Mohon Field and Optical Flow Field

Motion field: projection of 3D motion vectors on image plane
Optical flow field: apparent motion of brightness patterns
In practice, we equate motion field with optical flow field

Computer Vision

Object point F, has velocity v,,, induces v, in image
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Optlcal Flow Vs. Motion Field

Optical flow does not always correspond to motion field

(a) A smooth sphere is rotating under constant illumination. Thus the

optical flow field is zero, but the motion field is not (no visible brightness
change)

Optical flow is an approximation of the motion field. The error
is small at points with high spatial gradient under some
simplifying assumptions

(b) A fixed sphere is illuminated by a moving source = the shading of the
image changes. Thus the motion field is zero, but the optical flow field is
not (brightness change due to other factors than motion).




What is Meant by Apparent Motion of Brightness
Pattern?

The apparent motion of brightness patterns is an
awkward concept.
It is not easy to decide which point P' on a contour C' of
constant brightness in the second image corresponds to a
particular point P on the corresponding contour C in the
first image.

The Ap_erture Problem

Only the flow component perpendicular to the line
feature can be computed.

Aperture Problem

(a)
(a) Line feature observed through a small aperture at time .

(b) Attime the feature has moved to a new position. It is not possible to
determine exactly where each point has moved. From local image
measurements only the flow component perpendicular to the line feature
can be computed.

Normal flow: Component of flow perpendicular to line feature.

Image Brightness Constancy Equation (IBCE)

Let be a moving pointin 3D:
Attime , has coords
Let be the coords. of its image at time

Let be the brightness of attime .

Brightness Constancy Assumption:

As moves over time, remains
constant.
Issues:

Lighting may change

Objects may reflect differently at different angles




Brightness Constancy Equation
E(x(t),y(t),t) = Constant

Taking derivative wrt time:
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Brightness Constancy Equation

(Frame spatial gradient)

(optical flow)

(derivative across frames)

Brightness Constancy Equation
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Becomes:

(VE) w4+ E; =0

Also known as the Horn and P
Schunck optical flow equation -E/|VE|
Relation of the apparent motion

with the spatial and temporal

derivatives of the image brightness

The OF is CONSTRAINED to be on a line !

Values of satisfying
the constraint equation
lie on a straight line in
velocity space.

A local measurement
only provides this
constraint line (aperture
problem).

Normal flow v,
(Ex’Ey)° (M,V) = _Er




Estimating Optical Flow

Differential techniques: based on spatial &
temporal variations of the image at all pixels

Matching (feature-based) techniques: rely
on special image points (features) and track
them through frames

__Est_imq__’ring Optical Flow

Constant Flow Method

Assumption: the motion field is well approximated by a constant
vector within any small region of the image plane

Solution: Least square of two variables from NxN Equations
— NxN (=5x5) planar patch

Condition: is NOT singular (null or parallel gradients)

Weighted Least Square Method

Assumption: the motion field is approximated by a constant vector
within any small region, and the error made by the approximation
increases with the distance from the center where optical flow is
to be computed

Solution: Weighted least square of two variables from NxN
Equations — NxN patch

Assuming a Motion Model (eg. Affine Flow)

Assumption: the motion field is well approximated by a affine
parametric model (a plane patch with arbitrary
orientation)

Solution: Least square of 6 variables from NxN Equations —

NxN planar patch

Spatial Motion Models

Assume a parametric model of the image
velocities

Translational model:
Affine model:

Projective model, ....

Temporal Motion Model

Linear trajectory (2-parameter) models:

assume a constant velocity
interval :

at the time

: displacement vector

Quadratic trajectory (4-parameter) models:
account for acceleration:

is the acceleration component




__M_o’ri_qn Models

Region of support
The set of points : to which a spatial and temporal motion model
applies.
smaller regions =» better approximations
Whole image
Single pixel
Rectangular block of pixels (H.26x, MPEG-1 and 2)
Irregularly shaped region (MPEG-4) — requires a good segmentation

._Q_lb_sl_e_lryq’rion Models

Along motion trajectory
Motion constraint equation:

Motion compensated error measure:

is the motion-compensated
prediction of

is known changes in image brightness

Differential Techniques

For each pixel , must satisfy IBCE:

Additional constraints:

IBCE holds in the neighborhood of with constant
Write this equation for a small (typically 5x5) patch centered at

Then we find the LSE fit of = =» this is the calculated optical
flow at pixel
In case of rigid motion, the motion field of a moving
plane is a quadratic polynomial in the coordinates
of the image points.

Therefore, if the object is smooth & rigid, we can assume the
motion field varies smoothly

Constant flow assumption

N=5 = 25 equations:
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Solve as a standard LSE problem:
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__What is ?

It is the matrlx for corner detection (Harris):

Singular when
=>» one or both eigenvalues are 0
=>» aperture problem:
One is 0 = no corner, just an edge
Both are 0 =» no corner, homogeneous region
Additional constraints are needed in order to
regularize the problem.

Differential Techniques: Horn-Schunck Algorithm

Optical flow constraint equation gives the
component in direction of brightness gradient :

Additional Constraint: smoothness of optical flow

Neighboring surface points of a rigid object have
approximately same local displacement vectors

Horn-Schunck Algorithm

Two criteria:
Optical flow is smooth:

Small error in optical flow constraint equation:

F,(u,v)= ”(Exu+Eyv+Et)2dxdy
D

Minimize a combined error functional:

F(u,v)= ”(VE V+E V) +4 ‘Vu”zz 1 HVVH22 dx dy — min

iIs a weighting parameter

Horn-Schunck Algorithm

Variation calculus gives a pair of second order
differential equations that can be solved
iteratively

Derivatives (and error functionals) are
approximated by difference operators:
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u,v 1s the average of values of neighbors




Iterative Scheme

The new value of at a point is equal to the
average of surrounding values minus an adjustment
in the direction of the brightness gradient

Constraint line

Horn-Schunck Algorithm

begin
forj;:=1toNdo for/=1toMdo begin
calculate the values E,(i,j,t), Ey(i,j,t) and E(i,j,t) using a selected approx formula
initialize the values u(l,j) and v(i,j) to zero
end {for}
choose a suitable weighting value A
choose a suitable number n, > 1 of iterations
n:=1
while n < n, do begin
forj:=1toNdo fori:=1toMdo begin
compute u, v, a
update u(i,j), v(i,j)
end {for}
n:=n+1

end {while}

What about larger motions?
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Is this motion small enough?
Probably not—it's much larger than one pixel (2" order terms
dominate)

How might we solve this problem?

Reduce the resolution!




Coarse-to-fine optical flow estimation
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Coarse-to-fine optical flow estimation
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Optical Flow Examples
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