Zoltan Kato: Computer Vision

Problem and Assumptions

- Given one or more images of a calibration pattern,
 - Estimate
 - The intrinsic parameters
 - The extrinsic parameters, or
 - BOTH
- Issues: Accuracy of Calibration
 - How to design and measure the calibration
 pattern
 - Distribution of the control points to assure stability of solution – not coplanar
 - Construction tolerance one or two order of magnitude smaller than the desired accuracy of calibration
 - e.g. 0.01 mm tolerance versus 0.1mm desired accuracy
 - How to extract the image correspondences
 Corner detection?
 - Line fitting?
 - Algorithms for camera calibration given both 3D-2D pairs
- Alternative approach: 3D from un-calibrated camera

3. Camera Calibration

Computer Vision

Zoltan Kato

http://www.inf.u-szeged.hu/~kato/

Zoltan Kato: Computer Vision

Basic equations

- Given a set of world image point correspondences X_i ↔ x_i
- Find camera projection matrix P (P^{iT} = ith row)

 $\mathbf{x}_{i} = \mathbf{P}\mathbf{X}_{i} \implies \mathbf{x}_{i} \times \mathbf{P}\mathbf{X}_{i} = \mathbf{0}$ $\begin{bmatrix} \mathbf{0}^{\top} & -w_{i}\mathbf{X}_{i}^{\top} & y_{i}\mathbf{X}_{i}^{\top} \end{bmatrix} (\mathbf{P}^{1})$

$$\begin{bmatrix} \mathbf{0} & -w_i \mathbf{X}_i & y_i \mathbf{X}_i \\ w_i \mathbf{X}_i^\top & \mathbf{0}^\top & -x_i \mathbf{X}_i^\top \\ -y_i \mathbf{X}_i^\top & x_i \mathbf{X}_i^\top & \mathbf{0}^\top \end{bmatrix} \begin{pmatrix} \mathbf{P}^* \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} =$$

Only 2 rows are independent (projection!) →

n corrspondences → 2nX12 matrix A P is computed by solving:

 $\mathbf{A}\mathbf{n} = \mathbf{0}$

Zoltan Kato: Computer Vision

Basic equations

Minimal solution

- P has 11 dof, 2 independent eq./points
- \rightarrow 5½ correspondences needed (say 6)
- Over determined solution:
 - n >= 6 points
 - Direct Linear Transformation (DLT) algorithm:
 - → minimize ||Ap|| subject to constraint ||p=1||
 - Minimizes the <u>algebraic distance</u>!
 - The constraint excludes the trivial solution p=0 and chooses the scale for p
 - Without constraint, p can only be determined up to a scale factor
 - Use SVD to find p: A=UDV^T, p = last column of

Degenerate configurations

Camera and points on a twisted cubic

Points lie on plane or single line passing through projection center

Geometric error in image points

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2}$$
$$\min_{\mathbf{P}} \sum_{i} d(\mathbf{x}_{i}, \mathbf{P}\mathbf{X}_{i})^{2}$$

oltan Kato: Computer Vision

Data normalization

- Improves accuracy of estimation
- Makes the algorithm invariant to the scale and origin of the original measurements
 - Estimation is done in a canonical coordinate frame:
 - Points are translated such that their centroid becomes the origin
 - · Points are scaled such that the "average point" is equal to [1,1,1]^T (resp. [1,1,1,1]^T)

Gold Standard algorithm

Objective

Given n \geq 6 world to image point correspondences {X_i \leftrightarrow x_i'}, determine the Maximum Likelihood Estimation of P

Algorithm

Linear solution:

DLT

Minimization of geometric error: using the linear estimate as a starting point minimize the geometric error using an iterative algorithm (e.g. Levenberg-Marguardt).

 $\mathbf{P} = \mathbf{T}^{-1} \widetilde{\mathbf{P}} \mathbf{U}$

Denormalization:

Calibration example

- The image points are obtained from the from the calibration object using the following steps
 - 1. Canny edge detection
 - 2. Straight line fitting to the detected edges
 - 3. Intersecting the lines to obtain the images corners
- typically precision <1/10
- (HZ rule of thumb: 5n constraints for n unknowns

		ł
		ł
		 l
		1
	I	
		1

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		f_y	f_x/f_y	skew	x_0	y_0	residual
iterative 1675.5 1.0063 1.43 379.79 305.25 0.364	linear	1673.3	1.0063	1.39	379.96	305.78	0.365
	iterative	1675.5	1.0063	1.43	379.79	305.25	0.364

Restricted camera estimation

Find best fit that satisfies

- skew s is zero
- pixels are square
- principal point is known
- complete camera matrix K is known
- Minimize geometric error
 - impose constraint through parametrization
 - Image only error: $\mathfrak{R}^9 \to \mathfrak{R}^{2n}$, otherwise: $\mathfrak{R}^{3n+9} \to \mathfrak{R}^{5n}$
- Minimize algebraic error
 - assume map from param $q \rightarrow P=K[R]-RC]$, i.e. p=q(q)
 - minimize ||Ag(q)||

Zoltan Kato: Computer Vision

Reduced measurement matrix

One only has to work with 12x12 matrix, not 2nx12

$$\left\|\mathbf{A}\mathbf{p}\right\| = \mathbf{p}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{p} = \left\|\widetilde{\mathbf{A}}\mathbf{p}\right\|$$

A[~] is the 12X12 reduced measurement matrix

$$\mathbf{A}^{ op}\mathbf{A} = (\mathbf{V}\mathbf{D}\mathbf{U}^{ op})(\mathbf{U}\mathbf{D}\mathbf{V}^{ op}) = (\mathbf{V}\mathbf{D})(\mathbf{D}\mathbf{V}^{ op}) = \hat{\mathbf{A}}^{ op}\hat{\mathbf{A}}$$

- This can be solved using Levenberg-Marquardt algorithm.
- <u>Note:</u> Finding a constrained camera matrix \mathbf{F} that minimizes the algebraic distances reduces to minimizing a function $\mathbf{g}: \mathfrak{M}^{g} \to \mathfrak{M}^{2n}$, independent of the number **n** of correspondences!

Zoltan Kato: Computer Visior

Restricted camera estimation

- Initialization
 - Use general DLT

- $\mathbf{K} = \begin{bmatrix} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{bmatrix}$
- Clamp values to desired values, e.g. s=0, $\alpha x = \alpha y$
- Note: can sometimes cause big jump in error
- Alternative initialization
 - Use general DLT
 - Impose soft constraints

$$\sum_{i} d(\mathbf{x}_i, \mathbf{P}\mathbf{X}_i)^2 + ws^2 + w(\alpha_x - \alpha_y)^2$$

gradually increase weights

$$\mathbf{K} = \left[\begin{array}{ccc} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{array} \right]$$

Exterior orientation (Pose)

- Calibrated camera, position and orientation unkown
- Pose estimation
 - A configuration with accurately known position in the world coordinate frame is imaged
 - 6 dof → 3 points minimal
 - Results in non-linear equations which have 4 solutions in general