on a desktop computer using Intel Core2

Duo processor at 2.4 GHz.

Voxel coverage representations of the observation objects

are generated by using 𝑛×𝑛×𝑛 (𝑛 ∈ {1, 2, 4, 8}) supersam-

pling of the voxels close to the object boundary and the cov-

erage is approximated by the fraction of sub-voxels that fall

Fig. 1. Examples from the image database: template objects

(top) and their affine deformed observations (bottom).

Table 1. Median error values for different supersampling lev-

els 𝑛. The percentage of the registrations where the 𝛿 error is

above 1% and 10% (≈ visually acceptable) is also shown.

𝑛 𝜖 𝛿 𝛿 > 1% 𝛿 > 10% Time (sec)

1 0.0361 0.1555 10.67 2.13 1.54

2 0.0108 0.0627 3.13 2.27 1.56

4 0.0069 0.0470 2.47 2.20 1.54

8 0.0065 0.0402 2.47 2.20 1.52

inside the object. Before computing the 𝛿 errors the objects

are binarized. Registration accuracies are shown in Table 1.

The computing time does not include the time to build the

system of equations, which currently takes around 1.5–2 sec-

onds (can be further optimized). The results show that already

the binary representation gives excellent results. However,

even the lowest level of voxel coverage information brings

clear improvement. Above 𝑛 = 4 levels of supersampling we

see little change. The computing time is independent of 𝑛.

In practice, images are always corrupted by various types

of error, e.g. missing data, segmentation error or occlusion.

To test the robustness of our method, we synthetically gener-

ate these types of errors on binary images. For the missing

data case, a given percentage of the voxels are randomly re-

moved. To simulate segmentation error, we randomly mod-

ified the observation boundary by adding or removing small

clusters of voxels on the object boundary. Finally, to simu-

late occlusion, we randomly occluded a specified amount of

foreground voxels. Table 2 shows the registration results.

Table 2. Registration errors induced by imaging errors

Missing vxls. Segm. error Occlusion

50% 90% 5% 25% 1% 2%

𝜖 (voxels) 0.22 0.65 0.30 1.79 1.77 3.82

𝛿(%) 0.83 2.20 1.15 5.76 5.22 9.92

𝛿 > 5% 7.3% 25% 7.4% 61% 53% 84%

𝛿 > 10% 3.3% 7.6% 2.8% 28% 23% 49%

Time (sec) 2.0 3.4 3.7 6.6 5.3 5.8

Uniformly removed object points cause no problems in

general, even for 90% the results are acceptable. In case of

segmentation errors, at 25% degradation level more than 70%
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of the cases still provided good alignment. As any area-based

method, our approach seems to be sensitive to occlusion,

however. Above 1–2% of degradation, the results become

unreliable. Notice that, since the algebraic error is higher

for higher degradation levels, more starting orientations are

taken into account which leads to increased computing time.

We conclude that our method performs well as long as the

geometric moments of the objects do not change dramatically.

4.1. Comparison with mutual information

We compare our results against a classic intensity similarity

method based on mutual information (MI) utilizing a mul-

tiresolution pyramid scheme [3], that is adopted to binary ob-

jects. The capture range of MI is narrow, thus at a lower pyra-

mid level the optimization is started from the same 27 orien-

tations as our method. The optimal result is propagated to

finer pyramid levels. Based on 200 rigid-body registrations,

our method clearly outperforms MI. The average computation

time of MI exceeds 2 minutes, compared to few seconds of

our method. The median of 𝛿 errors are 0.42 for MI and 0.05
for our method. Additionally, in 40% of the cases MI pro-

vides poor or failed registrations (i.e. 𝛿 > 10%). Our method

gives excellent results, for all cases 𝛿 < 1.14%.

4.2. Experiments with real CT volume images

We also test our method on objects extracted from real med-

ical data. CT images of the pelvic area of the same person

were acquired at different times. The spatial resolution of the

CT is 0.8 × 0.8 × 5mm, and the segmented objects contain

400–500 thousand voxels. Bone regions from the images are

segmented by thresholding and removal of unwanted compo-

nents.

The main challenges are poor image resolution, segmen-

tation errors, and slightly different placement of the femural

head. We use the rigid-body restriction in our method and

since the orientations of the objects are close to each other, it

is enough to use only one initial orientation. The construction

of the system of equations takes around half a second, the

optimization around 0.2 second. Visual inspection confirms

satisfactory registration results and indicates applicability of

the method on real medical data (see Fig. 2).

5. CONCLUSIONS

In this paper we propose a registration method to recover var-

ious linear transformations between 3D objects. The solution

is obtained by solving a polynomial system of equations. The

construction of the system of equations has linear time com-

plexity, the LSE solution can be controlled by carefully se-

lecting initial parameters, and is independent of the size of

the data. Thus, registration problems of large volume images

can be solved fast and efficiently. The method proves to be

Fig. 2. Registration of real CT data: superimposed registered

3D bone models (left), and bone contours of the registered

template (yellow) overlayed on a CT slice of the observation.

robust against various types of errors and shows applicability

in medical image registration of bone structures. The experi-

mental evaluation confirms that utilizing partial voxel cover-

age information enhances the registration.
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