Problem and Assumptions

3. Camera Colitionitos

Computer Vision

- Given one or more images of a callibration
pattern,
- Estimate
- The intrinsic parameters
- The extrinsic parameters, or
- BOTH
- Issues: Accuracy of Calibration
- How to design and measure the calibration pattern
- Distribution of the control points to assure stability
of solution - not coplanar magnitude smaller than the desired accuracy of calibration
e.g. 0.01 mm tolerance versus 0.1 mm desired accuracy

Zoltan Kato

How to extract the image correspondences

- Corner detection?
- Line fitting?

Algorithms for camera calibration given both 3D 2D pairs
Alternativ
camera

Basic equations

- Given a set of world - image point correspondences $\mathrm{X}_{i} \leftrightarrow \mathrm{x}_{i}$
- Find camera projection matrix P ($\mathrm{P}^{\mathrm{iT}}=\mathrm{i}^{\text {ih }}$ row $)$

Only 2 rows are independent (projection!) \rightarrow
$\left[\begin{array}{ccc}\mathbf{0}^{\top} & -w_{i} \mathbf{X}_{i}^{\top} & y_{i} \mathbf{X}_{i}^{\top} \\ w_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i} \mathbf{X}_{i}^{\top}\end{array}\right]\left(\begin{array}{c}\mathbf{P}^{1} \\ \mathbf{P}^{2} \\ \mathbf{P}^{3}\end{array}\right)=\mathbf{0}$

n corrspondences \rightarrow 2nX12 matrix A P is computed by solving:

$$
\mathbf{A p}=\mathbf{0}
$$

Basic equations

- Minimal solution

$$
\mathbf{A p}=\mathbf{0}
$$

- P has 11 dof, 2 independent eq./points
- $\Rightarrow 512$ correspondences needed (say 6)
- Over determined solution:
- $n>=6$ points
- Direct Linear Transformation (DLT) algorithm:
- \Rightarrow minimize ||Ap\| subject to constraint ||p=1||
- Minimizes the algebraic distance!
- The constraint excludes the trivial solution $\mathrm{p}=0$ and chooses the scale for p
- Without constraint, p can only be determined up to a scale factor
- Use SVD to find $p: A=U D V^{\top}, p=$ last column of V

Degenerate configurations

- Camera and points on a twisted cubic

- Points lie on plane or single line passing through projection center

Data normalization

- Improves accuracy of estimation
- Makes the algorithm invariant to the scale and origin of the original measurements
- \rightarrow Estimation is done in a canonical coordinate frame:
- Points are translated such that their centroid becomes the origin
- Points are scaled such that the "average point" is equal to $[1,1,1]^{\top}$ (resp. [1, 1, 1,1] ${ }^{\top}$)

Gold Standard algorithm

```
Objective
    Given n\geq6 world to image point correspondences {\mp@subsup{X}{i}{}\leftrightarrow>\mp@subsup{X}{i}{\prime}}\mathrm{ ,}
    determine the Maximum Likelihood Estimation of P
Algorithm
    Linear solution:
        Normalization:
        DLT
```

 Minimization of geometric error: using the linear estimate as a
 starting point minimize the geometric error using an iterative
 algorithm (e.g. Levenberg-Marquardt).

Calibration example

Restricted camera estimation

- The image points are obtained from the from the calibration object using the following steps

1. Canny edge detection
2. Straight line fitting to the detected edges
3. Intersecting the lines to obtain the images corners

- typically precision <1/10

- (HZ rule of thumb: $5 n$
constraints for n unknowns

	f_{y}	f_{x} / f_{y}	skew	x_{0}	y_{0}	residual
linear	1673.3	1.0063	1.39	379.96	305.78	0.365
iterative	1675.5	1.0063	1.43	379.79	305.25	0.364

Reduced measurement matrix

- One only has to work with 12×12 matrix, not 2 nx 12

$$
\|\mathrm{Ap}\|=\mathrm{p}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}} \mathrm{Ap}=\|\widetilde{\mathrm{A}} \mathrm{p}\|
$$

- A^{\sim} is the 12×12 reduced measurement matrix

$$
A^{\top} A=\left(V D U^{\top}\right)\left(U D V^{\top}\right)=(V D)\left(D V^{\top}\right)=\hat{A}^{\top} \hat{A}
$$

- This can be solved using Levenberg-Marquardt algorithm.
- Note: Finding a constrained camera matrix P that minimizes the algebraic distances reduces to minimizing a function $\mathrm{g}: \mathfrak{R}^{9} \rightarrow \Re^{2 \mathrm{n}}$, independent of the number n of correspondences!

Restricted camera estimation

- Initialization
- Use general DLT

- Clamp values to desired values, e.g. $s=0, \alpha x=\alpha y$
- Note: can sometimes cause big jump in error
- Alternative initialization
- Use general DLT
- Impose soft constraints

$$
\sum_{i} d\left(\mathbf{x}_{i}, \mathbf{P X}_{i}\right)^{2}+w s^{2}+w\left(\alpha_{x}-\alpha_{y}\right)^{2}
$$

- gradually increase weights

Exterior orientation (Pose)

- Calibrated camera, position and orientation unkown
- Pose estimation
- A configuration with accurately known position in the world coordinate frame is imaged
- 6 dof $\rightarrow 3$ points minimal
- Results in non-linear equations which have 4 solutions in general

