5. Stereo

Computer Vision

Zoltan Kato

http://www.inf.u-szeged.hu/~kato/

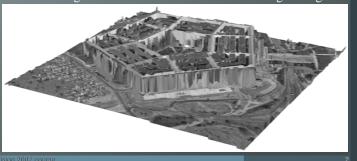
Coltan Kato: Computer Vision

Binocular Stereo

- A way of getting depth (3D) information about a scene from two 2D views (images) of the scene
- Used by humans
- Computational stereo vision
 - Programming machines to do stereo vision
 - Studied extensively in the past 25 years
 - Difficult; still being researched

Left Image

Right Image



Zoltan Kato: Computer Vision

Three geometric questions

- Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point x' in the second image?
- Camera geometry (motion): Given a set of corresponding image points {x_i ↔ x'_i}, i=1,...,n, what are the camera matrixes P and P' for the two views?
- Scene geometry (structure): Given corresponding image points x₁ → x¹₁ and cameras P, P', what is the position of (their pre-image) x in space?

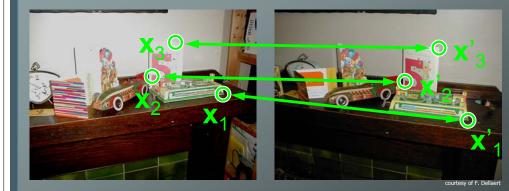
Coltan Kato: Computer Vision

Mapping Points between Images

- What is the relationship between the images
 x, x' of the scene point X in two views?
- Intuitively, it depends on:
 - The rigid transformation (motion) between cameras (derivable from the camera matrices P, P')
 - The scene structure (i.e., the depth of X)
 - Parallax: Closer points appear to move more

olian Kato: Computer Vision

Example: Two-View Geometry



Is there a transformation relating the points **X** to **X**?

Slides adopted from

CS 395/495-26: Spring 2004 **IBMR**: **2-D Projective Geometry** --Introduction--

> **Jack Tumblin** jet@cs.northwestern.edu

2-D Homogeneous Coordinates

WHAT?! Why x₃? Why 'default' value of 1?

- Look at lines in R²:
 - 'line' == all (x,y) points where ax + by + c = 0
 - scale by 'k' $\rightarrow \rightarrow$ no change: kax + kby + kc = 0
- Using 'x₃' for points **UNIFIES** notation:
 - line is a 3-vector named I

x₁ x₂

- now point (x,y) is a 3-vector too, named x

ax + by + c = 0

$$\begin{bmatrix} x_3 \\ b \end{bmatrix} = \mathbf{0}$$

 $x^{T.} = 0$

2D Homogeneous Coordinates

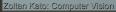
Important Properties 1 (see book for details)

- 3 coordinates, but only 2 degrees of freedom (only 2 ratios (x_1 / x_3) , (x_2 / x_3) can change)
- **DUALITY**: points, lines are interchangeable
 - Line Intersections = point: $\mathbf{l_1} \times \mathbf{l_2} = \mathbf{x}$

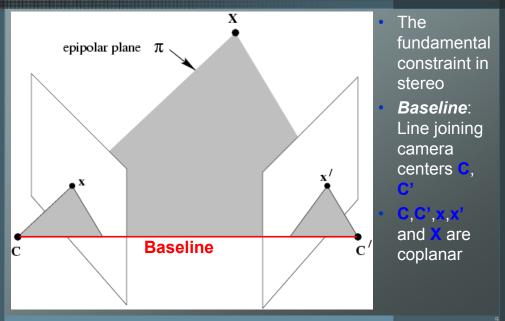
(a 3D cross-product)

- Point 'Intersections' = line: $\mathbf{x_1} \times \mathbf{x_2} = \mathbf{I}$
- Projective theorem for lines $\leftarrow \rightarrow$ theorem for points!

C



Epipolar geometry

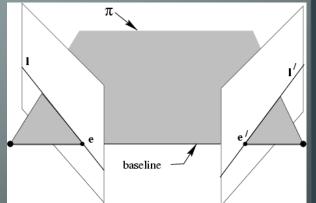


Zoltan Kato: Computer Vision

Epipolar lines

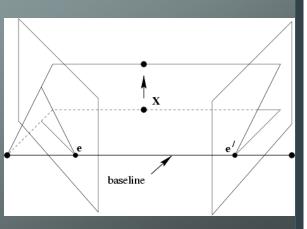
Epipolar lines I, I':

- Intersection of epipolar plane m with image planes
- The image in one view of the other camera's projection ray.
- Epipoles e, e':
 - Where baseline intersects image planes
 - The image in one view of the other camera center.
 - Intersection of the epipolar lines
 - Vanishing point of camera motion direction



Epipolar pencil

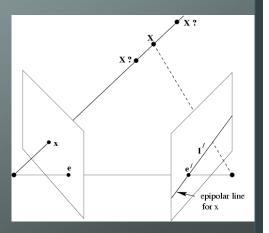
- As position of X varies, epipolar planes "rotate" about the baseline
 - This set of planes is called the <u>epipolar</u> <u>pencil</u>
- Epipolar lines "radiate" from epipole—this is the <u>pencil of epipolar</u> <u>lines</u>



oltan Kato: Computer Vision

Epipolar constraint

- Camera center C and image point x define a ray in 3D space that projects to the epipolar line I' in the other view (since it's on the epipolar plane)
- 3D point X is on this ray → image of X in other view x' must be on I'.
- In other words, the epipolar geometry defines a mapping x → l' of points in one image to lines in the other

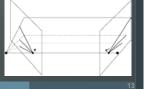


Zoltan Kato: Computer Vision

Example: Epipolar Lines for Converging Cameras

Left view

- Intersection of epipolar lines = Epipole !
- Indicates location of other camera center



Zoltan Kato: Computer Vision

Example: Epipolar Lines for Translating Cameras

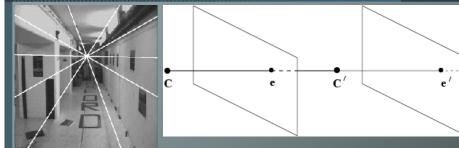
oltan Kato: Computer Vision

Special case: aligned image planes

Right view

- epipolar lines are parallel
- epipolar lines correspond to rows in the image
- epipoles in both images are at infinity along the x axis.

Special Case: Translation along Optical Axis



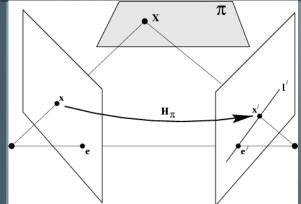
- Epipoles coincide at focus of expansion
- Not the same (in general) as vanishing point of scene lines



The Fundamental Matrix ()

- Mapping a point in one image to epipolar line in other image x → l' is expressed algebraically by the <u>Fundamental Matrix</u> F
- Write this as l'=Fx
- F is
 - 3 x 3
 - rank 2 (not invertible, in contrast to homographies)
 - 7 DOF (homogeneity and rank constraint -2 DOF)

Fundamental Matrix

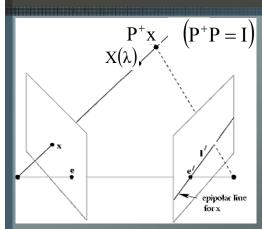


 $x' = H_{\pi}x$ $l' = e' \times x'$ $= [e']_{\times} H_{\pi}x = Fx$

Geometric derivation:

- F is a mapping from 2D (plane) to 1D (line) family
 - → F is 3X3 but rank 2

Fundamental Matrix



$$X(\lambda) = P^{+}x + \lambda C$$
$$l = \underbrace{P'C}_{e'} \times \underbrace{P'P^{+}x}_{x'}$$
$$F = [e']_{\times} P'P^{+}$$

Algebraic derivation:

• Doesn't work for $C=C' \rightarrow F=0$

Zoltan Kato: Computer Vision

Fundamental Matrix

$$F = [e']_{\times}P'P' \text{ But what's this? A NEW TRICK:}$$

• Cross Product written as matrix multiply (Zisseman pg. 554)

$$a \times b = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_1 \\ x \end{bmatrix} \times b$$

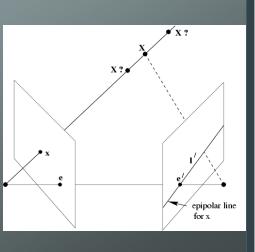
• So write: $a \times b = -b \times a = [a]_{\times}b = (a^{T} \cdot [b]_{\times})^{T}$

Zoltan Kato: Computer Vision

Correspondence condition &

- Since **x**' is on **I**', by the point-on-line definition we know that x'T'=0
- Combined with **I'=Fx**, we can thus relate corresponding points in the camera pair (P,P') to each other by $\mathbf{x'}^{\mathrm{T}} \mathbf{F} \mathbf{x} = \mathbf{0}$

- satisfies the above condition for any pair of corresponding points $\mathbf{x} \leftrightarrow \mathbf{x}'$ in the two images
- The fundamental matrix of (P',P) is the transpose



oltan Kato: Computer Visior

Fundamental matrix summary

- F is the unique 3X3 rank 2 matrix that satisfies $\mathbf{x'}^{\mathsf{T}}\mathbf{F}\mathbf{x}=\mathbf{0}$ for all $\mathbf{x}\leftrightarrow\mathbf{x'}$
 - 1. <u>Transpose</u>: if **F** is fundamental matrix for (**P**,**P**'), then **F^T** is fundamental matrix for (**P'**,**P**)
 - Epipolar lines: l'=Fx & I=F^Tx⁴ 2.
 - 3. Epipoles: on all epipolar lines, $\rightarrow \forall x: e^{T}Fx=0$, \rightarrow e'^TF=0. similarly Fe=0
 - 4. F has 7 DOF, i.e. 3X3 1(homogeneous) -1(rank2)
 - 5. **F** is a correlation, projective mapping from a point **x** to a line **I'=Fx** (not a proper correlation, i.e. not invertible)
 - 6. **F** is unaffected by any proj. transforms done on **BOTH** cameras
 - (PH, P'H) has same F matrix as (P, P') for any full-rank
 - → F measures camera P vs. Camera P only, no matter where vou put them

The Essential Matrix

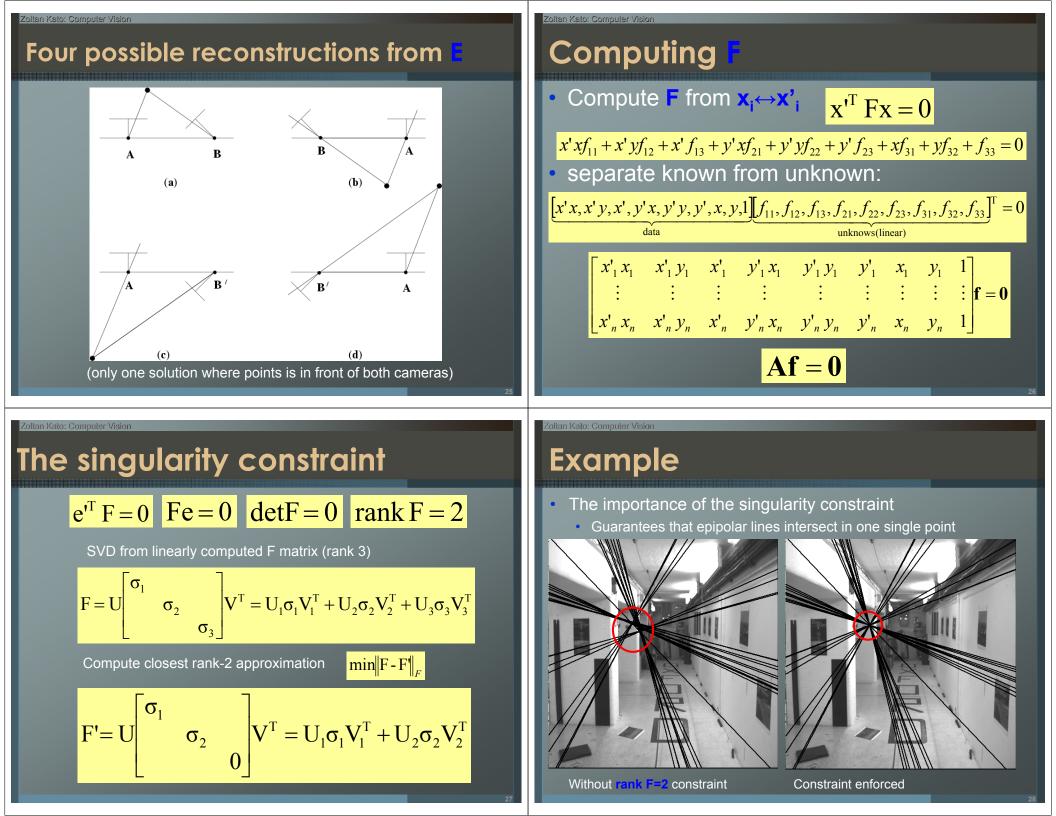
- If the calibration matrix K is known
 - → x=K⁻¹x=[R|t]X normalized coordinates
 - → K⁻¹P=[R|t] normalized camera matrix
- Consider a pair of normalized cameras **P=[10]** and **P'=[R|t]**.
 - The Fundamental matrix correspondig to them is called the Essential Matrix E=[t],R=R[R^Tt],

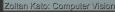
 $\mathbf{E} = \mathbf{K'}^{\mathsf{T}} \mathbf{F} \mathbf{K}$

- It is defined by x'TEx=0
- Relationship between **E** and **F**:

Properties of Essential Matrix

- Has 5 DOF (3 for R and 2 for t up to scale)
 - First two singular values are equal
 - The third is 0
 - E=Udiag(1,1,0)V^T
- Allows computation of camera matrices P, P
 - up to a scale and
 - a four-fold ambiguity





How many correspondences?

• When A has rank 8

- → possible to solve for f up to scale
- → need 8 point correspondences
- When A has rank > 8
 - Use LSE:
 - Minimize ||Af|| subject to ||f||=1 (SVD)
 - At least 8 point correspondences
- However F has 7 DOF
 - rank A = 7 is still OK
 - → possible to solve with 7 point correspondences
 - AND by making use of the singularity constraint

tan Kato: Computer Vision

 $\mathbf{A}\mathbf{f} = \mathbf{0}$

7 point correspondences

• one parameter family of solutions

• The solution is a 2D space:

 $\mathbf{F} = \mathbf{F}_1 + \lambda \mathbf{F}_2$ $\mathbf{Af} = \mathbf{0}$

 $\begin{vmatrix} y'_{1} & x_{1} & y_{1} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ y'_{7} & x_{7} & y_{7} & 1 \end{vmatrix} \mathbf{f} = \mathbf{0}$

not automatically rank 2

 $A = U_{7x7} diag(\sigma_1, ..., \sigma_7, 0, 0) V_{9x9}^{T} \implies A[V_8 V_9] = 0_{9x2}$

$$\mathbf{x}_{i}^{\mathrm{T}}(\mathbf{F}_{1} + \lambda \mathbf{F}_{2})\mathbf{x}_{i} = 0, \forall i = 1...7$$

Coltan Kato: Computer Visio

7 point correspondences

 $\det(F_1 + \lambda F_2) = a_3 \lambda^3 + a_2 \lambda^2 + a_1 \lambda + a_0 = 0$

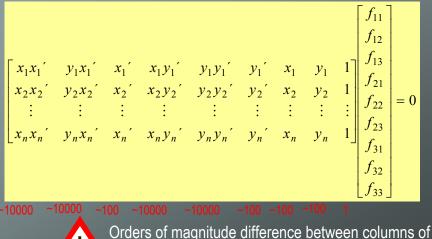
 $det(F_1 + \lambda F_2) = det F_2 det(F_2^{-1}F_1 + \lambda I) = 0$

Compute λ as eigenvalues of F₂ ¹F₄
 only real solutions are potential solutions

Zoltan Kato: Computer Vision

8 point correspondences

- LSE solution
 - 8 equations but usually rank A = 9 in case of real (noisy) data



data matrix -> LSE yields poor results

