
DIFFERENCE – HUFFMAN CODING OF

MULTIDIMENSIONAL DATABASES

István Szépkúti

ING Service Centre Budapest Ltd.
H-1068 Budapest, Dózsa György út 84/b, Hungary

e-mail: szepkuti@inf.u-szeged.hu

Received: June 27, 2004

Abstract

A new compression method called difference – Huffman coding (DHC)
is introduced in this paper. It is verified empirically that DHC results in
a smaller multidimensional physical representation than those for other
previously published techniques (single count header compression, logical
position compression, base – offset compression and difference sequence
compression).

The article examines how caching influences the expected retrieval
time of the multidimensional and table representations of relations. A
model is proposed for this, which is then verified with empirical data.
Conclusions are drawn, based on the model and the experiment, about
when one physical representation outperforms another in terms of retrieval
time. Over the tested range of available memory, the performance for the
multidimensional representation was always much quicker than for the ta-
ble representation.

Keywords: compression, multidimensional database, On-line Analytical
Processing, OLAP.

1 Introduction

1.1 Motivation

Why should we seek to compress multidimensional databases? This is the ques-
tion we intend to answer in this subsection.

The total number of cells in a multidimensional database equals the product
of the number of dimension values =

∏n
i=1 |Di|, where Di is the ith dimension

(i = 1, 2, . . . , n) and n is the number of dimensions. This value can be very
large, which may make it impractical or even impossible to store all of these
cells. The multidimensional databases are usually quite sparse. So we can
decrease their size if we get rid of the empty cells. This is the basic idea behind
the compression techniques described in Sections 2 and 3.

1

2 I. SZÉPKÚTI

Now, let us mention why we need increasingly better compression techniques.
If a compression technique A can achieve a lower compression ratio than an
alternative technique B, then more data can be stored into one disk block with A
than with B. This will result in fewer disk I/O operations when the compressed
data are read or written. Firstly, this can be a significant benefit (performance
gain) if we replace B with A. Secondly, A may be more CPU-intensive than
B, which is a cost. The balance of the benefits and costs will probably decide
which method should be preferred to the other. Thus the overall goal is to find
techniques which can produce more benefits than costs.

1.2 Results

The results of this paper can be summarized as follows:

• A new compression technique called difference –Huffman coding is pre-
sented here.

• It is demonstrated, using experiments on benchmark databases (TPC-D
and APB-1), that DHC outperforms other multidimensional compression
methods like single count header compression, logical position compres-
sion, base – offset compression and difference sequence compression (DSC).

• Just like DSC, DHC is generally able to create smaller databases than the
corresponding table representation version compressed with different com-
pression programs. There are only two exceptions – bzip2 and WinRAR
– which are better for the APB-1 benchmark database.

• A model is proposed to analyze the caching effects of the alternative phys-
ical representations. The model is verified by a number of experiments.

• The experiments also demonstrate that DHC is considerably faster than
the table representation when the same amount of memory is available (for
pre-loading some parts of the physical representation and for caching).

1.3 Related Work

In [17], several related articles have already been mentioned: [2, 4, 5, 7, 9, 12,
13, 14, 16, 18, 19, 21, 24]. Hence we will mention here only those that directly
lead to the elaboration of difference – Huffman coding.

The single count header compression (SCHC) was introduced in [2]. A vari-
ation of SCHC was described in [16]. In addition to this variation, the paper
introduced two new compression techniques: logical position compression (LPC)
and base – offset compression (BOC). With LPC, the size of the header can be
decreased by 50% when the size of SCHC header is maximal. BOC is able to
decrease the header still further. In [17], another compression technique called
difference sequence compression was introduced which is able to decrease the
header still further in some circumstances. Table 2 and Table 3 are also from
[16, 17], apart from those lines of the tables that show additional data on DHC.
The single count header compression, logical position compression, base – offset
compression and difference sequence compression are described in more details
in Section 2.

DIFFERENCE–HUFFMAN CODING OF MULTIDIMENSIONAL DATABASES 3

In the literature, several papers deal with compressed databases: For further
details the reader may wish to consult [1, 8, 10, 22, 23].

The paper of Westmann and al. [22] lists more related works in this field.
In addition, this article discusses how compression can be integrated into a re-
lational database system. It does not concern itself with the multidimensional
physical representation, which is the main focus of the paper. Their key result
is that compression can significantly improve the response time of queries if very
light-weight compression techniques are used. Their benchmark results demon-
strate that compression indeed offers high performance gains (up to 50%) for
I/O-intensive queries and moderate gains for CPU-intensive queries. Compres-
sion can, however, also increase the running time of certain update operations.
In this paper we will analyze the retrieval (or point query) operation only, as a
lot of On-line Analytical Processing (OLAP) applications handle the data in a
read only or read mostly way. The database is updated outside working hours
in batch. Despite this difference, we also encountered performance degradation
owing to compression when the entire physical representation was cached into
the memory. In this case, in one of the benchmark databases (TPC-D), the
multidimensional representation became slower than the table one because of
the CPU-intensive Huffman decoding.

Chen et al. [1] propose a Hierarchical Dictionary Encoding for string-valued
attributes. The article discusses query optimization issues for compressed data-
bases. Both of these topics are beyond the scope of our paper.

In the article of O’Connell et al. [10], compressing of the data itself is ana-
lyzed in a database built on a triple store. It is found that, for some applications,
gains in performance of over 50% are attainable, and in OLTP-like1 situations,
there are also gains to be made. This paper deals only with OLAP. We remove
the empty cells from the multidimensional array, but do not compress the data
itself.

Wu et al. [23] present the theoretical analysis of difference coding for sets
and relational tables. The theoretical results were verified with simulations
outlined in that paper. Here we combine difference coding with Huffman coding,
which results in additional improvements of the compression ratio in the tested
benchmark databases.

The normalization of a data cube is the process of choosing an ordering
for the attribute (or dimension) values, and the chosen ordering will affect the
physical storage of the cube’s data. This is the principal theme in the paper by
Kaser et al. [8]. The data cube normalization is outside the scope of our article.

The JPEG compression of still images is a wide-spread practice nowadays.
The coding process consists of six steps: (1) Block preparation, (2) Discrete
cosine transformation, (3) Quantization, (4) Differential quantization, (5) Run-
length coding, (6) Statistical coding of the output. For a detailed description
of this see [18], for instance. Actually, the last (sixth) step is the Huffman
coding of the result produced by the previous one. We also apply two different
compressions (difference and Huffman codings) one after the other in order to
better the compression ratio. However, we here compress the sequence of logical
positions. Hence our method is lossless, unlike JPEG, which can be lossy as well
for example in steps (1) and (3).

When we analyze algorithms, which operate on data on the secondary stor-

1OLTP stands for On-line Transaction Processing.

4 I. SZÉPKÚTI

age, we usually examine how many disk I/O operations are required by the
algorithm. This is because we follow the dominance of the I/O cost rule [3].
During our analysis of the caching effects, we approached the question differ-
ently. Instead of counting the number of disk I/O operations, we introduced two
different constants (Dm and Dt) and determined them with experiments. The
tests showed that Dm ¿ Dt, which means of course that more disk I/O opera-
tions are needed to retrieve one row from the table representation than one cell
from the multidimensional representation when there is no caching. However,
for our model, it was not necessary to know the exact number of I/O operations
for the alternative physical representations.

1.4 Organization

The rest of the paper is organized as follows. Section 2 describes four previously
published compression techniques: single count header compression, logical posi-
tion compression, base – offset compression and difference sequence compression.
Section 3 introduces an improved method, that of difference –Huffman coding.
The effect of caching alternative physical representations is analyzed in Section
4. The theoretical results are then tested in experiments outlined in Section 5.
Section 6 rounds off the discussion with some conclusions and suggestions for
future study. Lastly, for completeness, we have the Acknowledgements and an
appendix section followed by a list of references.

2 Compression Techniques

Throughout this paper we employ the expressions “multidimensional represen-
tation” and “table representation”, which are defined as follows.

Definition. Suppose we wish to represent relation R physically. The mul-
tidimensional (physical) representation of R is as follows:

• A compressed array, which only stores the nonempty cells, one nonempty
cell corresponding to one element of R;

• The header, which is needed for the logical-to-physical position transfor-
mation;

• One array per dimension in order to store the dimension values.

The table (physical) representation consists of the following:

• A table, which stores every element of relation R;

• A B-tree index to speed up the access to given rows of the table when the
entire primary key is given.

¤
The difference – Huffman coding is closely related to single count header com-

pression, logical position compression, base – offset compression and difference
sequence compression. The latter techniques are described in the remaining
part of this section.

DIFFERENCE–HUFFMAN CODING OF MULTIDIMENSIONAL DATABASES 5

Single count header compression. By transforming the multidimensional
array into a one-dimensional array, we obtain a sequence of empty and nonempty
cells:

(E∗F ∗)∗ (1)

In the above regular expression, E is an empty cell and F is a nonempty one.
The single count header compression stores only the nonempty cells and the
cumulated run lengths of empty cells and nonempty cells. In [15], we made
use of a variant of SCHC. The difference between the two methods is that the
original method accumulates the number of empty cells and number of nonempty
cells separately. These accumulated values are placed in a single alternating
sequence. The sum of two consecutive values corresponds to a logical position.
(The logical position is the position of the cell in the multidimensional array
before compression. The physical position is the position of the cell in the
compressed array.) In [15], instead of storing a sequence of values, we chose to
store pairs of a logical position and the number of empty cells up to this logical
position: (Lj , Vj). Just one pair is stored per E∗F ∗ run and Lj points to the
last element of the corresponding run. From here on when we mention SCHC
we only refer to the variant of this compression scheme defined in [15].

Definition. The array storing the (Lj , Vj) pairs of logical positions and
number of empty cells will be called the SCHC header. ¤

The following three compression techniques better SCHC when the SCHC
header is maximal.

Logical position compression. The size of the SCHC header depends on the
number of E∗F ∗ runs. In the worst case there are N = |R| runs, where R is the
relation, which is represented multidimensionally using SCHC. Then the size of
the SCHC header is 2Nι. (We assume that Lj and Vj are of the same data
type and each of them occupies ι bytes of memory.) But then it is better to
build another type of header. Instead of storing the (Lj , Vj) pairs, it is more
convenient to store just the Lj sequence of each cell (that is, not merely the Lj

sequence of runs).
Definition. The compression method, which just uses the sequence of logi-

cal positions, will be called logical position compression (LPC). The Lj sequence
used in logical position compression will be called the LPC header. ¤

The number of E∗F ∗ runs lies between 1 and N = |R|. Let ν denote the
number of runs. Because the size of Lj and Vj is the same, the header is smaller
with a logical position compression if N

2 < ν. Otherwise, if N
2 ≥ ν a logical

position compression does not result in a smaller header than the single count
header compression. The header with a logical position compression is half that
of the SCHC header in the worst case, that is when ν = N .

Base – offset compression. In order to store the entire Lj sequence, we may
need a huge (say 8-byte) integer number. However, the sequence is strictly
increasing:

L0 < L1 < · · · < LN−1. (2)

Here, N denotes the number of elements in the Lj sequence. The difference
sequence, ∆Lj , contains significantly smaller values. Based on this observation,
we may compress the header still further.

Suppose that we need ι bytes to store one element of the Lj sequence. In
addition, there exists a natural number l such that for all k = 0, 1, 2, . . . the

L(k+1)l−1 − Lkl (3)

6 I. SZÉPKÚTI

values may be stored in θ bytes and θ < ι. In this case we can store two
sequences instead of Lj , as it can be seen from the definition below.

Definition. For convenience, let

Bk = Lkl, (4)

Oj = Lj −Bb j
l c, (5)

where k = 0, . . . ,
⌊

N−1
l

⌋
and j = 0, . . . , N − 1. Sequence Bk will be called

the base sequence, and sequence Oj will be called the offset sequence. The
compression method based on these two sequences will be named base – offset
compression (BOC). The base and the offset sequences together will be called
the BOC header. ¤

More details about these three compression techniques can be found in [2,
15, 16, 17].

Difference sequence compression. We will now discuss DSC in more detail
as it forms the basis of DHC.

The main idea behind DSC is that more flexibility is possible when an abso-
lute address is stored, namely – where necessary –, that is the relative address
(offset) might be too large to store on given s bits.

The sequence of logical positions is strictly increasing:

L0 < L1 < · · · < LN−1.

In addition, the difference sequence ∆Lj contains smaller values than the orig-
inal Lj sequence. This property was utilized by base – offset compression and
will be used by the difference sequence compression as well.

During the design of the data structures and the search algorithm, the fol-
lowing principles were used:

• We compress the header such that the decompression is quick.

• It is not necessary to decompress the entire header.

• Searching can be done during decompression, and the decompression stops
immediately when the header element is found or when it is demonstrated
that the header element cannot be found (that is, when the corresponding
cell is empty).

Definition. Let us introduce the following notation.
N is the number of elements in the sequence of logical positions (N > 0);
Lj is the sequence of logical positions (0 ≤ j ≤ N − 1);
∆L0 = L0;
∆Lj = Lj − Lj−1, j = 1, 2, . . . , N − 1;
The Di sequence (Di ∈ {0, 1, . . . , D}, i = 0, 1, . . . , N − 1) is defined as follows:

Di =
{

∆Li, if ∆Li ≤ D and i > 0;
0, otherwise;

(6)

where D = 2s − 1 and s is the size of a Di sequence element in bits.

DIFFERENCE–HUFFMAN CODING OF MULTIDIMENSIONAL DATABASES 7

The Jk sequence will be defined recursively in the following way:

Jk =
{

L0, if k = 0;
Lj , otherwise where j = min{i | ∆Li > D and Li > Jk−1}. (7)

Here the Di sequence is called the overflow difference sequence. There is an
obvious distinction between ∆Li and Di, but the latter will also be called the
difference sequence, if it is not too disturbing. As for Jk it is called the jump
sequence. The compression method which makes use of the Di and Jk sequences
will be called difference sequence compression (DSC). The Di and Jk sequences
together will be called the DSC header. ¤

Notice here that ∆Li and Di are basically the same sequence. The only
difference is that some elements of the original difference sequence ∆Li are
replaced with zeros, if and only if they cannot be stored in s bits.

The difference sequence will also be called the relative logical position se-
quence, and we shall call the jump sequence the absolute logical position se-
quence.

From the definitions of Di and Jk, one can see clearly that, for every zero el-
ement of the Di sequence, there is exactly one corresponding element in the
Jk sequence. For example, let us assume that D0 = D3 = D5 = 0, and
D1, D2, D4, D6, D7, D8 > 0. Then the above mentioned correspondence is shown
in the following table:

D0 D1 D2 D3 D4 D5 D6 D7 D8 . . .
J0 J1 J2 . . .

From the above definition, the recursive formula below follows for Lj .

Lj =
{

Lj−1 + Dj , if Dj > 0;
Jk, otherwise where k = min{i | Ji > Lj−1}. (8)

In other words, every element of the Lj sequence can be calculated by adding
zero or more consecutive elements of the Di sequence to the proper jump se-
quence element. For instance, in the above example

L0 = J0;
L1 = J0 + D1;
L2 = J0 + D1 + D2;
L3 = J1;
L4 = J1 + D4;
and so on.

Now the number of elements in the offset array and the difference array is
just the same, but are there fewer jumps than base array elements? The answer
to this question is that there are no more jumps than base array elements when
the size of one offset array element (θ) is less than or equal to the size of one
difference array element (ζ).

Theorem 1. There are never more jumps than base array elements if θ ≤ ζ.
The proof of this is given in [17].

8 I. SZÉPKÚTI

Corollary. The multidimensional representation with DSC does not result
in a bigger database size than with BOC if θ = ζ.

In order to find a given L quickly (using the DSC header) in the Lj sequence
when the corresponding cell is not empty, we need an Ak sequence of pointers
which is defined as follows.

Definition. For every k, Ak = j, if and only if Jk = Lj . We will refer to
the Ak sequence as the accelerator sequence. ¤

Corollary. Suppose Jk is an element of the jump sequence. Then the
corresponding difference sequence element is DAk

, which equals zero by defini-
tion. Thus the accelerator sequence can be employed to find the corresponding
difference sequence element of a jump quite quickly.

In order to save space we can modify the above definition of Ak and store
only A0, An, A2n, . . . , that is just every nth element of the original accelerator
sequence.

In this case, in the searching algorithm, we have to expect zero difference
sequence elements as well. When a zero comes, we will take the next element
of the jump sequence. However, at the beginning of the algorithm it is quite
sufficient to find L with a binary search among the elements J0, Jn, J2n, . . .
because the accelerator sequence only contains pointers for these jumps.

The accelerator sequence is a useful method for speeding up the retrieval
(point query) operation for the following reasons:

• It is not necessary to store the accelerator sequence on the hard disk since
it can be easily populated based on the difference sequence in one pass.
This is needed only once after the difference array is loaded from the hard
disk into the memory.

• In practice the sequence does not increase the memory requirements sig-
nificantly, as was shown in [17].

A detailed analysis of DSC and the search algorithm are in [17] as well.

3 Difference – Huffman Coding

The key idea in difference – Huffman coding is that we can compress the differ-
ence sequence further if we replace it with its corresponding Huffman code.

Definition. The compression method, which uses the jump sequence (Jk)
and the Huffman code of the difference sequence (Di), will be labelled differ-
ence –Huffman coding (DHC). The Jk sequence and the Huffman code of the
Di sequence together will be called the DHC header. ¤

The difference sequence usually contains a lot of zeros. Moreover, it contains
as many ones too if there are numerous consecutive elements in the Lj sequence
of logical positions. By definition, the elements of the difference sequence are
smaller than those of the logical position sequence. The elements of Dj will
recur with greater or less frequency. Hence it seems reasonable to code the
frequent elements with fewer bits, and the less frequent ones with more. To
do this, the optimal prefix code can be determined by the well-known Huffman
algorithm [6].

In the case of DSC, the accelerator sequence stores those indices that can
be used to access the difference sequence. This is different in DHC, as only

DIFFERENCE–HUFFMAN CODING OF MULTIDIMENSIONAL DATABASES 9

Figure 1: The Huffman code of the difference sequence

the Huffman code of the difference sequence can be found in the memory. In
addition to the accelerator sequence (or array), two more arrays are needed.
These are:

• One array, which stores the pointers to given bytes in the Huffman code
of the difference sequence;

• Another one to store the bit position, where the given element of the
difference sequence ends within the aforementioned byte.2

There is a correspondence between the accelerator and difference sequence
elements of DSC. For instance, see Table 1.

Table 1:

A0 A1 Ak Ak+1 . . .
D0 D1 D2 D3 . . . DAk

DAk+1 . . . DAk+1 . . .

In this example, D0 = D3 = DAk
= DAk+1 = 0, by definition.

The situation is different with DHC, as can be seen in Figure 1. The figure
shows the Huffman code of the difference sequence. Bytek points to the byte
position where the Huffman code of DAk

ends. Similarly, Bitk points to the

2Similarly, we could store the bit position where the Huffman code of the difference sequence
element in question starts. We chose to store the position of the end bit, because it was already
available, when the three arrays were populated with values. No additional calculations were
required; so the populating of the arrays became simpler. This choice also helps when the
next element of the difference sequence is needed, as it starts right after the current one, from
the next bit position.

10 I. SZÉPKÚTI

bit within the byte where the previous code finishes. Right after this bit, the
Huffman code of DAk+1 begins. Calling the Huffman decoder from here, the
value of DAk+1 can be determined.

Remark. Firstly, in DSC, Ak points to the difference sequence element
(DAk

), which corresponds to Jk. Secondly, using the byte and bit positions,
we can decode DAk+1 instead of DAk

in DHC. This change does not cause any
problem as DAk

= 0 by definition.
Applying DSC, we can find a cell in the multidimensional physical represen-

tation with the following procedure.

• Using the DSC header, find the difference sequence element (Dj) for which
the following equation holds.

L = Jk + DAk
+ DAk+1 + DAk+2 + · · ·+ Dj−1 + Dj , (9)

where Jk is a jump and DAk+1, DAk+2, . . . , Dj−1 and Dj are consecutive
positive difference sequence elements. L is the logical position of the cell
we are looking for.

• If such a Dj cannot be found, then the cell is left empty.

• Otherwise j is the physical position corresponding to the logical position
L, and the content of the cell can be found at this physical location in the
compressed multidimensional array.

We cannot do exactly the same if the multidimensional representation is
compressed with DHC. The reason for this is that the Huffman code of the
difference sequence is used instead of the original difference sequence. In this
case, the search algorithm works like this:

• Using the jump sequence, find the largest jump Jk, for which the following
inequality is true:

Jk 5 L, (10)

where L is the logical position of the cell we are seeking. If such a Jk

cannot be found, the cell is left empty.

• Initialize the Huffman decoder with Bytek and Bitk. While the

Jk + DAk+1 + DAk+2 + · · ·+ DAk+` < L (11)

inequality holds and before we reach the end of the difference sequence,
decode the difference sequence elements (DAk+1, DAk+2, . . .) one by one.

• If the end of the difference sequence has been reached or

Jk + DAk+1 + DAk+2 + · · ·+ DAk+` > L, (12)

then the logical position L cannot be found and the cell is left empty.

• Otherwise, if

Jk + DAk+1 + DAk+2 + · · ·+ DAk+` = L, (13)

then we have found the logical position L after adding ` consecutive posi-
tive difference sequence elements to Jk (` = 0, 1, . . .). Hence the physical
position of the cell in the compressed multidimensional array is Ak + `.

DIFFERENCE–HUFFMAN CODING OF MULTIDIMENSIONAL DATABASES 11

Similar to DSC, it is not necessary to store every element of the Ak, Bytek

and Bitk arrays. To save space we can modify the above search algorithm
slightly and store only A0, An, A2n, . . . , Byte0,Byten,Byte2n, . . . and Bit0,Bitn,
Bit2n, . . . , that is just every nth element of the original arrays. This is what
happened in the experiments, where n was equal to 16.

4 Caching

In this section we shall examine how the caching affects the speed of retrieval in
the different physical database representations. For the analysis, a model will
be proposed. Then we will give sufficient and necessary conditions for when the
expected retrieval time is smaller in one representation than in the other.

The caching can speed up the operation of a database management system
significantly if the same block is requested while it is still in the memory. In
order to show how the caching modifies the results of this paper, let us introduce
the following notations.

Definition.

M = The retrieval time, if the information is in the memory.
D = The retrieval time, if the disk also has to be accessed.
p = The probability of having everything needed in the memory.
q = 1− p

ξ = How long it takes to retrieve the requested information.

¤
In our model we shall consider M and D constants. Obviously, ξ is a random

variable. Its expected value can be calculated as follows:

E(ξ) = pM + qD (14)

Notice that D does not tell us how many blocks have to be read from the
disk. This also means that the value of D will be different for the table and
the multidimensional representations. The reason for this is that, in general, at
most one block has to be read with the multidimensional representation. Ex-
actly one reading is necessary if nothing is cached, because only the compressed
multidimensional array is kept on the disk. Everything else (the header, the
dimension values, and so forth) is loaded into the memory in advance. With the
table representation, more block readings may be needed because we also have
to traverse through the B-tree first, and then we have to retrieve the necessary
row from the table.

M is also different for the two alternative physical representations. This is
so because two different algorithms are used to retrieve the same information
from two different physical representations.

Hence, for the above argument, we are going to introduce four constants.

12 I. SZÉPKÚTI

Definition.

Mm = The value of M for the multidimensional representation.
Mt = The value of M for the table representation.
Dm = The value of D for the multidimensional representation.
Dt = The value of D for the table representation.

¤

If we sample the cells/rows with uniform probability3, we can then estimate
the probabilities as follows:

p =
The size of the cached blocks of the physical representation

The total size of the physical representation
(15)

q = 1− p (16)

By the “total size” we mean that part of the physical representation which can
be found on the disk at the beginning. In the multidimensional representation,
it is the compressed multidimensional array, whereas in the table representation,
we can put the entire size of the physical representation into the denominator
of p. The cached blocks are those that had been originally on the disk, but were
moved into the memory later. In other words, the size of the cached blocks
(numerator) is always smaller than or equal to the total size (denominator).

The experiments shows that the alternative physical representations differ
from each other in size. That is why it seems reasonable to introduce four
different probabilities in the following manner.

Definition.

pm = The value of p for the multidimensional representation.
pt = The value of p for the table representation.

qm = 1− pm

qt = 1− pt

¤
When does the inequality below hold? This is an important questions.

E(ξm) < E(ξt) (17)

Here ξm and ξt are random variables that are the retrieval times in the multi-
dimensional and table representations, respectively.

In our model, E(ξi) = piMi + qiDi (i ∈ {m, t}). Thus the question can be
rephrased as follows.

pmMm + qmDm < ptMt + qtDt (18)

The value of the Mm, Dm, Mt and Dt constants was measured by carrying
out some experiments. (See the following section.) Two different results were
obtained. For one benchmark database (TPC-D), the following was found.

Mt < Mm ¿ Dm ¿ Dt (19)
3Here and in the remainder of the paper we shall make the same assumption that every

cell/row is sampled with the same probability.

DIFFERENCE–HUFFMAN CODING OF MULTIDIMENSIONAL DATABASES 13

The other database (APB-1) gave a slightly different result.

Mm ¿ Mt ¿ Dm ¿ Dt (20)

The second pair of inequalities (Mm ¿ Dm and Mt ¿ Dm) can be accounted
for by the fact that disk operations are slower than memory operations with
orders of magnitude. The third one (Dm ¿ Dt) is because we have to retrieve
more blocks from the table representation than from the multidimensional to
obtain the same information.

Note here that E(ξi) is the convex linear combination of Mi and Di (pi, qi ∈
[0, 1] and i ∈ {m, t}). In other words, E(ξi) can take any value from the closed
interval [Mi, Di].

The following provides a sufficient condition for E(ξm) < E(ξt).

Dm < ptMt + qtDt (21)

From this, with equivalent transformations, we obtain the inequality constraint:

Dm < ptMt + (1− pt)Dt (22)

pt <
Dt −Dm

Dt −Mt
(23)

The value for Dt−Dm

Dt−Mt
was found to be 63.2% (TPC-D) and 66.3% (APB-

1) in the experiments. This means that, based on the experimental results,
the expected value of the retrieval time was smaller in the multidimensional
representation than in the table representation when less than 63.2% of the
latter one was cached. This was true regardless of the fact of whether the
multidimensional representation was cached or not.

Now we are going to differentiate two cases based on the value of Mm and
Mt.

Case 1: Mt < Mm. This was true for the TPC-D benchmark database.
(Here the difference sequence consisted of 16-bit unsigned integers, which re-
sulted in a slightly more complicated decoding, as the applied Huffman decoder
returns 8 bits at a time. This may be the reason why Mm became larger than
Mt.) In this case, we can give a sufficient condition for E(ξm) > E(ξt), as the
equivalent transformations below show.

ptMt + qtDt < Mm (24)
ptMt + (1− pt)Dt < Mm (25)

Dt −Mm

Dt −Mt
< pt (26)

For Dt−Mm

Dt−Mt
we obtained a value of 99.9%. This means that the expected

retrieval time was smaller in the table representation when more than 99.9% of it
was cached. This was true even when the whole multidimensional representation
was in the memory.

Case 2: Mm ¿ Mt. This inequality held true for the APB-1 benchmark
database. Here we can give another sufficient condition for E(ξm) < E(ξt).

pmMm + qmDm < Mt (27)
pmMm + (1− pm)Dm < Mt (28)

Dm −Mt

Dm −Mm
< pm (29)

14 I. SZÉPKÚTI

The left hand side of the last inequality was equal to 98.3% for the APB-1
benchmark database. In other words when more than 98.3% of the multidi-
mensional representation was cached, it then resulted in a faster operation on
average than the table representation regardless of the caching level of the latter.

Finally, let us give a necessary and sufficient condition for E(ξm) < E(ξt).
First, let us consider the following equivalent transformations (making the nat-
ural assumption that Dt > Mt).

E(ξm) < E(ξt) (30)
pmMm + qmDm < ptMt + qtDt (31)

pmMm + (1− pm)Dm < ptMt + (1− pt)Dt (32)

pt <
Dm −Mm

Dt −Mt
pm +

Dt −Dm

Dt −Mt
(33)

The last inequality was the following for the two tested databases, TPC-D and
APB-1, respectively:

pt < 0.368pm + 0.632 (34)
pt < 0.343pm + 0.663 (35)

Theorem 2. Suppose that Dt > Mt. Then the expected retrieval time is
smaller in the case of the multidimensional physical representation than in the
table physical representation if and only if

pt <
Dm −Mm

Dt −Mt
pm +

Dt −Dm

Dt −Mt
. (36)

The truth of the theorem is a direct consequence of equations (30) – (33).
We conclude this section by summarizing our findings:

• The caching of the alternative physical representations modify the results
significantly.

• If (nearly) the entire physical representation is cached into the memory,
then the complexity of the algorithm will determine the speed of retrieval.
The less CPU-intensive algorithm will probably result in a faster opera-
tion.

• In the tested cases, the expected retrieval time was smaller with mul-
tidimensional physical representation when less than 63.2% of the table
representation was cached. This was true regardless of the caching level
of the multidimensional representation.

5 Experiments

We carried out experiments in order to measure the sizes of the different physical
representations and the constants in the previous section. We also examined
how the size of the cache influenced the speed of retrieval. The hardware and
software components we used for our experiments are listed in the appendix
section.

DIFFERENCE–HUFFMAN CODING OF MULTIDIMENSIONAL DATABASES 15

In the experiments we made use of two benchmark databases: TPC-D [20]
and APB-1 [11]. One relation was derived per benchmark database in exactly
the same way as that described in [16]. Then these relations were represented
physically with a multidimensional representation and table representation.

When we compare the DHC of the multidimensional representation of re-
lation R to compressions of the table representation of relation R we get an
interesting result. (Here R is a relation derived from one of the benchmark
databases: TPC-D or APB-1.) Both Table 2 and Table 3 show that DHC
results in a smaller multidimensional representation than difference sequence
compression. With the TPC-D benchmark database, the multidimensional rep-
resentation with BOC and DSC turned out to be already smaller than all those
used for alternative compression techniques of the table representation (see [16]).

In the APB-1 benchmark database, BOC was less successful. It produced
a slightly larger database than the compressions of the table representation.
However, with the exception of bzip2 and WinRAR, DSC outperformed the
other compressors. Obviously this observation is true for DHC as well.

In both benchmark databases, DHC produced the smallest multidimensional
physical representation.

Table 2: TPC-D benchmark database

Compression Size in bytes Percentage
Table representation
Uncompressed 279,636,324 100.0%
ARJ 92,429,088 33.1%
gzip 90,521,974 32.4%
WinZip 90,262,164 32.3%
PKZIP 90,155,633 32.2%
jar 90,151,623 32.2%
bzip2 86,615,993 31.0%
WinRAR 81,886,285 29.3%
Multidimensional representation
on the disk
Single count header compression 145,256,792 51.9%
Base – offset compression 74,001,692 26.5%
Difference sequence compression 67,925,100 24.3%
Difference – Huffman coding 66,556,350 23.8%
Multidimensional representation
in the memory
Difference – Huffman coding 67,014,312 24.0%

As we explained earlier in this paper, the size of the multidimensional repre-
sentation with DHC is different on the disk and in the memory. This is because
of the existence of the Ak, Bytek and Bitk arrays. The last lines of Table 2 and
Table 3 show the memory occupancy of DHC. We can arrange it such that these
three arrays do not increase the memory requirements of the multidimensional
physical representation significantly.

In the rest of this section, we shall deal only with DHC. Its performance will
be compared to the performance of the uncompressed table representation.

16 I. SZÉPKÚTI

Table 3: APB-1 benchmark database

Compression Size in bytes Percentage
Table representation
Uncompressed 1,295,228,960 100.0%
jar 124,462,168 9.6%
gzip 124,279,283 9.6%
WinZip 118,425,945 9.1%
PKZIP 117,571,688 9.1%
ARJ 115,085,660 8.9%
bzip2 99,575,906 7.7%
WinRAR 98,489,368 7.6%
Multidimensional representation
on the disk
Base – offset compression 125,572,184 9.7%
Difference sequence compression 113,867,897 8.8%
Single count header compression 104,959,936 8.1%
Difference –Huffman coding 103,072,522 8.0%
Multidimensional representation
in the memory
Difference –Huffman coding 103,369,039 8.0%

In order to determine the constant values of the previous section, another
experiment was performed. A random sample was taken with replacement from
relation R with uniform distribution. The sample size was 1000. Afterwards the
sample elements were retrieved from the multidimensional representation and
then from the table representation. The elapsed time was measured to calculate
the average retrieval time per sample element. Then the same sample elements
were retrieved again from the two physical representations. Before the first
round, nothing was cached. So the results help us to determine the constants
Dm and Dt. Before the second round, every element of the sample was cached
in both physical representations. So the times measured in the second round
correspond to the values of the constants Mm and Mt. The results of the
experiment can be seen in Table 4.

Table 4: Constants

TPC-D APB-1
Symbol (ms) (ms)
Mm 0.031 0.012
Mt 0.021 0.128
Dm 6.169 6.778
Dt 16.724 19.841

In the next experiment, we examined how the size of memory available for
caching influenced the speed of retrieval. But first we should mention what we
expect to get based on our model. With the multidimensional representation,

DIFFERENCE–HUFFMAN CODING OF MULTIDIMENSIONAL DATABASES 17

the formula below follows from the model for the expected retrieval time:

Tm(x) = Mmpm(x) + Dmqm(x) = Mmpm(x) + Dm(1− pm(x)), (37)

where

pm(x) = min
{

x−H

C
, 1

}
, (38)

H is the total size of the multidimensional representation part, which is loaded
into the memory in advance (the jump array, the Huffman code of the differ-
ence sequence, the decoding tree, the dimension values, the Ak, Bytek and Bitk
arrays), C is the size of the compressed multidimensional array and x (= H) is
the size of the available memory.

In an analogous way for the table representation, we obtain the formula:

Tt(x) = Mtpt(x) + Dtqt(x) = Mtpt(x) + Dt(1− pt(x)), (39)

where
pt(x) = min

{ x

S
, 1

}
, (40)

S is the total size of the table representation and x (= 0) is the size of the
memory available for caching.

In Figure 2 and Figure 3, Tm(x) is labelled as “Array Est”, Tt(x) as “Table
Est”. The horizontal axis shows the size of the memory in bytes, while the
vertical one displays the expected/average retrieval time in milliseconds.

It is not hard to see that the global maximum and minimum values and
locations of the functions Tm(x) and Tt(x) are the following:

max{Tm(x) | x = H} = Dm and Tm(x) = Dm if and only if x = H

min{Tm(x) | x = H} = Mm and Tm(x) = Mm if and only if x = H + C

max{Tt(x) | x = 0} = Dt and Tt(x) = Dt if and only if x = 0

min{Tt(x) | x = 0} = Mt and Tt(x) = Mt if and only if x = S

In order to verify the model with empirical data, we arranged the following
tests. Random samples were taken with replacement. The sample size was set
at 300 in TPC-D and 100 in APB-1 in order to stay within the constraints
of the physical memory. The average retrieval time was measured as well as
the cache size used for each physical representation. In the multidimensional
representation, the utilized cache size was corrected by adding H to it, as this
representation requires that some parts of it are loaded into the memory in
advance. Then the above sampling and measuring procedures were repeated
another 99 times. That is, altogether 30,000 elements were retrieved from the
TPC-D database and 10,000 from the APB-1. The average retrieval time, as a
function of the cache size (or memory) used, can also be seen in Figures 2 and 3.
The data relating to the multidimensional physical representation are labelled
as “Array”, and the data for the table representation as “Table”.

Both diagrams suggest that the model fits the empirical data quite well.
Only the table representation of ABP-1 deviates slightly from it.

18 I. SZÉPKÚTI

Figure 2: The retrieval time for the TPC-D benchmark database as a function
of the memory size available for caching

Figure 3: The retrieval time for the APB-1 benchmark database as a function
of the memory size available for caching

DIFFERENCE–HUFFMAN CODING OF MULTIDIMENSIONAL DATABASES 19

The test results of the first ten passes and the last ten passes can be seen
in Table 5 as well. Column A is the sequence number. Columns B – E corre-
spond to TPC-D, while columns F – I are for APB-1. Columns B and F show
the memory needed for the multidimensional representation, while columns C
and G give the same for the table representation. The retrieval time with the
multidimensional representation can be found in columns D and H, and the
table representation in columns E and I. The “memory used” values are strictly
increasing. This can be attributed to the fact that increasingly larger parts of
the physical representations are cached into to the memory.

Looking at Table 5, Figure 3 and Figure 4, it can be seen that the multidi-
mensional representation was always significantly faster over the tested range.

Table 5: Memory used (in 210 bytes) and retrieval time (in milliseconds) for the
TPC-D and the APB-1 benchmark databases

A B C D E F G H I
1 20,893 8,500 6.57 18.32 4,926 3,840 7.10 24.99
2 23,093 15,488 5.96 16.50 5,698 7,204 6.55 21.53
3 25,097 21,732 5.48 15.64 6,478 10,312 6.48 19.83
4 27,025 27,420 5.58 14.36 7,262 13,452 6.85 20.03
5 28,841 32,668 5.26 14.00 8,002 16,328 6.35 19.25
6 30,565 37,896 4.83 13.88 8,774 19,336 6.52 19.99
7 32,113 42,908 4.61 13.87 9,506 22,208 6.42 19.56
8 33,557 47,684 4.60 13.92 10,266 25,076 7.02 19.23
9 34,949 52,228 4.37 12.56 10,978 27,884 6.35 19.13

10 36,289 56,792 4.12 14.58 11,726 30,664 6.68 19.92
...

...
...

...
...

...
...

...
...

91 63,609 216,352 0.35 2.94 52,334 201,140 3.72 13.82
92 63,677 217,228 0.70 3.69 52,726 202,836 4.46 14.86
93 63,729 218,060 0.24 3.83 53,046 204,540 3.55 14.75
94 63,769 218,784 0.22 3.29 53,438 206,240 3.98 14.52
95 63,813 219,484 0.28 3.31 53,754 207,960 3.47 15.77
96 63,841 220,200 0.34 2.82 54,090 209,516 3.82 14.12
97 63,857 220,804 0.13 2.78 54,382 211,100 3.09 14.01
98 63,905 221,592 0.30 3.23 54,670 212,660 3.13 13.53
99 63,925 222,260 0.11 2.94 55,054 214,404 3.89 14.74

100 63,949 222,908 0.32 2.78 55,358 216,144 2.97 14.83

Summarizing our experimental results, we may say that

• The size of DHC was smaller than that of the other compressed multi-
dimensional representations. This was true even when we included those
parts of DHC that were not stored on the disk, but recalculated every
time the header was loaded into the memory.

• With suitably designed experiments, we were able to measure the con-
stants of the model proposed in the previous section.

• We tested the model with empirical data.

20 I. SZÉPKÚTI

• Over the tested range of available memory, the multidimensional repre-
sentation was always much quicker than the table representation in terms
of retrieval time.

6 Conclusion

In this paper we introduced a new compression method called difference – Huff-
man coding. In our experiments, the size of the multidimensional physical
representation with DHC was smaller than that with single count header com-
pression, logical position compression, base – offset compression and difference
sequence compression. This result was true even when we included those parts
of DHC not stored on the disk, but recalculated every time the DHC header
was pre-loaded into the memory.

It often turns out that caching significantly improves response times. This
was also found to be the case for us when the same relation is represented phys-
ically in different ways. In order to analyze this phenomenon, we proposed a
model. In this model, four constants were introduced for the retrieval time from
the memory (Mm and Mt) and from the disk (Dm and Dt). It was necessary to
have four symbols as we had to distinguish between the multidimensional rep-
resentation (Mm and Dm) and the table representation (Mt and Dt). Based on
the model, necessary and sufficient conditions were given for when one physical
representation results in a lower expected retrieval time than the other. Actu-
ally, with the tested benchmark databases, we found that the expected retrieval
time was smaller with a multidimensional physical representation if less than
63.2% of the table representation was cached. This was true regardless of the
caching level of the multidimensional representation.

We were able to infer from the model that the complexity of the algorithm
could determine the speed of retrieval when (nearly) the entire physical rep-
resentation was cached into the memory. A less CPU-intensive algorithm will
probably result in a faster operation.

Experiments were performed to measure the constants of the model. We
found there was a big difference in values between Mm and Mt, as well as Dm

and Dt. The difference of the first two constants can be accounted for by the
different CPU-intensity of the algorithms. The reason why Dm ¿ Dt is that
the multidimensional representation requires much less I/O operations than the
table representation when one cell/row is retrieved. This latter observation is
in line with the dominance of the I/O cost rule. However, instead of counting
the number of I/O operations, we chose to determine the values of Dm and Dt

from empirical data.
We verified the model with additional experiments and found that the model

fitted the experimental results quite well. There was only one slight difference
with the table representation of the APB-1 benchmark database.

Finally, over the tested range of available memory, the multidimensional
representation was always much faster than the table representation in terms of
average retrieval time. We obtained speed up factors of up to 5 or more in the
APB-1 benchmark database and up to 52 in the TPC-D database.

Based on the above results, we think, like Westmann et al. [22], that today’s
database systems should be extended with compression capabilities to improve
their overall performance.

DIFFERENCE–HUFFMAN CODING OF MULTIDIMENSIONAL DATABASES 21

Acknowledgments

I would like to thank Prof. Dr. János Csirik for his continuous support and very
useful suggestions.

Appendix

Table 6 shows the hardware and software which were used for testing. The speed
of the processor, the memory and the hard disk all influence the experimental
results quite significantly, just like the memory size. In the computer industry,
all of these parameters have increased quickly over time. But an increase in
the hard disk speed has been somewhat slower. Hence, it is expected that
the results presented will remain valid despite the continuing improvement in
computer technology.

Table 6: Hardware and software used for testing

Processor Intel Pentium 4 with HT technology, 2.6 GHz,
800 MHz FSB, 512 KB cache

Memory 512 MB, DDR 400 MHz
Hard disk Seagate Barracuda, 80 GB, 7200 RPM, 2 MB cache
Filesystem ReiserFS format 3.6 with standard journal
Page size of B-tree 4 KB
Operating system SuSE Linux 9.0 (i586)
Kernel version 2.4.21-99-smp4G
Compiler gcc (GCC) 3.3.1 (SuSE Linux)
Programming language C
Free procps version 3.1.11

References

[1] Chen, Z. –Gehrke, J. –Korn, F., Query Optimization in Compressed
Database Systems, ACM SIGMOD Record, May 2001.

[2] Eggers, S. J. –Olken, F. – Shoshani, A., A Compression Technique
for Large Statistical Databases, VLDB, 1981.

[3] Garcia-Molina, H. –Ullman, J. D. –Widom, J., Database System
Implementation, Prentice Hall, Inc., 2000.

[4] Goldstein, J. –Ramakrishnan, R. – Shaft, U., Compressing Rela-
tions and Indexes, ICDE, 1998.

[5] Graefe, G. – Shapiro, L. D., Data Compression and Database Perfor-
mance, Proc. ACM/IEEE-CS Symp. on Applied Computing, 1991.

[6] Huffman, D. A., A method for the construction of minimum-redundancy
codes, Proceedings of the IRE, 1952.

22 I. SZÉPKÚTI

[7] International Telecommunication Union / Line Transmission of Non-
telephone Signals / Video Codec for Audiovisual Services at p× 64 kbits /
ITU-T Recommendation H.261
http://www.itu.org

[8] Kaser, O. – Lemire, D., Attribute Value Reordering for Efficient Hy-
brid OLAP, Proceedings of the 6th ACM international workshop on Data
warehousing and OLAP, November 2003.

[9] Ng, W.-K. –Ravishankar, Ch. V., Block-Oriented Compression Tech-
niques for Large Statistical Databases, Knowledge and Data Engineering,
1995.

[10] O’Connell, S. J. –Winterbottom, N., Performing Joins without De-
compression in a Compressed Database System, ACM SIGMOD Record,
March 2003.

[11] OLAP Council / APB-1 OLAP Benchmark, Release II
http://www.olapcouncil.org

[12] Pendse, N., The origins of today’s OLAP products, (c) Business Intelli-
gence Ltd., 1998.
http://www.olapreport.com/origins.html

[13] Ray, G. –Haritsa, J. R. – Seshadri, S., Database Compression: A Per-
formance Enhancement Tool, International Conference on Management of
Data, 1995.

[14] Shoshani, A., OLAP and Statistical Databases: Similarities and Differ-
ences, PODS, 1997.

[15] Szépkúti, I., Multidimensional or Relational? / How to Organize an On-
line Analytical Processing Database, Technical Report, 1999.

[16] Szépkúti, I., On the Scalability of Multidimensional Databases, Periodica
Polytechnica Electrical Engineering, 44/1, 2000.

[17] Szépkúti, I., Difference Sequence Compression of Multidimensional
Databases, to appear in Periodica Polytechnica Electrical Engineering,
2004.

[18] Tanenbaum, A. S., Computer Networks / Third Edition, Prentice Hall,
Inc., 1996.

[19] Tolani, P. M. –Haritsa, J. R., XGRIND: A Query-friendly XML Com-
pressor, ICDE, 2001.

[20] TPC BENCHMARKTM D (Decision Support) Standard Specification, Re-
vision 1.3.1.
http://www.tpc.org

[21] Vassiliadis, P. – Sellis, T. K., A Survey of Logical Models for OLAP
Databases, SIGMOD Record 28(4): 64-69, 1999.

DIFFERENCE–HUFFMAN CODING OF MULTIDIMENSIONAL DATABASES 23

[22] Westmann, T. –Kossmann, D. –Helmer, S. – Moerkotte, G., The
Implementation and Performance of Compressed Databases, ACM SIG-
MOD Record, September 2000.

[23] Wu, W. B. –Ravishankar, Ch. V., The Performance of Difference Cod-
ing for Sets and Relational Tables, Journal of the ACM, September 2003.

[24] Zhao, Y. –Deshpande, P. M. –Naughton, J. F., An Array-Based Al-
gorithm for Simultaneous Multidimensional Aggregates, Proceedings of the
ACM SIGMOD, 1997.

