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Motion Field and Optical Flow Field
• Motion field: projection of 3D motion vectors on image plane
• Optical flow field: apparent motion of brightness patterns
• In practice, we equate motion field with optical flow field
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Optical Flow Vs. Motion Field
• Optical flow does not always correspond to motion field

• Optical flow is an approximation of the motion field. The error 
is small at points with high spatial gradient under some 
simplifying assumptions
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When Optical Flow≠Motion Field

(a)                           (b)
(a) A smooth sphere is rotating under constant illumination. Thus the 

optical flow field is zero, but the motion field is not (no visible brightness 
change)

(b) A fixed sphere is illuminated by a moving source the shading of the 
image changes. Thus the motion field is zero, but the optical flow field is 
not (brightness change due to other factors than motion).
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What is Meant by Apparent Motion of Brightness 
Pattern?

• The apparent motion of brightness patterns is an 
awkward concept. 
• It is not easy to decide which point P' on a contour C' of 

constant brightness in the second image corresponds to a 
particular point P on the corresponding contour C in the 
first image.
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The Aperture Problem

• Only the flow component perpendicular to the line 
feature can be computed.
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Aperture Problem

(a) Line feature observed through a small aperture at time t.
(b) At time t+δt the feature has moved to a new position. It is not possible to 

determine exactly where each point has moved. From local image 
measurements only the flow component perpendicular to the line feature 
can be computed.

Normal flow: Component of flow perpendicular to line feature.

(a) (b)
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Image Brightness Constancy Equation (IBCE)

• Let P be a moving point in 3D:
• At time t, P has coords (X(t),Y(t),Z(t))
• Let p=(x(t),y(t)) be the coords. of its image at time 

t.
• Let E(x(t),y(t),t) be the brightness of p at time t.

• Brightness Constancy Assumption:
• As P moves over time, E(x(t),y(t),t) remains 

constant.
• Issues:

• Lighting may change
• Objects may reflect differently at different angles
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Taking derivative wrt time:

Brightness Constancy Equation
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Let
(Frame spatial gradient)

(optical flow)

and (derivative across frames)

Brightness Constancy Equation
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Brightness Constancy Equation

• Also known as the Horn and 
Schunck optical flow equation

• Relation of the apparent motion 
with the spatial and temporal 
derivatives of the image brightness

Becomes:
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Interpretation
• Values of (u,v) satisfying 

the constraint equation 
lie on a straight line in 
velocity space. 

• A local measurement 
only provides this 
constraint line (aperture 
problem).
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• Differential techniques: based on spatial & 
temporal variations of the image at all pixels

• Matching (feature-based) techniques: rely 
on special image points (features) and track 
them through frames

Estimating Optical Flow
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Estimating Optical Flow
• Constant Flow Method

• Assumption: the motion field is well approximated by a constant 
vector within any small region of the image plane

• Solution: Least square of two variables (u,v) from NxN Equations 
– NxN (=5x5) planar patch

• Condition: ATA is NOT singular (null or parallel gradients)

• Weighted Least Square Method
• Assumption: the motion field is approximated by a constant vector 

within any small region, and the error made by the approximation
increases with the distance from the center where optical flow is 
to be computed

• Solution: Weighted least square of two variables (u,v) from NxN
Equations – NxN patch

• Assuming a Motion Model (eg. Affine Flow)
• Assumption: the motion field is well approximated by a affine 

parametric model  vT = ApT+b (a plane patch with arbitrary 
orientation)

• Solution: Least square of 6 variables (A,b) from NxN Equations –
NxN planar patch
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Spatial Motion Models
• Assume a parametric model of the image 

velocities v=(u,v):
• Translational model: v(p)=(a1,a2)T

• Affine model: 

• Projective model, ....
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Temporal Motion Model
• Linear trajectory (2-parameter) models: 

• assume a constant velocity vt(p) at the time 
interval (t,T); T>t:

• p(T) = p(t) + vt(p)(T-t) = p(t) + d(t,T(p))
• d(t,T(p)): displacement vector

• Quadratic trajectory (4-parameter) models:
• account for acceleration:

• p(T) = p(t) + vt(p)(T-t) + 0.5 at(p)(T-t)2

• a=(a1,a2)T is the acceleration component
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Motion Models
• Region of support R:

• The set of points p to which a spatial and temporal motion model 
applies. 

• smaller regions better approximations
• Whole image
• Single pixel
• Rectangular block of pixels (H.26x, MPEG-1 and 2)
• Irregularly shaped region (MPEG-4) –- requires a good segmentation
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Observation Models
• Et(p) = Et-1(p-d) + q(p)
• Along motion trajectory s: dE/ds=0
• Motion constraint equation:

• Motion compensated error measure: Et(p)-E*t(p)
• E*t(p) = Et-1(p-d)+q(p) is the motion-compensated 

prediction of Et(p).
• q(p) is known changes in image brightness
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Differential Techniques
• For each pixel p, must satisfy IBCE: 

(∇E)v+Et=0
• Additional constraints: 

• IBCE holds in the neighborhood of p with constant v
• Write this equation for a small (typically 5x5) patch centered at 

p
• Then we find the LSE fit of v this is the calculated optical 

flow at pixel p
• In case of rigid motion, the motion field of a moving 

plane is a quadratic polynomial in the coordinates 
(x,y,f) of the image points.

• Therefore, if the object is smooth & rigid, we can assume the 
motion field varies smoothly
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Constant flow assumption
• N=5 25 equations:

• Solve as a standard LSE problem:
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What is (ATA)?
• It is the matrix for corner detection (Harris):

• Singular when det(ATA)=λ1λ2=0
• one or both eigenvalues are 0
• aperture problem:

• One is 0 no corner, just an edge
• Both are 0 no corner, homogeneous region

• Additional constraints are needed in order to 
regularize the problem.
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Differential Techniques: Horn-Schunck Algorithm

• Optical flow constraint equation gives the 
component in direction of brightness gradient :

• Additional Constraint: smoothness of optical flow 
• Neighboring surface points of a rigid object have 

approximately same local displacement vectors
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Horn-Schunck Algorithm
• Two criteria:

• Optical flow is smooth:

• Small error in optical flow constraint equation:

• Minimize a combined error functional:

λ is a weighting parameter
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• Variation calculus gives a pair of second order 
differential equations that can be solved 
iteratively
• Derivatives (and error functionals) are 

approximated by difference operators:

Horn-Schunck Algorithm
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u

v (Ex,Ey)

Constraint line (u,v)

),( vu

Iterative Scheme
• The new value of (u,v) at a point is equal to the 

average of surrounding values minus an adjustment 
in the direction of the brightness gradient
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Horn-Schunck Algorithm
begin

for j := 1 to N do for I:= 1 to M do begin

calculate the values Ex(i,j,t), Ey(i,j,t) and Et(i,j,t) using a selected approx formula

initialize the values u(I,j) and v(i,j) to zero

end {for}

choose a suitable weighting value λ

choose a suitable number n0 ≥ 1 of iterations

n := 1

while n ≤ n0 do begin

for j := 1 to N do for i := 1 to M do begin

compute u, v, α

update u(i,j), v(i,j)

end {for}

n := n + 1

end {while}

end
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What about larger motions?

• Is this motion small enough?
• Probably not—it’s much larger than one pixel (2nd order terms 

dominate)
• How might we solve this problem?
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Reduce the resolution!
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image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

OF computation

OF computation

warp & upsample
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Optical Flow Examples


