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Abstract

We consider the estimation of affine transformations aligning a known 2D shape
and its distorted observation. The classical way to solve this registration problem is
to find correspondences between the shapes and then compute the transformation
parameters from these landmarks. Here we propose a novel approach where the
exact transformation is obtained as the solution of a polynomial system of equa-
tions. The method has been tested on synthetic as well as on real images and its
robustness in the presence of segmentation errors and additive geometric noise has
also been demonstrated. We have successfully applied the method for the regis-
tration of hip prosthesis X-ray images. The advantage of the proposed solution is
that it is fast, easy to implement, has linear time complexity, works without estab-
lished correspondences and provides an exact solution regardless of the magnitude
of transformation.
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1 Introduction

Registration is a crucial step in almost all image processing tasks where images
of different views or sensors of an object need to be compared or combined.
Typical application areas include visual inspection, target tracking in video
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sequences, super resolution, or medical image analysis. In a general setting,
one is looking for a transformation which aligns two images such that one
image (called the observation) becomes similar to the second one (called the
template). Due to the large number of possible transformations, there is a
huge variability of the object signature. In fact, each observation is an ele-
ment of the orbit of the transformations applied to the template. Hence the
problem is inherently ill-defined unless this variability is taken into account.
A good survey of registration methods can be found in [1–5]. Basically regis-
tration algorithms fall into two main categories: Feature-based and Area-based
methods.

Feature-based methods [6,7] aim at establishing point correspondences between
two images. For that purpose, they extract some easily detectable features
(e.g. intersection of lines, corners, etc.) from the images and then use these
points to compute the closest transformation based on a similarity metric.
Therefore, to make this approach feasible, the correspondence problem must
be solved first. Unfortunately, the solution of this problem is far from trivial
and usually relies on the assumption that the deformation is close to identity
and that features provide a strong contextual evidence for matching landmark
points. Other approaches based on “continuous landmarks”, such as curves
representing the boundaries of objects, usually yield to a complex, non-convex
optimization problem requiring computationally expensive algorithms to solve.
Searching for the best transformation usually requires an iterative algorithm
like the Iterative Closest Point (ICP) algorithm [8]. The main drawback of
these methods is that an optimization procedure has high computational cost.
In addition, the reliable solution of the correspondence problem assumes that
the transformation is close to identity. The main advantage of these methods
is that as long as a sufficient number of point matches are available, one can
usually find an optimal aligning transformation implying that these algorithms
are less sensitive to occlusions.

Area-based methods [9–13] treat the problem without attempting to detect
salient objects. These methods are sometimes called correlation-like methods
because they use a rectangular window to gain some preliminary information
about the distortion. They search the position in the observation where the
matching of the two windows is the best and then look for sufficient align-
ment between the windows in the template and in the observation. When the
distortion is small, often Fourier descriptors [14] or mutual information [15] is
used. The drawback of this family of methods is also the high computational
cost and the restricted range of distortions.

In many situations, the variability of image features is so complex that the
only feasible way to register such images is to reduce them to a binary repre-
sentation and solve the registration problem in that context [16]. X-ray images
are good examples as they usually exhibit highly nonlinear radiometric distor-
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tions [17,18] making registration hard to solve. Therefore binary registration
(i.e. shape matching) is an important problem for many complex image anal-
ysis tasks.

Several techniques have been proposed to address the affine registration prob-
lem. By thresholding the magnitude of Fourier Transform of the images Zhang
et al. [19] construct affine invariant features, which are insensitive to noise, in
order to establish point correspondence. Several Fourier domain based meth-
ods [20,21] represent images in a coordinate system in which the affine trans-
formation is reduced to an anisotropic scaling factor, which can be computed
using cross correlation methods. Govindu and Shekar [22] develop a framework
that uses the statistical distribution of geometric properties of image contours
to estimate the relevant transformation parameters. Main advantages of these
methods is that they do not need point correspondences across views and im-
ages may also differ by the overall level of illumination. A novel one-element
voxel attribute, the distance-intensity (DI) is defined in [23]. This feature en-
codes spatial information at a global level, and the distance of the voxel to
its closest object boundary, together with the original intensity information.
Then the registration is obtained by exploiting mutual information as a simi-
larity measure on the DI feature space. For matching 2D feature points, [24]
reduces the general affine case to the orthogonal case by using the means
and covariance matrices of the point sets, then the rotation is computed as
the roots of a low-degree complex coefficients polynomial. Another direct ap-
proach [25] extends the given pattern to a set of affine covariant versions,
each carrying slightly different information, and then extract features for reg-
istration from each of them separately. The transformation is parameterized
at different scales, using a decomposition of the deformation vector field over
a sequence of nested (multiresolution) subspaces in [26]. An energy function
describing the interactions between the images is then minimized under a set
of constraints, ensuring that the transformation maintains the topology in the
deformed image. Manay et al. [27] explore an optimization framework for com-
puting shape distance and shape matching from integral invariants, which are
employed for robustness to high-frequency noise. Shape warping by the com-
putation of an optimal reparameterization allows this method to account for
large localized changes such as occlusions and configuration changes. In [28]
a method for identifying silhouettes from a given set of Radon projections is
presented. The authors study how the Radon transform changes when a given
2D function is subjected to rotation, scaling, translation, and reflection. Using
these properties, the parameters of the aligning transformation are expressed
in terms of the Radon transform. In [9] a computationally simple solution is
proposed to the affine registration of gray level images avoiding both the corre-
spondence problem as well as the need for optimization. The original problem
was reformulated as an equivalent linear parameter estimation one having a
unique and exact solution. However, the method relies on the availability of
rich radiometric information which is clearly not available in the binary case.
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In this paper, as an extension of our previous work [29], we propose a novel
method which provides an accurate and computationally simple solution to
the affine registration of planar shapes. The main difficulty with binary im-
ages is that they do not contain radiometric information, only the foreground
pixel coordinates are available for the registration algorithm. We will show
how the binary registration problem can be formulated as the solution of a
system of polynomial equations obtained by integrating a set of polynomial
functions over the shape domains. The proposed method provides a direct
solution without established correspondences or optimization. Moreover, the
robustness of the resulting algorithm in the presence of an i.i.d. Gaussian noise
on the point coordinates as well as segmentation errors are also demonstrated.
On the other hand, being an area-based method, it is sensitive to occlusions.
Comparative tests on partially occluded shapes reveal, however, that other
area-based state of the art methods cannot cope with occlusion either. Finally,
we demonstrate the performance on real images and apply the method to align
pairs of hip prosthesis X-ray images.

This paper organizes as follows. In Section 2, we present our approach and
the proposed algorithmic solution. Then in Section 3, we will analyze the
robustness of the proposed method in the presence of an additive Gaussian
noise on the pixel coordinates. Finally, experimental results and comparative
tests are presented in Section 4.

2 Estimation of Affine Transformations

Let us denote the homogeneous coordinates of the template and observation
points by x = [x1, x2, 1]T ∈ P2 and y = [y1, y2, 1]T ∈ P2 respectively. The
identity relation between the two images is then as follows

y = Ax ⇔ x = A−1y, (1)

where A is the unknown affine transformation that we want to recover:

A =




a11 a12 a13

a21 a22 a23

0 0 1




and A−1 =




q11 q12 q13

q21 q22 q23

0 0 1




.

Note that A−1 exists and it is also an affine transformation since A is affine.
Classical landmark-based approaches would now identify at least 3 point pairs(
{xi,yi}n≥3

i=1

)
and solve the system of linear equations obtained from Eq. (1).

However, we are interested in a direct solution without solving the correspon-
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dence problem. For that purpose, we will take the Lebesgue integral 1 of both
sides of the identity relation

∫

P2
xdx =

1

|A|
∫

P2
A−1ydy, (2)

where the integral transformation x = A−1y, dx = dy/|A| has been applied.
The determinant |A| is the Jacobian which corresponds to the measure of the
transformation. Furthermore, let shapes be represented by their characteristic
function 1 : P2 → {0, 1}, where 0 and 1 correspond to the background and
foreground respectively. If we denote the template by 1t and the observation
by 1o, then Eq. (1) implies

1t(x) = 1o(Ax) = 1o(y). (3)

The Jacobian can then be evaluated by integrating

∫

P2
1t(x)dx =

1

|A|
∫

P2
1o(y)dy ⇔ |A| =

∫
P2 1o(y)dy∫
P2 1t(x)dx

.

Since the characteristic functions take only values from {0, 1}, we can further
simplify the above integrals by making use of the relation:

∫

P2
1t(x)dx ≡

∫

D
dx,

where the finite domain D consists of the template foreground regions: D =
{x ∈ P2|1t(x) = 1}. Similarly, we can restrict the integral of 1o(y) to the
observation foreground regions F . Therefore evaluating the integrals yields
the area of the foreground regions. From this point of view, the measure of the
transformation |A| corresponds to the ratio of the observation and template
shapes’ area

|A| =
∫
F dy∫
D dx

, (4)

which can be directly computed from the input images. The sign ambiguity of
the determinant is also easily eliminated: A negative Jacobian would mean that
the transformation is not orientation-preserving (i.e. flipping of coordinates is
allowed). In practice, however, physical constraints will usually prevent such
a transformation hence we can assume that |A| is always positive.

Now multiplying Eq. (2) and Eq. (3) yields a finite integral equation:

1 Although we write these integrals in P2, they are equivalent to the corresponding
Lebesgue integrals in R2 (i.e. integration is actually performed in the corresponding
Cartesian coordinate system). This is because by using homogeneous coordinates,
the real plane R2 is mapped to the w = 1 plane in real projective space P2 and affine
transformations will never alter the homogeneous component w. One can therefore
safely assume that it is always 1 and ignore it.
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∫

P2
x1t(x)dx=

1

|A|
∫

P2
A−1y1o(y)dy ⇔

∫

D
xdx=

1

|A|
∫

F
A−1ydy. (5)

This equation implies that the finite domains D and F are also related as F =
AD, i.e. we match the shapes as a whole instead of point correspondences. In
fact, Eq. (5) is a linear system of two equations for k = 1, 2:

|A|
∫

D
xkdx = qk1

∫

F
y1dy + qk2

∫

F
y2dy + qk3

∫

F
dy.

It is clear that both sides of the equation as well as the Jacobian can be easily
computed from the input shapes. Unfortunately, two equations alone are not
enough to solve for 6 unknowns.

2.1 Construction of the Polynomial System

In order to generate more equations, let us remark that the identity relation
in Eq. (1) remains valid when a function ω : P2 → P2 is acting on both sides
of the equation [29]. Indeed, for a properly chosen ω

ω(x) = ω(A−1y). (6)

We thus obtain the following integral equation from Eq. (5) and Eq. (6)

∫

D
ω(x)dx =

1

|A|
∫

F
ω(A−1y)dy. (7)

The basic idea of the proposed approach is to generate enough linearly in-
dependent equations by making use of nonlinear ω functions. Note however,
that the generated equations contain no new information, they simply impose
new linearly independent constraints. Indeed, from a geometric point of view,
Eq. (5) simply matches the center of mass of the template and observation
while the new equations of Eq. (7) match the center of mass of the shapes
obtained by the nonlinear transformations ω (see Fig. 1). Since ωs are also ap-
plied to the unknowns, the resulting equations will be nonlinear. The simplest
nonlinear system is a low order polynomial system thus we aim at choosing ω
such that Eq. (7) is polynomial. The following proposition states that this is
achieved when ω is a polynome.

Proposition 1 Let ω : Pn → Pn and x ∈ Pn (n ∈ N). If the kth coordinate
of ω(x), denoted by ωk(x) = pk is a real n-variate polynome, 1 ≤ k ≤ n,
then applying ω in Eq. (7) results in a polynomial system of equations up to
a degree of deg(pk).
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ω(x) = x ω(x) = [x2
1, x

2
2, 1]T ω(x) = [x3

1, x
3
2, 1]T

Fig. 1. The effect of the ω functions.

PROOF. See in the Appendix.

It is thus clear that the class of xn(n ∈ N0) functions are a perfect choice
for ω. Hence, we obtain the following polynomial equations for k = 1, 2 and
n = 1, 2, 3:

|A|
∫

xn
k =

n∑

i=1

(
n

i

)
i∑

j=0

(
i

j

)
qn−i
k1 qi−j

k2 qj
k3

∫
yn−i

1 yi−j
2 . (8)

The system of Eq. (8) contains six polynomial equations up to order three
which is enough to solve for all unknowns. In fact we have two separate systems
for k = 1, 2 as shown in Eq. (9)–(11).

|A|
∫

xk = qk1

∫
y1 + qk2

∫
y2 + qk3

∫
1, (9)

|A|
∫

x2
k = q2

k1

∫
y2

1 + q2
k2

∫
y2

2 + q2
k3

∫
1 + 2qk1qk2

∫
y1y2 + 2qk1qk3

∫
y1

+2qk2qk3

∫
y2, (10)

|A|
∫

x3
k = q3

k1

∫
y3

1 + q3
k2

∫
y3

2 + q3
k3

∫
1 + 3q2

k1qk2

∫
y2

1y2 + 3q2
k1qk3

∫
y2

1

+3q2
k2qk3

∫
y2

2 + 3qk1q
2
k2

∫
y1y

2
2 + 3qk2q

2
k3

∫
y2 + 3qk1q

2
k3

∫
y1

+6qk1qk2qk3

∫
y1y2. (11)

However, we may get several possible solutions for each unknown qki due to
the cubic polynomial equations. Out of these potential solutions, we can select
the right one by dropping the complex roots and selecting the transformation
whose determinant matches the Jacobian computed by Eq. (4).

7



Note that an exact solution always exists, whenever Eq. (3) is satisfied. In
practice, however, a solution may not exists due to discretization errors or
noise on the point coordinates. We can always check for the existence of a
solution by computing the resultant of the system, which is a second order
polynome. On the other hand, the solution is not unique (but exists!), when
the shape is affine symmetric.

We remark that this method could also be extended to higher dimensions at
the price of adding higher order polynoms or restricting the space of admissi-
ble transformations. For example, in many medical applications 3-dimensional
volume images are used. In this case, we should add a fourth-order equation
and solve three systems. This is obviously more difficult as well as the higher
powers may compromise numerical stability. Another idea is to use ωs of mixed
coordinates (e.g. ω(x) = [x1x2, x2, 1]T ). This will generate new equations with-
out increasing their order, but we loose the benefit of handling the coordinates
separately, i.e. we have to solve one large polynomial system instead of three
smaller ones.

2.2 Numerical Implementation

We have constructed our equations in the continuum but in practice we only
have a limited precision digital image. This means that the integrals, which are
in fact the coefficients of the unknowns in Eq. (9)–(11), can only be approx-
imated by a discrete sum over the foreground pixels introducing an inherent,
although negligible error into our computation. In [30,31], the effect of such
errors on moment computation has been analysed and a number-theoretical
estimation of quantization errors is derived. The continuous domains D and
F are represented as finite sets of foreground pixels

D ≈ D = {di}n
i=1 and F ≈ F = {f i}m

i=1,

where n and m are the number of foreground pixels of the template and ob-
servation respectively. As a consequence, the integrals are approximated by a
finite sum over these foreground pixels

∫

D
xkdx ≈

n∑

i=1

di
k and

∫

F
ykdy ≈

m∑

i=1

f i
k, k = 1, 2

where di
k and f i

k denote the kth coordinate of the ith foreground pixel. The
Jacobian in Eq. (4) reduces to

|A| = m

n
. (12)
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Clearly, the resolution of the images affects the precision of these approxima-
tions. As the mesh size tends to zero, the finite sums approximate better the
integrals. Therefore, our method performs better on higher resolution images.
Experiments show that images with size 500 × 500 already provide accurate
approximations.

Algorithm 1 summarizes the steps of our registration method. It is clear that
the solution is obtained in a single pass without any loop or optimization.
Although, we have to solve a polynomial system, the complexity of this step
is constant and, most importantly, independent of the image size. Matlab is
quite efficient in solving our system but other packages are also available, like
PHCpack [32–34].

Algorithm 1 Pseudo-code of the proposed algorithm.

Input: template and observation shapes as binary images
Output: Estimated affine transformation Â
1: Estimating the Jacobian A using Eq. (12)
2: Evaluating the integrals in Eq. (9)–(11) provides the coefficients of the

unknowns.
3: Solving the system of Eq. (9)–(11) using a standard solver (e.g. Matlab).

4: Choosing the correct transformation based on the Jacobian gives Â
−1

The images need to be scanned only once, and the integrals in Eq. (9)–(11) as
well as the Jacobian can be evaluated during this scan. This step takes c1N
time, where N is the size of the input images. Once the system is constructed,
the rest of the algorithm runs in constant (c2) time independently of the input
size. Thus the overall time complexity of the method is c1N + c2, i.e. O(N).
Nevertheless, our experiments show that c1N << c2, hence the actual running
time is dominated by the constant c2 (see Table 3).

3 Estimation in the Presence of Noise

There are two types of noise which can affect a binary image. One is “ra-
diometric”, i.e. pixels may randomly take a foreground or background color.
This is typically present in the form of a salt and pepper noise, which can be
efficiently removed by appropriate morphological filtering. The second type
manifests as an uncertainty in the point coordinates, i.e. it is a geometric
noise. More precisely, the observed point coordinates may differ by a random
distance from the true coordinates as shown in Fig. 2. This will definitely
undermine the identity relation in Eq. (1) yielding an error in our system. In
the following section, we will analyze this case and compute the average error
caused by a geometric noise on the observation.
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(a) Original (b) σ = 5 (c) σ = 10 (d) σ = 20

Fig. 2. The noise tolerance of the proposed method has been tested on observations
corrupted by additive Gaussian noise on the coordinates.

3.1 Geometric Noise

It is a realistic assumption that the observed point coordinates are around the
true ones, hence we will consider an i.i.d. additive Gaussian noise model on
the observation coordinates. The identity relation Eq. (1) thus becomes

y∗ = y + ε(y) = Ax + ε∗(y∗) ⇔ x = A−1
(
y∗ − ε∗(y∗)

)
,

where ε(y) ≡ ε∗(y∗) =
[
ε∗1(y

∗), ε∗2(y
∗), 0

]T
is the noise function which gives a

random translation in every point y∗ = [y∗1, y
∗
2, 1]T . We assume that ε∗1 and ε∗2

are independent and normally distributed with 0 means and variances σ1 and
σ2 respectively. In fact, ε∗(y∗) is a sample form a two dimensional, 0 mean
Gaussian distribution with a diagonal covariance matrix diag(σ1, σ2). Thus
Eq. (7) becomes

∫

D
ω(x)dx =

1

|A|
∫

F∗
ω

(
A−1

(
y∗ − ε∗(y∗)

))
J(y∗)dy∗,

where the integral transformation x 7→ A−1
(
y∗−ε∗(y∗)

)
, dx 7→ J(y∗)dy∗/|A|

has been applied. Hereafter, we will omit the integration domains unless they
are ambiguous. In fact, the Jacobian becomes J(y∗)/|A| in the noisy case with

J(y∗) =
(
1− ε∗1(y

∗)′y∗1 − ε∗2(y
∗)′y∗2 + |∇ε∗(y∗)|

)
depending on the actual noise.

ε∗1(y
∗)′y∗2 denotes the partial derivate based on the second variable (y∗2) and

|∇ε∗(y∗)| =
∣∣∣∣∣∣∣

ε∗1(y
∗)′y∗1 ε∗1(y

∗)′y∗2
ε∗2(y

∗)′y∗1 ε∗2(y
∗)′y∗2

∣∣∣∣∣∣∣
.

It is clear that the integrals of ε∗i give the expected value, which is always
0 in our case. Furthermore, since in practice we always work with discrete
pixel coordinates, the partial derivatives of ε∗ can be approximated via finite
differences, e.g. by central differences with h ∈ N
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ε∗1(y
∗)′y∗1 ≈

1

2h

(
ε∗

(
[y∗1 + h, y∗2, 1]T

)
− ε∗

(
[y∗1 − h, y∗2, 1]T

))
,

ε∗1(y
∗)′y∗2 ≈

1

2h

(
ε∗

(
[y∗1, y

∗
2 + h, 1]T

)
− ε∗

(
[y∗1, y

∗
2 − h, 1]T

))
.

Therefore the integral of these derivatives will also be approximated by the
integral of the finite differences, which thus evaluates to 0.

3.1.1 Computation of |A|

Since the true coordinates y are unknown on a noisy observation, we have to
integrate using y = y∗ − ε∗(y∗). Thus the numerator of Eq. (4) becomes

∫
dy =

∫ (
1− |∇ε∗(y∗)|

)
dy∗ =

∫
dy∗,

because
∫ |∇ε∗(y∗)|dy∗ = 0 according to our previous deductions. Therefore

Eq. (4) remains valid in the noisy case.

3.1.2 ω(x) = x

The right hand side of Eq. (9) has to be evaluated on the noisy observation.

Thus denoting K := A−1
(
y∗ − ε∗(y∗)

)
, i.e. Kk = qk1(y

∗
1 − ε∗1(y

∗)) + qk2(y
∗
2 −

ε∗2(y
∗)) + qk3, we get for k = 1, 2

∫
A−1

k ydy =
∫

Kkdy
∗ −

∫
Kkε

∗
1(y

∗)′y∗1dy
∗ −

∫
Kkε

∗
2(y

∗)′y∗2dy
∗

+
∫

Kk|∇ε∗(y∗)|dy∗.

It is easy to see that all terms, except the first one, evaluates to 0. For example

∫
Kkε

∗
1(y

∗)′y∗1dy
∗=

∫ (
qk1

(
y∗1 − ε∗1(y

∗)
)

+ qk2

(
y∗2 − ε∗2(y

∗)
)

+ qk3

)
ε∗1(y

∗)′y∗1dy
∗.

Evaluating the coefficient of qk1 yields
∫ (

y∗1 − ε∗1(y
∗)

)
ε∗1(y

∗)′y∗1dy
∗ =

∫
y∗1ε

∗
1(y

∗)′y∗1dy
∗ −

∫
ε∗1(y

∗)ε∗1(y
∗)′y∗1dy

∗.

Using finite differences for ε∗1(y
∗)′y∗1 and by iterated integrals, we get for the

first term

1

2h

∫
y∗1

(∫
ε∗1

(
[y∗1 + h, y∗2, 1]T

)
dy∗2

)
dy∗1−

1

2h

∫
y∗1

(∫
ε∗1

(
[y∗1 − h, y∗2, 1]T

)
dy∗2

)
dy∗1 =

1

2h

∫
y∗10dy∗1 −

1

2h

∫
y∗10dy∗1 = 0,
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since ε1 is a 0 mean Gaussian for which
∫

ε1 = 0. The remaining terms can be
evaluated in a similar way. Finally, the right hand side of Eq. (9) in the case
of a noisy observation is as follows:

∫
Kkdy

∗ = qk1

∫
y∗1dy

∗ + qk2

∫
y∗2dy

∗ + qk3

∫
dy∗.

Hence Eq. (9) remains valid. This is not surprising as the equation matches the
center of mass of the template and observation shapes. When the observation
coordinates are corrupted by a 0 mean additive noise, the center of mass will
not change as the noise components integrate to 0.

3.1.3 ω(x) = [x2
1, x

2
2, 1]T

Using the noisy observation, Eq. (10) becomes

|A|
∫

x2
kdx =

∫ (
A−1

k

(
y∗ − ε∗(y∗)

))2

dy∗.

It is clear that both first and second order noise statistics will appear in the
above equation. While first order statistics are vanishing, second-order mo-
ments (

∫
ε∗k(y

∗)2 = σ2
k, k = 1, 2) will affect the equation. It is straightforward

to show, using similar considerations as in Section 3.1.2, that in the noisy case
Eq. (10) becomes

|A|
∫

x2
kdx =

∫ (
A−1

k (y)
)2

dy + q2
k1σ

2
1 + q2

k2σ
2
2.

Thus the error introduced by the noisy observation depends on the noise vari-
ances σ2

1 and σ2
2, as well as on the strength of the unknown transformation

A.

3.1.4 ω(x) = [x3
1, x

3
2, 1]T

In this case, we will have third order noise statistics involved. Fortunately, any
symmetric distribution will have a third central moment of zero, thus using
again similar considerations as before, the noisy Eq. (11) is as follows

|A|
∫

x3
kdx =

∫ (
A−1

k (y)
)3

dy + 3q2
k1qk3σ

2
1 + 3q2

k2qk3σ
2
2.

3.1.5 Summary

In summary, the error caused by an i.i.d. additive Gaussian noise on the point
coordinates of the observation is as follows:
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Templ. Obs. Heikkilä [11] SC [7] Kannala et al. [10] Suk et al. [12] Prop.

Fig. 3. Registration results on synthetic image pairs. The first two columns show the
template and its affine distorted observation to be matched while the other columns
contain the registration result of each considered method. The template and its
registered observation are overlayed such that overlapping pixels are depicted in
black while non-overlapping ones are shown in light or dark gray respectively.

Equation Error term

|A|: Eq. (4) 0

ω(x) = x: Eq. (9) 0

ω(x) = [x2
1, x

2
2, 1]T : Eq. (10) q2

k1σ
2
1 + q2

k2σ
2
2

ω(x) = [x3
1, x

3
2, 1]T : Eq. (11) 3qk3(q

2
k1σ

2
1 + q2

k2σ
2
2)

An experimental analysis of the noisy case is presented in Section 4.2. Our
findings suggest that the proposed algorithm can cope with noisy observations
up to as high as σ1 = σ2 = 10 noise levels.

4 Experimental Results

The proposed algorithm has been tested on a large database of binary im-
ages of size 1000× 1000. The dataset consists of 56 different shapes and their
transformed versions, a total of ≈ 50000 images. The applied affine transfor-
mations were randomly composed of 0◦, 10◦, . . . , 350◦ rotations; 0, 0.4, . . . , 1.2
shearings; 0.5, 0.7, . . . , 1.9 scalings, and−20, 0, 20 translations along both axes.
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Table 1
Registration results of the proposed method on the benchmark dataset containing
49282 synthetic observations of 56 shapes. There was no solution in 5.47% of the
test cases.

Runtime (sec.) ε (pixel) δ (%)

Median 0.98 0.51 0.15

Mean 0.94 36.98 3.36

Variance 0.2 154.18 12.55

Table 2
Registration results (medians of error measures) of the proposed method on 32724
filled shapes and 16558 line drawings.

Runtime (sec.) ε (pixel) δ (%) Unsolved (%)

Filled 1 0.49 0.06 4.03

Line drawings 0.95 0.55 0.63 8.32

Some typical examples of these images can be seen in Fig. 3. The original
shapes were then used as template and the transformed images as the obser-
vation. The proposed algorithm has been implemented in Matlab 7.2 and ran
on a Pentium IV 3.2 GHz under Linux operating system. The average run-
time was around 1 second including the computation of the integrals and the
solution of the polynomial system. The dataset and a demo implementation
of our method are available for download at http://www.inf.u-szeged.hu/
~kato/software/.

In order to quantitatively evaluate registration results, we defined two kind of
error measures. The first one (denoted by ε) measures the distance between
the true A and the estimated Â transformation obtained by our algorithm,
based on all template pixels p. Intuitively, ε shows the average transformation
error per pixel. Another measure is the absolute difference (denoted by δ)
between the observation and the registered image.

ε =
1

|D|
∑

p∈D

‖(A− Â)p‖, and δ =
|R4O|
|R|+ |O| · 100%,

where D is the set of template pixels, 4 means the symmetric difference, while
R and O denote the set of pixels of the registered shape and observation re-
spectively. Note that ε can only be used when the true transformation A is
also known, while δ can always be computed. On the other hand, ε gives a
better characterization of the transformation error as it directly evaluates the
mistransformation. δ sees only the percentage of non-overlapping area between
the observation and registered shape. Hence the value of δ depends also on the
compactness and topology of the shapes. The performance of our algorithm
on the benchmark dataset has been evaluated based on these measures. A
summary of these results is presented in Table 1 Another important indicator
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Table 3
Median of error measures versus resolution of the observation.

Size (%) Runtime (sec.) ε (pixel) δ (%)

100 1.04 0.71 0.09

50 0.9 14.68 0.74

25 0.85 21.54 0.81

12.5 0.81 25.39 4.91

is the number of test cases where the algorithm finds no solution. Although all
the applied transformations were affine, it is possible that an observation is not
on the orbit of its template. The reason is mainly due to an excessive amount
of numerical error in the coefficients caused by a combination of strong defor-
mation and discretization error. The compactness of the shapes also affects the
amount of discretization error. Obviously, such errors arise only around the
boundaries thus shapes with a longer contour will produce higher discretiza-
tion error. Our database contains 32724 filled shapes and 16558 line drawings.
Table 2 shows a comparison of the registration quality on these shapes. It is
clear that registration of line drawings (i.e. shapes with longer contours) is
slightly less accurate. Finally, the resolution of the images is also important.
As we already mentioned in Section 2.2, the discrete sums will approximate
better the integrals at higher resolutions. Fortunately, the time complexity
of our method is linear hence increasing the resolution will not deteriorate
computing time. Table 3 shows the error and CPU time in function of the
resolution.

4.1 Comparison to Previous Approaches

Herein, we review some of the most relevant binary registration approaches
and, where an implementation was available, evaluate quantitatively the per-
formance of our algorithm with respect to these methods. For that purpose,
we have used 1686 randomly chosen images from our database. The results
are presented in Table 4 and Fig. 3.

Flusser et al.propose an image registration algorithm based on affine moments
in [13]. First they extract some representative regions and compute their mo-
ments, then the regions from the template and observation are matched based
on the similarity of their moments. Then point correspondences are estab-
lished as the centers of the region pairs and the transformation is recovered
in a classical way by solving a system of equations constructed from the point
correspondences. While both methods make use of moments, the fundamen-
tal difference is that our method provides a direct solution without any point
correspondences.
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Table 4
Median of error measures on 1686 randomly selected images using the method of
Heikkilä [11], Shape context [7], the method of Kannala et al. [10], Suk et al. [12]
and the proposed algorithm.

Runtime (sec.) ε (pixel) δ (%)

Heikkilä [11] 1.15 86.35 39.03

Shape context [7] 24.79 – 27.17

Kannala et al. [10] 32.45 8.89 9.7

Suk et al. [12] 5.62 0.51 0.19

Proposed 0.93 0.5 0.15

Belongie et al.proposed a novel approach for shape matching in [7]. The
method first searches for point correspondences between the two objects, then
estimates the transformation using these correspondences. The point matches
are established using a novel similarity metric, called shape context, which
consists in constructing a log-polar histogram of surrounding edge pixels. The
advantage compared to traditional landmark based approaches is that land-
marks need not be salient points nor radiometric information is involved. Ba-
sically the method can be regarded as matching two points sets, each of them
being a dense sample from the corresponding shape’s boundary. Obviously,
there is no guarantee that point pairs are exactly corresponding because of
the sampling procedure. However, having a dense sample will certainly keep
mismatch error at a minimum. The correspondences are simply established by
solving a linear assignment problem, which requires time consuming optimiza-
tion methods. For example, the complexity of the Hungarian method adopted
in [7] is O(N3). We ran the demo software [35] provided by the authors on our
dataset. Although the method uses regularized thin-plate splines as a flexible
class of transformations, it is possible to set the regularization parameter to
get affine behavior: beta init=500. Other parameters were also set empirically
to their optimal value (number of iteration n iter=15; annealing rate r=5).
Due to its high complexity, we had to reduce the size of the images by a factor
of 0.2. Nevertheless, as can be seen in Table 4, CPU time was still over 20
seconds.

Probably the most closely related approach is the binary registration algo-
rithm proposed by Kannala et al. [10,25]. The fundamental difference is that
[10] constructs a system of equations by basically looking at the images at 3
different scales. Although the resulting system is linear, the solution is inher-
ently less precise as in each equation they can only use part of the available
information. On the other hand, our approach constructs the equations by
making use of the ω functions hence we always use all the information avail-
able in the images.
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Table 5
Median of error measures versus σ of the noise on 1377 randomly selected images.

σ 1 2 5 10 15 20

ε (pixel) 0.51 0.53 0.73 2.42 5.86 11.91

δ (%) 0.19 0.27 0.79 2.72 6.24 10.64

Another class of related methods consists in object matching based on image
moments [12,11]. Suk and Flusser [12] construct affine normalized images by
making use of image moments. An affine transformation is decomposed into
basic transformations, and then they are successively eliminated by central
and complex moments. The aligning transformation of two objects is then
obtained by affine normalizing both images. This approach works well on syn-
thetic as well as on real images. We remark that the method in [12] allows
mirroring too, which is excluded in our model. In [11], Heikkilä constructs
affine descriptors using higher order moments and moment invariants. Similar
to the previous method, the transformation parameters are eliminated one by
one. However, in many cases this may result in increased registration error
as erroneous parameter values are fixed and propagated towards the com-
putation of subsequent parameters. In contrast, our approach solves for all
parameters hence error is better distributed over the estimated parameters.
We have obtained the Matlab implementation from the authors of [10], [12],
and [11] and conducted a comparative test. The results presented in Table 4
and Fig. 3 show that our method outperforms these approaches in terms of
both quality and computing time. In the case of [12], the registration qual-
ity is almost the same thus it is fair to say that both methods give accurate
registrations but our algorithm runs faster. On the other hand, our method
clearly dominates [12] in terms of robustness as it is demonstrated in the next
section.

4.2 Robustness

In Section 3, we derived the errors caused by noisy observations in our polyno-
mial system Eq. (9)–(11). Herein, we will experimentally test the robustness of
the proposed method against i.i.d. Gaussian geometric noise. For that purpose,
we have used 1377 randomly selected images from our benchmark database.
An i.i.d. Gaussian noise with σ = 1, 2, 5, 10, 15, 20 was added to the extracted
pixel coordinates of each observation and the registration algorithm got as
input the point list of this noisy observation and the original template. To
evaluate registration quality, the recovered transformation has been applied
to the original (i.e. noiseless) observation and the usual error measures ε and
δ have been computed. It is clear from Table 5 that the proposed algorithm
provides good solutions up to us high as σ = 10 noise levels.
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(a) Original (b) δ = 2.03% (c) δ = 8.2% (d) δ = 17.12%

Fig. 4. The robustness of the proposed approach in case of incomplete objects has
been evaluated on images where we have randomly removed 5%, 10%, and 20% of
the foreground pixels ((b)-(d)) of the original image (a). The registration results are
shown as overlayed contours of the registered shape.

We also considered the robustness of the proposed approach in case of incom-
plete objects. For that purpose, we have used 1289 randomly selected images
from our benchmark database where we have randomly removed 5%, 10%, 15%,
and 20% of the foreground pixels before registration (see Fig. 4). Clearly, such
incomplete observations will cause errors in the original system of equations
Eq. (9)–(11). Table 6 shows that our method is quite robust while the error
rate of other state of the art methods considerably increases even for as low
as 5% missing pixels. However, we have to note, that all of these methods are
less robust against the same amount of occlusion (i.e. when missing pixels are
not uniformly distributed over the whole region). This is presented in Table 7,
where we show the results on 794 randomly selected images with occlusions
of size 2.5%, 5% and 10% of the input shape’s area. Clearly, even relatively
small occlusions yield a rather high error rate for both the proposed as well
other state of the art methods. This is because they are relying on quanti-
ties obtained by integrating over the whole object area. Thus large missing
parts would drastically change these quantities resulting in false registrations.
Nevertheless, in many application areas one can take images under controlled
conditions which guarantees that observations are not occluded (e.g. medical
imaging, industrial inspection).

4.3 Real Images

The performance of our method has also been evaluated on real images. Fig. 5
shows some examples of these images with overlayed contours. For segmenta-
tion, we have used classical thresholding as well as active contours [36]. The
main challenges are the segmentation errors (e.g. see the fifth image in Fig. 5)
and slight projective distortion between the image pairs. In summary, when
reasonably good segmentations are available and the true transformation is
close enough to an affine one then our method performs quite well, as it is
shown by the δ error values and difference images displayed below each image
pairs.
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Table 6
Median of error measures versus the ratio of removed foreground pixels on 1289
randomly selected images.

Measure Method 5% 10% 15% 20%

ε (pixel)

Heikkilä [11] 76.29 75 71.86 70.38

Kannala et al. 8.69 12.07 13.55 14.42

S. & F. [12] 8.09 16.12 24.73 33.09

Proposed 1.95 3.56 9.25 8.86

δ (%)

Heikkilä [11] 40.5 40.64 41.05 39.63

Kannala et al. 9.42 10.82 12.54 14.41

S. & F. [12] 4.44 8.78 12.98 17.7

Proposed 1.93 3.78 10.96 10.9

Table 7
Median of error measures versus the size of occlusion on 794 randomly selected
images.

Measure Method 2.5% 5% 10%

ε (pixel)

Heikkilä [11] 120.36 153.38 215.81

Kannala et al. 76.49 137.34 227.63

S. & F. [12] 42.61 91.88 175.32

Proposed 47.44 162.34 251.4

δ (%)

Heikkilä [11] 53.77 55.65 60.98

Kannala et al. 55.77 68.68 79.75

S. & F. [12] 23.91 37.16 47.65

Proposed 38.12 51.1 58.67

4.4 Registration of Hip Prosthesis X-ray Images

Hip replacement [17,37] is a surgical procedure in which the hip joint is re-
placed by a prosthetic implant. In the short term post-operatively, infection is
a major concern. An inflammatory process causes bone resorption and subse-
quent loosening or fracture often requiring revision surgery. In current practice,
clinicians assess loosening by inspecting a number of post-operative X-ray im-
ages of the patient’s hip joint, taken over a period of time. Obviously, such an
analysis requires the registration of X-ray images as shown in Fig. 6. Even vi-
sual inspection can benefit from registration as clinically significant prosthesis
movement can be very small [17,37].
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There are two main challenges in registering hip X-ray images: One is the
highly non-linear radiometric distortion [18] which makes any graylevel-based
method unstable. Fortunately, the segmentation of the prosthetic implant is
quite straightforward [38] so binary registration is a valid alternative here.
Herein, we used active contours [36] to segment the implant. Let us remark
that our binary registration method is not directly affected by illumination
changes as there is no radiometric information available to the algorithm. On
the other hand, illumination variations may cause segmentation errors which
affects our method (see Section 4.2). However, such errors arise only in extreme
cases as modern segmentation algorithms are quite robust to illumination
variations. The second problem is that the true transformation is a projective
one which depends also on the position of the implant in 3D space. Indeed,
there is a rigid-body transformation in 3D space between the implants, which
becomes a projective mapping between the X-ray images. Fortunately, the
affine assumption is a good approximation here as the X-ray images are taken
in a well defined standard position of the patient’s leg. Some registration results
are presented in Fig. 6.

5 Conclusions

In this paper, we have presented a novel approach for planar shape align-
ment. The fundamental difference compared to classical image registration
algorithms is that our model works without any landmark, feature detection
or optimization by adopting a novel idea where the transformation is obtained
as a solution of a set of polynomial equations. It uses all the information avail-
able in the input images, but there is no need for established correspondences.
Our algorithm is simple to implement and runs quite fast almost indepen-
dently of the image size. Experimental results show that the proposed method
provides good alignment on both real and synthetic images. Furthermore, it is
robust in the case of noisy observations. Comparative tests show the efficiency
and accuracy of our model compared to state of the art methods.

A Proof of Proposition 1

Let 1 ≤ k ≤ n arbitrary and fixed. We assume that ωk(x) is polynomial, i.e.
there exists an n-variate real polynome pk with deg(pk) ≥ 1, such that

ωk(x) = pk(x1, . . . , xn) =
uk∑

i=1

si(A
−1
1 y)αi1 . . . (A−1

n y)αin , (A.1)

20



where uk =
(

deg(pk)+n
deg(pk)

)
, and A−1

j denotes the jth row of A−1. One term of

Eq. (A.1) can be expanded by making use of the Multinomial theorem [39].
For a given i and for all 1 ≤ j ≤ n, we get

(A−1
j y)αij = (qj1y1 + · · ·+ qjnyn + qj(n+1))

αij

=
∑

βij1, . . . , βij(n+1) ∈ N0

βij1 + · · ·+ βij(n+1) = αij

αij!

βij1! . . . βij(n+1)!
q

βij1

j1 . . . q
βijn

jn q
βij(n+1)

j(n+1) y
βij1

1 . . . yβijn
n ,

hence we get an (n + 1)-variate real polynome. In fact, we should compute
the sum of the product of n pieces of (n + 1) - variate polynoms in Eq. (A.1).
Let m = n(n + 1) and consider these products as m-variate polynoms. Fur-
thermore, the sum of m-variate polynoms is also an m-variate polynome. In-
tegrating and using this observation we can rewrite Eq. (A.1) as

∫ uk∑

i=1

si(A
−1
1 y)αi1 . . . (A−1

n y)αin ≡
∫ vk∑

i=1

tiq
γi1
1 . . . qγim

m yδi1
1 . . . yδin

n ,

where vk =
(

deg(pk)+m
deg(pk)

)
. It is obvious from the above equation that the system

of equation has a degree of up to deg(pk). Furthermore, by making use of the
basic properties of the Lebesgue integral, we get

∫ vk∑

i=1

tiq
γi1
1 . . . qγim

m yδi1
1 . . . yδin

n =
vk∑

i=1

∫
tiq

γi1
1 . . . qγim

m yδi1
1 . . . yδin

n

=
vk∑

i=1

tiq
γi1
1 . . . qγim

m

∫
yδi1

1 . . . yδin
n =

vk∑

i=1

wiq
γi1
1 . . . qγim

m .

The last term is indeed a real polynome rk with variables q1, . . . , qm yielding

∫
ωk(x) ≡ rk(q1, . . . , qm).

Hence the system of equations is polynomial which completes the proof.
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δ = 4.15% δ = 3.00% δ = 3.14% δ = 2.19%

δ = 4.30% δ = 1.07% δ = 8.09% δ = 2.42%

Fig. 5. Registration results on real images. For each image pair, the first two rows
contain the template and observation with overlayed contours of the segmented
silhouettes, while the third row shows the difference between the registered shapes
and in the last row the evaluated error measure δ is given. Note that this value
is related to the overlapping area hence it depends also on segmentation errors as
segmented regions will never match perfectly.
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δ = 3.69% δ = 7.62% δ = 5.94% δ = 4.13% δ = 1.45%

Fig. 6. Registration of hip prosthesis X-ray images. Each image pair has been taken
over a period of time about the same patient. The overlayed contour in the second
row shows the aligned contour of the corresponding image in the first row. For each
pair, we have also evaluated the δ measure.
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