
1. Introduction1. Introduction

Computer VisionComputer Vision

ZoltanZoltan KatoKato
http://www.inf.uhttp://www.inf.uhttp://www.inf.u---szeged.hu/~katoszeged.hu/~katoszeged.hu/~kato///

Slide adopted from Jackie Shen: Mathematical Image & Vision AnalSlide adopted from Jackie Shen: Mathematical Image & Vision Analysis.ysis. 2

ZoltanZoltan Kato: Computer VisionKato: Computer Vision

What is Vision?
• The perception of the 3-D 

world from its 2-D partial 
projections onto the left and 
right retinas
• fundamentally an illposed

inverse problem. 
• But after millions of years' of 

evolution, human vision has 
become astonishingly 
accurate and satisfactory.

• How could it have become 
such a remarkable inverse 
problem solver, and 

• what are the hidden (or 
subconscious) regularization 
techniques it employs?
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Biological or Digital (Passive) Imaging Process

G: 3-D surface geometry & topology

I:  Illuminance or incident light

R: Reflectance or material property

θ: viewing position | angle

u: 2-D image on the biological or digital retina

A 3-D world scene
Optical imaging process (human vision or digital 
camera) can be modeled as a function (or 
operator):  
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Here, 2 and 3 indicate the dimension of the spatial variables.
G and R denote the configuration (scene | geometry) and  the 
reflectance. All the a’s are parameters such as I and θ.

Passive Imaging Process:

Lattice (or continuum) of photoreceptors
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Active Visual Perception

G: 3-D surface geometry & topology

I:  Illuminance or incident light

R: Reflectance or material property

θ: viewing position | angle

u: 2-D image on the biological or digital retina

A 3-D world scene

Lattice (or continuum) of photoreceptors

Perception is to reconstruct the 3-D world 

(geometry, topology, material surface properties, 

light source, etc.) from the observed 2-D image:
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Active Visual Perception:

Daniel Kersten: 
Visual Perception is an 
Inverse Computer Graphics
Problem
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Vision is an Illposed Inverse Problem
A. Geometry is not invertible: depth or range is lost !

Mathematical Model (1): Projective Imaging
P: (x1, x2, x3) (x1, x2)  is not invertible!

For any given 2-D curve γ2, there are infinitely many 
3-D curves γ3, so that   P(γ3) =  γ2 .

Example. γ3 = (cos t, sin t, t )

γ2 is just like the projection of a circle 
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B.  The Reflectance-Illuminance entanglement.

R

I

R

I

identical images !different 3-D scenes

Vision is an Illposed Inverse Problem
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The human vision system is a well developed 
system of software and hardware, which can solve 
this highly ill-posed inverse problem efficiently and 
robustly.

Fundamental Questions:
• What kind of regularization techniques the human 

vision system employs to conquer the illposedness?
• What kind of features or variables to regularize ?

Human Vision
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Perception as Bayesian Inference

Bayesian Perception (D. Kersten, A. Yuille, D. Mumford,…):  
X = (geometry G, reflectance R, …). 
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It is our a priori knowledge of the world  (i.e., 
Prob(X ) ) that regularizes our visual perception!
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A Priori Knowledge (Common Sense) of the World Regularizes Vision

• G: Knowledge of curve and shape geometry;

• I:   Knowledge of light sources & illuminance (sun, 
lamps, indoor or outdoor, …);

• R:  Knowledge of materials (wood, bricks, …) and 
surface reflectance (metal shines and water 
sparkles, …)

• Θ :   Knowledge of the viewers (often standing 
perpendicularly to the ground, viewing more 
horizontally, several feet away for indoor scenes, …) 

• ……
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What to Learn & How
• How does the vision system subconsciously

choose what knowledge to learn and store, 
out of massive visual data in daily life? 

• For such knowledge, to which degree of 
regularity or compression that the vision 
system “decides” to process, in order to 
achieve maximum efficiency and robustness? 

• How to mathematically model (or quantify) 
such activities?
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Perception and Illusion
• Size, length, angles
• Order & depth
• Shade perception
• Grouping
• Interpolation & Continuation
• Light & Surface
• Texture gradient
• Linear perspective
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Illusions: Size, Length, Angles

Human visual perception: the length Wa is longer than Wb.

Fact: the two shaded surfaces are identical up to a rotation !

Question: How to model humans’ perception of geometry?

Wa

Wb
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Illusion: Order & Depth

Human visual perception:  the poor man is entangled in the fence.  

Fact:  common sense tells us that he is behind the fence.

Question: How to model human’s perception of depth? The lost 3rd D. 

G. Kanizsa [1978]

Nitzberg-Mumford-Shiota [1993]

Chan-Shen [SIAP, 2001]
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Illusion: Shade Perception

Human visual perception: the left heart is brighter than the right.

Fact:  they are identical, with the same shape, size, and shade!

Question: How to model humans’ perception of light and shades?
(i.e., how do our neurons encode and compute photon inputs?)

Ed. Adelson [MIT Cognitive & Comp. Neuron Sciences, 2000]
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Visual Organization: Grouping

For image u, we “see” two human faces. No doubt.
If we move the face contours closer till touch (image v), do we still 

percept two human faces? Or two simians? Psychologists show that
most of us percept the latter. (Gestalt Vision Science).

Question: How to model humans’ perception of  topology and grouping?

D. Kersten [Vision  Psychology & Computation, UMN]

d=0

v

d

u
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Visual Interpolation & Continuation

Interpolation is universal in daily life due to object occlusions in 3-D.

Clinical evidences show that it is not born with us. Many patients with 
vision defects have difficulty in connecting all the broken and separated 
parts. To them, the world is piece by piece.  

Question: How to model the interpolation algorithms of vision neurons?

G. Kanizsa [1978]

Nitzberg-Mumford-
Shiota [1993]

Chan-Shen [SIAP, 2001]

Chan-Kang-Shen [Visual 
Comm., 2001]
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Depth Cues: Light & Surface

Illumination gradients: gradients and shadow lend a sense of depth
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Depth Cues: Texture Gradient

Linear Perspective: objects appear smaller as they recede into the 
distance
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Depth Cues: Linear Perspective

Lines will appear to draw closer together as they go farther into the distance.

WatWat PhraPhra KaewKaew, Bangkok, Thailand , Bangkok, Thailand –– http://http://www.cameradigita.comwww.cameradigita.com//
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Depth Cues: Motion Parallax
• differential 

perception of motion 
(speed and direction) 
as a function of 
distance from 
perceiver
• Objects moving 

faster are appearing 
closer

http://epsych.msstate.edu/descriptive/Vision/mparallax/DC1.htmlhttp://epsych.msstate.edu/descriptive/Vision/mparallax/DC1.html
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• Each eye receives a slightly different image of the 
world from which 3D positions can be inferred.

• Disparity - The difference in retinal position 
between the corresponding points in two images. 
Disparity is inversely proportional to the depth of the 
point in space. 

Depth Cues: Binocular Disparity
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Perceptual Constancy

• We tend to experience objects as the same, despite the 
image they produce on the retina may vary greatly.
• Shape constancy – objects seen from different angles do not appear 

different or to change shape
• Size constancy – objects do not seem to change size when they move 

nearer or further away.
• Color constancy – differing illumination does not affect color despite 

changes in the actual reflected light.

Size constancy
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Theory of Visual Perception
• The information we receive 

by our eyes is relatively 
impoverished.
• For example, the retina 

receives a grainy 2D image of 
the visual scene…

• …that includes large gaps 
(blind spots)…

• …and an uneven 
representation of colour 
(cones) and luminance (rods).

• This information is 
transformed into a rich 
visual experience.
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Theory of Visual Perception: Marr
• Theories of visual perception attempt to explain how 

this happens.
• David Marr: Vision: A Computational Investigation 

into the Human Representation and Processing of 
Visual Information, 1982.

• wanted to understand mechanisms of vision rather 
than just behaviours associated with it.
• He took an information processing view of the mind…
• …and aimed to describe perception in terms of 

computations on sense data…
• …to extract high level visual experience.
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Marr: Computational Approach
• Marr proposed there were distinct stages of 

processing in visual perception (Bottom-Up):
• Raw Primal Sketch
• Complete Primal Sketch
• 2½D Sketch
• Full 3D Representation
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Marr: Primal Sketch

• Early primal sketch involves the extraction of information 
regarding edges and intensity changes.

• Then a Complete Primal Sketch is created by grouping 
surfaces and common areas
• The Gestalt Psychologists of the early 19th Century demonstrated

many different ways in which we can group objects.
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Gestalt laws of Perceptual Grouping
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Marr: 2½D Sketch
• After gaining information about groupings and 

surfaces the viewer needs some spatial 
information.

• Marr called this stage the 2½D Sketch to 
emphasis that this stage didn’t give a full 3D 
representation.

• Just an estimate of the spatial locations of 
objects and materials in relation to the viewer.
• Depth cues
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Marr: 3D Model Representation
• A full 3D description of our spatial 

environment involving the 
• identification of the structure of objects and
• materials in our visual scene.

• It allows us to work out the 3D environment 
from a non-egocentric point-of-view.
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Can Computers see as Humans?
• Shape from shading
• Shape from texture
• Single view reconstruction
• 2-view reconstruction (stereo vision)
• Multi-view reconstruction
• Tracking moving objects
• Video mosaics
• Video editing/inpainting
• View synthesis
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Shape from Shading

[  Emmanuel [  Emmanuel PradosPrados and  Olivier and  Olivier FaugerasFaugeras, ECCV 2004 ], ECCV 2004 ]
http://wwwhttp://www--sop.inria.fr/odyssee/research/pradossop.inria.fr/odyssee/research/prados--faugeras:04b/demo_real_images/demo_real_images.htmlfaugeras:04b/demo_real_images/demo_real_images.html
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Shape from Texture

http://http://www.csse.uwa.edu.au/~angiewww.csse.uwa.edu.au/~angie//
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Single View Reconstruction
Reconstructing a 3D scene from recognizable geometric primitives such as lines, 
planes and spheres by computing their spatial layout  given only one view.

D.LiebowitzD.Liebowitz, A. , A. CriminisiCriminisi, and A. , and A. ZissermanZisserman, Visual , Visual GeometryGeometry Group, Oxford University, UK, 1998 Group, Oxford University, UK, 1998 -- http://http://www.robots.ox.ac.uk/~vgg/projects/SingleViewwww.robots.ox.ac.uk/~vgg/projects/SingleView//

3D reconstruction of a photograph 

Fellows Quad in Merton College, Oxford

La Flagellazione di Cristo (1460) by Piero della Francesca (1416-1492)
Galleria Nazionale delle Marche

3D reconstruction of a painting

34

ZoltanZoltan Kato: Computer VisionKato: Computer Vision

Mobile Robot Navigation

http://www.robots.ox.ac.uk/ActiveVision/Projects/Nav/nav.01/http://www.robots.ox.ac.uk/ActiveVision/Projects/Nav/nav.01/
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Multi-view Stereovision
[ J.[ J.--P. P. PonsPons, R. , R. KerivenKeriven and O. and O. FaugerasFaugeras CVPR 2005]CVPR 2005]
http://wwwhttp://www--sop.inria.fr/odyssee/research/ponssop.inria.fr/odyssee/research/pons--kerivenkeriven--etal:04b/demoetal:04b/demo//
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Tracking

Tracking results:
Fitting models to cars 
and people

An Integrated Traffic and Pedestrian Vision System, Leeds An Integrated Traffic and Pedestrian Vision System, Leeds –– ReedingReeding, UK, 1997, UK, 1997
http://http://www.scs.leeds.ac.uk/imv/index.htmlwww.scs.leeds.ac.uk/imv/index.html

The Likelihood of a particular trajectory
Dots above the heads indicate likelihood of a 
particular trajectory.
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Video Mosaic/Panorama
Dynamosaics: Video Mosaics with Non-Chronological Time 
[CVPR 2005]
http://www.vision.huji.ac.il/dynmos/http://www.vision.huji.ac.il/dynmos/

Alex Rav-Acha,  Yael Pritch,  Dani Lischinski,  Shmuel Peleg
Hebrew University of Jerusalem, Israel

With the limited field of view of human vision, our perception of most 
scenes is built over time while our eyes are scanning the scene. In the 
case of static scenes this process can be modeled by panoramic 
mosaicing: stitching together images into a panoramic view. Can a 
dynamic scene, scanned by a video camera, be represented with a 
dynamic panoramic video even though different regions were visible at 
different times? 
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Video Editing

Insert new objects into a video sequence

http://http://profs.sci.univr.it/~fusiello/demo/mosaicsprofs.sci.univr.it/~fusiello/demo/mosaics//
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Video Inpainting
Guillermo Guillermo SapiroSapiro, , KedarKedar A. A. PatwardhanPatwardhan [ICIP 2005][ICIP 2005]
http://www.tc.umn.edu/~patw0007/icip2005/http://www.tc.umn.edu/~patw0007/icip2005//

Remove unwanted objects

YunjunYunjun Zhang, Zhang, JiangjianJiangjian Xiao, Xiao, MubarakMubarak Shah Shah ––[UCF 2005][UCF 2005]
http://www.cs.ucf.edu/%7Evision/projects/ImageVideoCompletion/http://www.cs.ucf.edu/%7Evision/projects/ImageVideoCompletion/
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View Synthesis: EyeVision of CMU
TakeoTakeo kanadekanade [Carnegie Mellon University, USA, 2001][Carnegie Mellon University, USA, 2001]
http://www.ri.cmu.edu/events/sb35/tksuperbowl.htmlhttp://www.ri.cmu.edu/events/sb35/tksuperbowl.html

The action was captured by more than 30 cameras, each with computer-controlled 
zoom and focus capabilities mounted on a custom-built, robotic pan-tilt head. 

These camera heads were controlled in concert so that cameras pointed, zoomed 
and focused at the same time on the same spot on the field, where a touchdown or 
fumble occurred. 

The detailed geometrical information about a scene is extracted by computer, 
which enables a person to choose how to view a scene, even from a perspective 
that was not shot by any camera. 


