

Computer Vision

Zoltan Kato

Visual motion (=video)

Terminology

- Scene flow: 3-D velocities of scene points: Derivative of rigid transformation between views with respect to time
- Motion field: 2-D projection of scene flow
- Optical flow: Approximation of motion field derived from apparent motion of image points

Motion Analysis Problems

- Correspondence: Which elements of a frame correspond to which elements in the next frame?
- Reconstruction :Given a number of correspondences, and possibly the knowledge of the camera's intrinsic parameters, how to recovery the 3D motion and structure of the observed world
- Other problems:
- Motion Segmentation: what are the regions the the image plane corresponding to different moving objects?
- Motion Understanding: lip reading, gesture, expression, event...
- Main Difference between Motion and Stereo
- Correspondence: the disparities between consecutive frames are much smaller due to dense temporal sampling
- Reconstruction: the visual motion could be caused by multiple motions (instead of a single 3D rigid transformation)

The Motion Field of Rigid Objects

- Motion:
- 3D Motion (R,T):
- camera motion (static scene)
- or scene (object) motion
- Only one rigid, relative motion between the camera and the scene (object)
- Image motion field:
- 2D vector field of velocities of the image points induced by the relative motion.
- Data: Image sequence
- Many frames
- captured at time $t=0,1,2, \ldots$
- Basics: only consider two consecutive frames
- We consider a reference frame and its consecutive frame
- Image motion field
- can be viewed disparity map of the two frames captured at two consecutive camera locations (assuming we have a moving camera)

The Information from Image Motion

Motion Field (MF)

- MF assigns a velocity vector to each pixel in the image.
- These velocities are Induced by the RELATIVE motion between the camera and the 3D scene
- MF can be thought as the projection of the 3D velocities on the image plane.

- Structure from Motion

- Apparent motion is a strong visual clue for 3D reconstruction - 3D motion between observer and scene + structure of the scene
- Wallach O'Connell (1953): Kinetic depth effect
- Motion parallax: two static points close by in the image with different image motion; the larger translational motion corresponds to the point closer by (smaller depth)
- Recognition by motion only
- Biological visual systems use visual motion to infer properties of 3D world with little a priori knowledge of it.
- Johansson (1975): Light bulbs on joints
http://www.biols.susx.ac.uk/home/George Mather/Motion/index.html
- Visual Motion = Video !
- Surveillance (Human Tracking and Traffic Monitoring)
- Video Coding and Compression: MPEG 1, 2, 4, 7 ..
- HCl using Human Gesture (video camera)

Examples of Motion Fields I

(a)

(b)
(a) Motion field of a pilot looking straight ahead while approaching a fixed point on a landing strip.
(b) Pilot is looking to the right in level flight.

Examples of Motion Fields II

(a) Translation perpendicular to a surface.
(b) Rotation about axis perpendicular to image plane.
(c) Translation parallel to a surface at a constant distance.
(d) Translation parallel to an obstacle in front of a more distant background.

(c)

The Motion Field of Rigid Objects

- Notations

- $P=(X, Y, Z)^{\top}: 3-D$ point in the camera reference frame
- $p=(x, y, f)^{\top}$: the projection of the scene point in the pinhole camera
- Relative motion between P and the camera
- $T=\left(T_{x}, T_{y}, T_{z}\right)^{T}$: translation component of the motion $\omega=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)^{\mathrm{T}}$: the angular velocity
- How to connect this with stereo geometry (with R, T)?
- Image velocity v= ?

The Motion Field of Rigid Objects

- Notations
- $P=(X, Y, Z)^{\top}$: 3-D point in the camera reference frame
- $p=(x, y, f)^{\top}$: the projection of the scene point in the pinhole camera
- Relative motion between P and the camera
- $\mathrm{T}=\left(\mathrm{T}_{x} \mathrm{~T}_{y} \mathrm{~T}_{2}\right)^{\top}$. translation component of the motion $\omega=\left(\omega_{x,} \omega_{y}, \omega_{z}\right)^{\mathrm{T}}$: the angular velocity
- How to connect this with stereo geometry (with R, T)?

$\cos \beta \cos \gamma$
$\mathbf{R}=\sin \alpha \sin \beta \cos \gamma+\cos \alpha \sin \gamma$
$-\cos \alpha \sin \beta \cos \gamma+\sin \alpha \sin \gamma$

Translational flow field ($\omega=0$)

$\mathbf{p}_{\mathrm{o}}=\left(x_{0}, y_{0}\right)=\left(\frac{T_{x}}{T_{z}} \cdot f, \frac{T_{y}}{T_{z}} \cdot f\right)$
$T_{z} \neq 0: \quad u_{\mathrm{tr}}=\left(x-x_{0}\right) \frac{T_{z}}{Z}, \quad v_{\mathrm{tr}}=\left(y-y_{0}\right) \frac{T_{z}}{Z}$
$T_{z}=0: \quad u_{\mathrm{tr}}=-f \frac{T_{x}}{Z}, \quad v_{\mathrm{tr}}=-f \frac{T_{y}}{Z}$

- Where p_{0} is the
- focus of expansion (FOE) if $\mathrm{T}_{\mathrm{z}}<0$
- focus of concentration (FOC) if $\mathrm{T}_{\mathrm{z}}>0$

- When $\mathrm{T}_{\mathrm{z}}=0 \rightarrow$ All motion field vectors are parallel to each other and inversely proportional to depth !

Translational flow field ($\omega=0$)

- Pure Translation ($\omega=0$)
- Radial Motion Field ($\mathbf{T}_{\mathbf{z}} \neq \mathbf{0}$)
- Vanishing point $\mathbf{p}_{0}=\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)^{\top}$. - motion direction
- FOE (focus of expansion)
- Vectors away from p0 if $\mathrm{T}_{\mathbf{z}}<0$
- FOC (focus of contraction)
- Vectors towards p0 if $\mathrm{T}_{\mathrm{z}}>0$
- Depth estimation
depth inversely proportional to magnitude of motion vector v , and also proportional to distance from p p_{0}
- Parallel Motion Field ($\mathrm{T}_{\mathrm{z}}=0$)
- Depth estimation:
- depth inversely proportional to magnitude of motion vector v

Pure Translation: Properties of the MF

- p_{0} (FOE) is
- the vanishing point of the direction of translation.
- the intersection of the ray parallel to the translation vector and the image plane.
- $\mathrm{T}_{\mathrm{z}}=0 \rightarrow$
- MF is PARALLEL.
- length of the MF vectors is inversely proportional to depth Z.
- $\mathrm{T}_{\mathrm{z}} \neq 0 \rightarrow$
- MF is RADIAL with all vectors pointing towards (or away from) a single point p_{0}.
- length of the MF vectors is inversely proportional to depth Z.
- length is also directly proportional to the distance between p and p_{0}.

Rotational flow field (T=0)

- AOR is the point where the rotation axis pierces the image plane.
- rotational flow field is quadratic in image coordinates.

Rotational flow field ($\mathrm{T}=0$)

Moving Plane

- Pure Rotation ($\mathbf{T}=\mathbf{0}$)
- Does not carry 3D information
- Motion Field (approximation)

- Small motion
- A quadratic polynomial in image coordinates $(\mathbf{x}, \mathbf{y}, \mathbf{f})^{\top}$
- Image Transformation between two frames (accurate)
- Motion can be large
- Homography (3×3 matrix) for all points
- Image mosaicing from a rotating camera
- 360 degree panorama

Motion Parallax: 1. Relative MF

Motion Parallax: 1. Relative MF

- At instant t , three pairs of points happen to be coincident
- The difference of the motion vectors of each pair cancels the rotational components
- ... and the relative motion field points in (towards or away from) the VP of the translational direction

$\mathbf{u}=(u, v)=\mathbf{u}_{t r}+\mathbf{u}_{\text {rot }}$
At points p_{1} and $\mathrm{p}_{2}=(x, y)$ we have
$\mathbf{u}_{1},_{\text {rot }}=\mathbf{u}_{2},_{\text {rot }}$
$\Delta u_{t r}=u_{1, t r}-u_{2, t r}=\left(x-x_{o}\right)\left(\frac{1}{Z_{1}}-\frac{1}{Z_{2}}\right)$
$\Delta v_{t r}=v_{1, t r}-v_{2, t r}=\left(y-y_{o}\right)\left(\frac{1}{Z_{1}}-\frac{1}{Z_{2}}\right)$
$\frac{\Delta v}{\Delta u}=\frac{y-y_{0}}{x-x_{0}}$
- Vector component perpendicular to translational component is only due to rotation
- rotation can be estimated from it.

$$
\mathbf{u}^{\perp}{ }_{t r}=\frac{\left(y-y_{0}, x-x_{0}\right)}{\left\|\left(y-y_{0}, x-x_{0}\right)\right\|}
$$

$\mathbf{u} \cdot \mathbf{u}^{\perp}{ }_{t r}=\frac{1}{\left\|\left(y-y_{0}, x-x_{0}\right)\right\|}\left(y-y_{0}\right) u_{r o t}-\left(x-x_{0}\right) v_{r o t}$

Motion Parallax: 2. Rotation Compensation

- Question: how to remove rotation?
- Rotation compensation can be done by image warping after finding three (3) pairs of coincident points
- After compensation, MF
- only includes the translation component
- points towards (away from) the vanishing point \mathbf{p}_{0} (the instantaneous epipole)
- the length of each motion vector is inversely proportional to the depth,
- and also proportional to the distance from point \mathbf{p} to the vanishing point p_{0} of the translation direction (if $\mathrm{T}_{\mathrm{z}} \neq 0$)

Motion Estimation Techniques

- Prazdny (1981), Burger Bhanu (1990), Nelson Aloimonos (1988), Heeger Jepson (1992):
- Decomposition of flow field into translational and rotational components.
- Translational flow field is radial (all vectors are emanating from (or pouring into) one point),
- rotational flow field is quadratic in image coordinates.
- Either search in the space of rotations: remainig flow field should be translational.
- Translational flow field is evaluated by minimizing deviation from radial field:

$$
(-v, u) \cdot\left(x-x_{0}, y-y_{0}\right)=0
$$

- Or search in the space of directions of translation:
- Vectors perpendicular to translation are due to rotation only

