Binocular Stereo

5. Stereo

A way of getting depth (3D) information about a scene from two 2D views (images) of the scene

- Used by humans
- Computational stereo vision
Computer Vision
- Programming machines to do

Zoltan Kato

stereo vision

- Stereo vision extensively in the past 25 years
- Difficult; still being researched

Three geometric questions

1. Correspondence geometry: Given an image point \mathbf{x} in the first view, how does this constrain the position of the corresponding point \mathbf{x}^{\prime} in the second image?
2. Camera geometry (motion): Given a set of corresponding image points $\left\{x_{i} \leftrightarrow \mathbf{x}_{i}^{\prime}\right\}, i=1, \ldots, n$, what are the camera matrixes \mathbf{P} and \mathbf{P}^{\prime} for the two views?
3. Scene geometry (structure): Given corresponding image points $\mathbf{x}_{i} \leftrightarrow \mathbf{x}_{i}^{\prime}$ and cameras $\mathbf{P}, \mathrm{P}^{\prime}$, what is the position of (their pre-image) X in space?

Mapping Points between Images

- What is the relationship between the images $\mathbf{x}, \mathbf{x}^{\prime}$ of the scene point \mathbf{X} in two views?
- Intuitively, it depends on:
- The rigid transformation (motion) between cameras (derivable from the camera matrices P, P')
- The scene structure (i.e., the depth of X)
- Parallax: Closer points appear to move more

Example: Two-View Geometry

Slides adopted from

CS 395/495-26: Spring 2004
IBMR:
2-D Projective Geometry --Introduction--

Jack Tumblin
jet@cs.northwestern.edu

2-D Homogeneous Coordinates

WHAT?! Why x_{3} ? Why 'default' value of 1 ?

- Look at lines in R^{2} :
- 'line' == all (x, y) points where $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
- scale by ' k ' $\rightarrow \rightarrow$ no change: $k a x+\mathrm{kby}+\mathrm{kc}=0$
- Using ' x_{3} ' for points UNIFIES notation:
- line is a 3 -vector named \mathbf{I}
- now point (x, y) is a 3-vector too, named \mathbf{x}
$a x+b y+c=0$
$\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\mathbf{0}$

2D Homogeneous Coordinates

Important Properties $1_{\text {(seo book or dealilis) }}$

- 3 coordinates, but only 2 degrees of freedom (only 2 ratios $\left(x_{1} / x_{3}\right),\left(x_{2} / x_{3}\right)$ can change)
- DUALITY: points, lines are interchangeable
- Line Intersections = point: $\mathbf{l}_{1} \times \mathbf{l}_{2}=\mathbf{x}$
(a 3D cross-product)
- Point 'Intersections' $=$ line: $\mathbf{x}_{\mathbf{1}} \times \mathbf{x}_{\mathbf{2}}=\mathbf{1}$
- Projective theorem for lines $\leftrightarrow \rightarrow$ theorem for points!

Epipolar geometry

- The fundamental constraint in stereo
- Baseline: Line joining camera centers C , C'

C, $C^{\prime}, x, x^{\prime}$ and X are coplanar

Epipolar lines

- Epipolar lines I, I':
- Intersection of epipolar plane π with image planes
- The image in one view of the other camera's projection ray.
Epipoles e, e':
- Where baseline intersects image planes
- The image in one view of the other camera center.

- Intersection of the epipolar lines
- Vanishing point of camera motion direction

Epipolar pencil

- As position of \mathbf{X} varies, epipolar planes "rotate" about the baseline
- This set of planes is called the epipolar pencil
- Epipolar lines "radiate" from epipole-this is the
 pencil of epipolar lines

Epipolar constraint

- Camera center \mathbf{C} and image point \mathbf{x} define a ray in 3D space that projects to the epipolar line I^{\prime} in the other view (since it's on the epipolar plane)
- 3D point \mathbf{X} is on this ray \rightarrow image of \mathbf{X} in other view \mathbf{X} ' must be on I .
- In other words, the epipolar geometry defines a mapping $x \rightarrow I$ ' of points in
 one image to lines in the other

Left view

Right view

- Intersection of epipolar lines = Epipole !
- Indicates location of other camera center

Special case: aligned image planes

- epipolar lines are parallel
- epipolar lines correspond to rows in the image
- epipoles in both images are at infinity along the x axis.

Special Case: Translation along Optical Axis

- Epipoles coincide at focus of expansion
- Not the same (in general) as vanishing point of scene lines

The Fundamental Matrix (F)

- Mapping a point in one image to epipolar line in other image $\mathbf{X} \rightarrow \mathbf{I}^{\prime}$ is expressed algebraically by the Fundamental Matrix \mathbf{F}
- Write this as l'=F X
- F is
- 3×3
- rank 2 (not invertible, in contrast to homographies)
- 7 DOF (homogeneity and rank constraint -2 DOF)

Fundamental Matrix

Geometric derivation:

- F is a mapping from 2D (plane) to 1D (line) family
- \rightarrow F is 3×3 but rank 2

Fundamental Matrix

$$
\begin{aligned}
& \mathrm{X}(\lambda)=\mathrm{P}^{+} \mathrm{x}+\lambda \mathrm{C} \\
& \mathrm{I}=\underbrace{\mathrm{P}^{\prime} \mathrm{C}}_{\mathrm{e}^{\prime}} \times \underbrace{\mathrm{P}^{\prime} \mathrm{P}^{+} \mathrm{x}}_{\mathrm{x}^{\prime}} \\
& \mathrm{F}=\left[\mathrm{e}^{\prime}\right]_{\times} \mathrm{P}^{\prime} \mathrm{P}^{+}
\end{aligned}
$$

Algebraic derivation:

- Doesn't work for $\mathrm{C}=\mathrm{C}^{\prime} \rightarrow \mathrm{F}=0$

Fundamental Matrix

Correspondence condition \& F

Fundamental matrix summary

- Since \mathbf{x}^{\prime} is on \mathbf{I}^{\prime}, by the point-on-line definition we know that $\mathbf{x}^{\prime}{ }^{\prime} \mathrm{l}^{\prime}=\mathbf{0}$
- Combined with $\mathrm{l}^{\prime}=\mathrm{Fx}$, we can thus relate corresponding points in the camera pair (P,P') to each other by

($\mathrm{x}^{\text {TT }} \mathrm{l}^{\prime}=0$)

- \Rightarrow the fundamental matrix satisfies the above condition for any pair of corresponding points $\mathbf{X} \leftrightarrow \mathbf{x}^{\prime}$ in the two images
- The fundamental matrix of $\left(P^{\prime}, P\right)$ is the transpose F^{\top}

The Essential Matrix E

- If the calibration matrix \mathbf{K} is known
$\Rightarrow \underline{x}=K^{-1} \mathbf{x}=[R \mid t] X$ normalized coordinates
- $\Rightarrow \mathrm{K}^{-1} \mathrm{P}=[\mathrm{R} \mid \mathrm{t}]$ normalized camera matrix
- Consider a pair of normalized cameras $\mathrm{P}=[| | 0]$ and $P^{\prime}=[R \mid t]$.
- The Fundamental matrix correspondig to them is called the Essential Matrix $\mathrm{E}=[\mathrm{t}]_{\mathrm{x}} \mathrm{R}=\mathrm{R}\left[\mathrm{R}^{\top} \mathrm{t}\right]_{\mathrm{x}}$
- It is defined by $\underline{x}^{\text {'T}} E \underline{x}=0$
- Relationship between E and F:

$$
\mathbf{E}=\mathbf{K}^{\mathbf{}^{\mathbf{T}} \mathbf{F K} \mathbf{K}}
$$

Properties of Essential Matrix E

- Has 5 DOF (3 for \mathbf{R} and 2 for \mathbf{t} up to scale)
- First two singular values are equal
- The third is 0
- $\mathrm{E}=\mathrm{Ud}$ diag(1,1,0) V^{\top}
- Allows computation of camera matrices $\mathbf{P}, \mathbf{P}^{\prime}$
- up to a scale and
- a four-fold ambiguity

Four possible reconstructions from E

(only one solution where points is in front of both cameras)

Computing F

- Compute \mathbf{F} from $\mathbf{x}_{\mathbf{i}} \leftrightarrow \mathbf{x}_{\mathbf{i}}^{\prime} \quad \mathbf{x}^{\prime \mathrm{T}} \mathrm{Fx}=\mathbf{0}$
$x^{\prime} x f_{11}+x^{\prime} y f_{12}+x^{\prime} f_{13}+y^{\prime} x f_{21}+y^{\prime} y f_{22}+y^{\prime} f_{23}+x f_{31}+y f_{32}+f_{33}=0$
- separate known from unknown:
$\underbrace{\left[x^{\prime} x, x^{\prime} y, x^{\prime}, y^{\prime} x, y^{\prime} y, y^{\prime}, x, y, 1\right]}_{\text {data }} \underbrace{\left[f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}\right.}_{\text {unknows(linear) }}]^{\mathrm{T}}=0$
$\left[\begin{array}{ccccccccc}x_{1}^{\prime} x_{1} & x_{1}^{\prime} y_{1} & x_{1}^{\prime} & y_{1}^{\prime} x_{1} & y_{1}^{\prime} y_{1} & y_{1}^{\prime} & x_{1} & y_{1} & 1 \\ \vdots & \vdots \\ x_{n}^{\prime} x_{n} & x_{n}^{\prime} y_{n} & x_{n}^{\prime} & y_{n}^{\prime} x_{n} & y_{n}^{\prime} y_{n} & y_{n}^{\prime} & x_{n} & y_{n} & 1\end{array}\right] \mathbf{f}=\mathbf{0}$

$$
\mathbf{A f}=\mathbf{0}
$$

Example

- The importance of the singularity constraint
- Guarantees that epipolar lines intersect in one single point

SVD from linearly computed F matrix (rank 3)

Compute closest rank-2 approximation
$\min \|\mathrm{F}-\mathrm{F}\|_{F}$
$\mathrm{F}^{\prime}=\mathrm{U}\left[\begin{array}{lll}\sigma_{1} & & \\ & \sigma_{2} & \\ & & 0\end{array}\right] \mathrm{V}^{\mathrm{T}}=\mathrm{U}_{1} \sigma_{1} \mathrm{~V}_{1}^{\mathrm{T}}+\mathrm{U}_{2} \sigma_{2} \mathrm{~V}_{2}^{\mathrm{T}}$

How many correspondences?

- When A has rank 8
$\mathbf{A f}=\mathbf{0}$
- \rightarrow possible to solve for f up to scale
- \rightarrow need 8 point correspondences
- When \mathbf{A} has rank > 8
- Use LSE:
- Minimize ||Af|| subject to ||f||=1 (SVD)
- At least 8 point correspondences
- However F has 7 DOF
- rank $A=7$ is still OK
- \rightarrow possible to solve with 7 point correspondences
- AND by making use of the singularity constraint

7 point correspondences

$\overbrace{F_{1}}^{\sigma_{F_{2}}}$

- Impose rank 2 constraint \rightarrow Cubic equation:

$$
\begin{aligned}
& \operatorname{det}\left(\mathrm{F}_{1}+\lambda \mathrm{F}_{2}\right)=a_{3} \lambda^{3}+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0 \\
& \operatorname{det}\left(\mathrm{~F}_{1}+\lambda \mathrm{F}_{2}\right)=\operatorname{det} \mathrm{F}_{2} \operatorname{det}\left(\mathrm{~F}_{2}^{-1} \mathrm{~F}_{1}+\lambda \mathrm{I}\right)=0
\end{aligned}
$$

- Compute λ as eigenvalues of $F_{2}{ }^{-1} F_{1}$
- only real solutions are potential solutions

7 point correspondences

- The solution is a 2D space: $\quad \mathbf{F}=\mathbf{F}_{1}+\lambda \mathbf{F}_{2}$
- one parameter family of solutions
- not automatically rank 2

$$
\mathbf{A f}=\mathbf{0}
$$

$\left[\begin{array}{ccccccccc}x_{1}^{\prime} x_{1} & x_{1}^{\prime} y_{1} & x_{1}^{\prime} & y_{1}^{\prime} x_{1} & y_{1}^{\prime} y_{1} & y_{1}^{\prime} & x_{1} & y_{1} & 1 \\ \vdots & \vdots \\ x_{7}^{\prime} x_{7} & x_{7}^{\prime} y_{7} & x_{7}^{\prime} & y_{7}^{\prime} x_{7} & y_{7}^{\prime} y_{7} & y_{7}^{\prime} & x_{7} & y_{7} & 1\end{array}\right] \mathrm{f}=0$

$$
\mathrm{A}=\mathrm{U}_{7 \times 7} \mathrm{diag}\left(\sigma_{1}, \ldots, \sigma_{7}, 0,0\right) \mathrm{V}_{9 \times 9}{ }^{\mathrm{T}} \Rightarrow \mathrm{~A}\left[\mathrm{~V}_{8} \mathrm{~V}_{9}\right]=0_{9 \times 2}
$$

$$
\mathrm{x}_{i}{ }^{\mathrm{T}}\left(\mathrm{~F}_{1}+\lambda \mathrm{F}_{2}\right) \mathrm{x}_{i}=0, \forall i=1 \ldots 7
$$

8 point correspondences

- LSE solution
- 8 equations but usually rank $A=9$ in case of real (noisy) data

Normalized 8 point algorithm

- Transform image to $\sim[-1,1] \times[-1,1]$

- Given $\mathrm{n}>=8$ point correspondences

1. Normalization: Tx and T'x'
2. Find $F^{\prime \prime}$
a) $F^{\prime}=$ Singular vector of smallest singular value from $\operatorname{SVD}(A)$
b) Enforce rank 2 constraint using $\operatorname{SVD}\left(F^{\prime}\right) \rightarrow F^{\prime \prime}$
3. Denormalization: $F=T^{\prime} \mathrm{F}^{\prime}$ ' T

Locating the Epipoles

$$
\mathbf{x}^{\mathbf{x}^{T}} \mathbf{F x}=0 \quad \mathbf{x}^{\prime \mathrm{T}} \mathbf{F e}=\mathbf{0} \quad \mathbf{F e}=\mathbf{0}
$$

e lies on all epipolar lines of the left image

- Input: Fundamental Matrix F
- Find the SVD of F:
$\mathbf{F}=\mathbf{U D V}^{T}$
- The epipole \mathbf{e} is the column of \mathbf{V} corresponding to the null singular value (as shown above)
- The epipole \mathbf{e}^{\prime} ' is the column of \mathbf{U} corresponding to the null singular value (similar treatment as for e)
- Output: Epipole e and e'

