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Abstract. The Statistical Query model was introduced in [6] to handle
noise in the well-known PAC model. In this model the learner gains in-
formation about the target concept by asking for various statistics about
it. Characterizing the number of queries required by learning a given
concept class under fixed distribution was already considered in [3] for
weak learning; then in [8] strong learnability was also characterized. How-
ever, the proofs for these results in [3, 10, 8] (and for strong learnability
even the characterization itself) are rather complex; our main goal is to
present a simple approach that works for both problems. Additionally,
we strengthen the result on strong learnability by showing that a class
is learnable with polynomially many queries iff all consistent algorithms
use polynomially many queries, and by showing that proper and im-
proper learning are basically equivalent. As an example, we apply our
results on conjunctions under the uniform distribution.

1 Introduction

The Statistical Query model (called SQ model for short) was introduced by
Kearns [6] as an approach to handle noise in the well-known PAC model. The
general idea is that—instead of using random examples as in the PAC model—
the learner gains information about the unknown function by asking various
statistics (called queries) over the distribution of labeled examples. As it was
shown by Kearns [6], any learning algorithm in the SQ model can be transformed
to a PAC algorithm without much loss in efficiency. It is even more interesting
that the resulting algorithm is robust to noise. He has also shown that many
efficient PAC algorithms can also be converted to an efficient SQ algorithm.

Despite the power of the model that is apparent from the above results, it is
still weaker than the PAC model. Indeed, already in [6] it was shown that the
parities, which is a PAC-learnable class, cannot be efficiently learned in the SQ
model under the uniform distribution. The proof used an information theoretic
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argument, which was generalized later by Blum et al. in [3] to characterize weak
learnability of a concept class (where the goal is to do slightly better than ran-
dom guessing) in the SQ model for the distribution dependent case (i.e., when
the underlying distribution is fixed in advance and is known by the learner).
The characterization is based on the so called SQ dimension of the class which
is, roughly, the maximal size of an “almost orthogonal” system in the class.
However, the proof in [3] is rather long and complex. Subsequently Yang gave
an alternative, elegant proof for basically the same result [10]. In this paper we
present yet another, but much shorter proof, thereby significantly simplifying on
both existing proofs.

Strong learnability (i.e., when the goal is to approximate the target concept
with arbitrary accuracy) of a concept class in the distribution dependent case
was first characterized by Köbler and Lindner [7] in terms of a general frame-
work for protocols, called the general dimension. Independently Simon in [8]
gave another characterization for strong learnability that was based on the SQ
dimension (more precisely it was based on the SQ dimension of the class after
some translation), and is more of an algebraic flavor. However, both the char-
acterization and the proof are rather complex in [8]; as we shall show in this
paper, our simple approach that is successful in characterizing weak learnability,
can be also applied for strong learnability, thereby giving an alternative, simple
characterization for this problem as well, which might also have the potential to
be easier to apply and calculate for concrete concept classes. Recently Feldman
has also obtained a simple characterization of strong SQ learnability of a similar
flavor [5], however the two papers focus on different perspectives: Feldman is
interested in applications to agnostic learning and evolvability, meanwhile our
main interest is to find a really simple proof and a unified view of weak and
strong learnability. Additionally our approach also reveals that in the distri-
bution dependent case query-efficient learnability is possible if and only if all
consistent learning algorithms learn the given concept class query-efficiently.3

As far as we know, this was not known before. We also show that in the distri-
bution dependent case proper learning (i.e., when the queries of the learner are
restricted to use functions from the given concept class) is as strong as improper
learning, but we would like to point out that this can be easily deduced already
from the characterization result of Simon (see Observation 11).

Finally we show that in the distribution independent case (i.e., when the
learner doesn’t know anything about the underlying distribution) proper and
improper learning can differ significantly, and we contrast this with the above
mentioned result on their equivalence in the distribution dependent case.

Equivalent models. Ben-David et al. have introduced an equivalent model,
called learning by distances [2], and have also given upper and lower bound on
the minimal number of queries required for learning. However their upper bound
3 Query-efficiency means that the number of queries used by the learner is bounded

by some polynomial of the various parameters. When query-efficiency is in focus,
then usually no restrictions are set on the running time.



is exponential in their lower bound (see also our discussion on the topic in Sect.
6) and the paper does not reveal the relation of the model to noise-tolerant PAC
learning (which gave the importance of the SQ model).

In [11] Yang has introduced the model of honest SQ model using stronger
queries and less adversarial settings than the ones used in the SQ model. In
[9] it is shown how to apply the results and methods of this paper to prove a
somewhat surprising result: the equivalence of the honest and the “pure” SQ
model.

Organization of the paper. Section 2 contains the formal introduction of the
SQ model and also some basic definitions. In Sect. 3 we present our alternative
proof for characterizing weak learnability with the SQ dimension, in Sect. 4
we discuss the relation of strong and weak learnability, and then in Sect. 5 we
characterize strong learnability. In Sect. 6 we analyze the relation of our strong
SQ dimension to the ones of Simon and Feldman. In Sect. 7 as an example, we
compute our dimension notion for conjunctions under the uniform distribution.
Finally, in Sec. 8 we contrast the result on the equivalence of proper and improper
learning in the distribution dependent case with the fact that they occasionally
significantly differ in the distribution independent case.

2 Preliminaries

A concept is a mapping from some domain to {−1, 1}. A concept class is a set of
concepts with the same domain. A Boolean concept over n variables is a concept
of the form {−1, 1}n → {−1, 1}. A family of concept classes is an infinite set
{Fn}∞n=1, such that each Fn is a concept class. The class of all concepts over
some domain X is denoted C(X).

The correlation of two functions f, g : X → R under some distribution D
over X is defined as 〈f, g〉D = E[f(ξ)g(ξ)], where ξ is a random variable with
distribution D. The norm of f under D is ‖f‖D :=

√
〈f, f〉D . f is said to be a

γ-approximation of g, if 〈f, g〉D ≥ γ.
In the Statistical Query model a learner (or learning algorithm) L can make

queries of the form (h, τ), where τ is a positive constant called tolerance, and
h is chosen from some concept class H called the query class. Each such query
is answered with some c satisfying |c − 〈f∗, h〉D | ≤ τ, where f∗ is some fixed
concept, called the target concept that is unknown for the learner, and where D
is some distribution over the input domain of f∗. (Here the learner is supposed
to be familiar with D.) The learner succeeds when he finds some function f ∈ H
having correlation at least γ with f∗ for some constant γ > 0 fixed ahead of
the learning process. Parameter γ is called accuracy. Let qD,LF,H(τ, γ) denote the
smallest integer q such that L always succeeds in the above setting using at most
q queries when the target concept belongs to F . Finally, SLCDF,H(τ, γ) (or the
statistical learning complexity) is defined to be the minimum value of qD,LF,H(τ, γ)
over all possible learning algorithms L. We would like to emphasize that in this



paper we are interested only in the number of queries during the learning process
(i.e., the information complexity of learning), and do not consider the running
time.

Note that originally in [6] the SQ model allowed much more general queries,
but in [4] Bshouty and Feldman have shown that the two models are equivalent.4

We also consider the following variants of the above described learning model.
The learning is called proper when F = H, and is called improper when F ( H.
Also, in general, a query (h, τ) is proper if h ∈ F , otherwise it is improper. The
learner is a consistent learner, if | 〈hi, hj〉D − ci| ≤ τi for i < j, where (hi, τi)
is the i-th query of the learner and ci is the answer for it. Finally, note that in
the above definition the learner is supposed to be familiar with the underlying
distribution, but the model can also be defined for the case when this is not
true. We are mainly interested in the former case (except for Sect. 8), but when
we want to explicitly refer to one case or the other, we shall call the former the
distribution dependent and the latter the distribution independent case.

For simplicity, when it causes no confusion, we omit D from notations like
SLCDF,H(τ, γ) and 〈f, g〉D, and simply use SLCF,H(τ, γ) and 〈f, g〉 instead.

Definition 1. We say that a family {Fn}∞n=1 of concept classes is weakly learn-
able in the SQ model with a family {Hn}∞n=1 of query classes if there exists some
γ(n) > 0 and τ(n) > 0 such that 1/γ(n), 1/τ(n) and SLCFn,Hn

(τ(n), γ(n)) are
polynomially bounded in n. {Fn}∞n=1 is strongly learnable in the SQ model with
queries from {Hn}∞n=1 if there exists some τ(n, ε) > 0 such that 1/τ(n, ε) and
SLCFn,Hn

(τ(n), 1− ε) are polynomially bounded in n and 1/ε.

The following Observation, which we shall apply several times later, is basi-
cally the reason for the equivalence of the proper and improper learning in the
distribution dependent model.

Observation 2. Let f, g and h be arbitrary concepts. If 〈f, h〉 ≥ 1 − ε and
〈g, h〉 ≥ 1− ε, then 〈f, g〉 = (1/2) 〈f + g, f + g〉 − 1 ≥ 〈f + g, h〉 − 1 ≥ 1− 2ε.

Although this paper mainly considers concepts and concept classes, we would
like to point out that all the results remain valid for classes of functions with
norm bounded by 1 (which might be tempting to use for example in query
classes)—albeit in some cases, when the proof applies Observation 2, the con-
stants get slightly worse.5 The reason for this is the following lemma which is
the generalization of Observation 2 for these functions.
4 Actually they have shown how to simulate an arbitrary statistical query using two

statistical queries that are independent of the target function and two correlation
queries. However, when running time is not considered and the underlying distribu-
tion is known, one can omit the two former queries and just compute them directly.

5 The choice of 1 as an upper bound for the query function is arbitrary, one can
use any other constant instead. (But note that smaller constants would exclude all
concepts.) However, unbounded queries should not be allowed, because they make
the learning problem trivial. Indeed, for example when the target concept is Boolean
over n variables, and one uses a query with tolerance 1/2 and with the function that



Proposition 3. When f, g, h : {−1, 1}n → {−1, 1} have norm at most 1, and
〈f, h〉 ≥ 1− ε and 〈g, h〉 ≥ 1− ε, then 〈f, g〉 ≥ 1− 6ε.

Proof. First of all, by Cauchy-Schwarz, ‖f‖ ≥ 〈f, h〉 ≥ 1 − ε, and similarly
‖g‖ ≥ 1− ε. Using this

2(1− 2ε)− 2 〈f, g〉 ≤ ‖f‖2 + ‖g‖2 − 2 〈f, g〉

= ‖f − g‖2

≤ (‖f − h‖+ ‖g − h‖)2

≤
(√

2− 2 〈f, h〉+
√

2− 2 〈g, h〉
)2

≤ 8ε ,

implying 1− 6ε ≤ 〈f, g〉. ut

Finally for integer d let [d] denote the set {1, . . . , d}.

3 Characterizing Weak Learnability

According to the definition, weak learnability is possible if and only if there
exists some polynomial p(n) such that SLCFn,Hn

(1/p(n), 3/p(n)) ≤ p(n) (sim-
ply define p(n) to be a polynomial that upper bounds 1/τ(n), 3/γ(n) and
SLCFn,Hn

(τ(n), γ(n))). This way the task of weak learning is basically to find
functions hn,1, . . . , hn,p(n) ∈ Hn such that all f ∈ Fn has correlation at least
3/p(n) with at least one of hn,1, . . . , hn,p(n). Thus p(n) (and this way SLC itself)
can be considered as a kind of covering number. Bshouty and Feldman in [4]
make this property explicit in their characterization of weak learnability.

On the other hand, the notion of SQ dimension introduced by Blum et al.
[3] is rather a packing number in nature:

Definition 4. The SQ dimension (or weak SQ dimension) of a class of real
valued functions F over some domain X and under distribution D over X,
denoted SQDimDF , is the biggest integer d such that F contains some distinct
functions f1, . . . .fd with pairwise correlations between −1/d and 1/d.

(Note that SQDim is defined not only for concept classes but also for more
general classes; Definition 10 will really make use of this generality.) For sim-
plicity, as mentioned, we use SQDimF instead of SQDimDF when this leads to no
confusion.

The nice feature of the characterization result in [3] is that it binds the
two different type of notions. One direction, namely that SQDimF queries are

evaluates x ∈ {−1, 1}n to
Pn

i=1(1/ε) · 2n · 2i(xi+1)/2, then the value of the target
concept on inputs with probability at least ε/2n can be reconstructed from the
answer to this query, meanwhile the sum of the probabilities of the rest of the inputs
is less than ε.



enough for weakly learning concept class F (properly!) is easy: if {f1, . . . , fd} is
a maximal subset of F fulfilling | 〈fi, fj〉 | ≤ 1/d for 1 ≤ i < j ≤ d, then (due
to the maximality) it obviously holds that at least one of them has correlation
at least 1/d with the target concept, thus the learner simply needs to query
f1, . . . , fd with tolerance 1/(3d) in order to find an 1/(3d) approximation of it.
However the proof in [3] for the other direction was rather long and complex.
Subsequently Yang in [10] gave another, elegant proof for this direction, based
on the eigenvalues of the correlation matrix of the concept class.6

Here we show that basically the same result can be derived using a very
simple argument, thus significantly simplifying on both of the above mentioned
proofs. The proof in some sense follows the same line of thought they use, but
lacks the machineries applied in them.

Theorem 5. Let F be a concept class and let d := SQDimF . Then any learning
algorithm that uses tolerance parameter lower bounded by τ > 0 requires in the
worst case at least (dτ2 − 1)/2 queries for learning F with accuracy at least τ .
In particular, when τ = 1/ 3

√
d, this means ( 3

√
d− 1)/2 queries.

Proof. Assume that f1, . . . , fd ∈ F fulfill | 〈fi, fj〉 | ≤ 1/d for i, j ∈ [d] distinct.
We show an (adversary) answering strategy that ensures to eliminate only a
small number of these functions after each query. Let h be an arbitrary query
function used by the learner (having thus norm at most 1) and let A := {i ∈
[d] : 〈fi, h〉 ≥ τ}. Then, by the Cauchy-Schwarz inequality〈

h,
∑
i∈A

fi

〉2

≤

∥∥∥∥∥∑
i∈A

fi

∥∥∥∥∥
2

=
∑
i,j∈A

〈fi, fj〉 ≤
∑
i∈A

(
1 +
|A| − 1
d

)
≤ |A|+ |A|

2

d
,

meanwhile, by the choice of A it holds that
〈
h,
∑
i∈A fi

〉
≥ |A|τ, and the two

together implies that 1/|A| + 1/d ≥ τ2 or equivalently, that |A| ≤ d/(dτ2 −
1). Similar argument shows that at most d/(dτ2 − 1) of the fi functions have
correlation at most −τ with h. Thus at most 2d/(dτ2 − 1) of the functions will
be inconsistent with the answer if the adversary returns 0 to this query. This, in
turn, implies the desired lower bound (dτ2−1)/2 on the learning complexity. ut

It is also worth mentioning that this result is quite tight in the improper case,
when the learner can use arbitrary functions of norm 1 in the queries. Indeed,
if the concept class itself is {f1, . . . , fd}, then defining gi :=

∑(i+1)·d2/3

j=i·d2/3+1
fj for

i = 0, 1, . . . , d1/3 − 1 (assuming for simplicity that 3
√
d is integer), at least one

hi = gi/ ‖gi‖, i = 0, 1, . . . , d1/3 − 1 will have correlation at least(
1− d2/3 1

d

)
1√

d2/3 + d2/3d2/3(1/d)
(1)

with the target function. Note that (1) asymptotically equals to 1/ 3
√
d.

6 The correlation matrix of the concept class F = {f1, . . . , fs} is the s × s matrix C
such that Ci,j = 〈fi, fj〉.



4 Weak and Strong Learning

Aslam and Decatur [1] apply the boosting techniques from the PAC model to SQ
learning and show how to use (efficiently) a weak learning algorithm to achieve
strong learnability. Their primary concern is the distribution independent case,
but their result (combined with results for weak learning) also has the following
consequence in the distribution dependent case:

max
D

SLCDF,H

(
ε

3d
log

1
ε
, 1− ε

)
= O

(
d5 log2 1

ε

)
,

when H ⊇ F , and where d = maxD SQDimDF . However, this does not imply any
result on fixed distributions in general. Indeed, when the support of a distribu-
tion consists of only a single input, then one query is enough both in the weak
and in the strong setting—for any concept class. Thus the gap between the up-
per bound in the above equation and the number of queries required for strong
learning under some given (known) distribution can be as big as possible: expo-
nential versus constant. What is more, we cannot expect to bound the strong
SQ dimension under some distribution D using the weak SQ dimension under
the same distribution. Indeed, consider for example the uniform distribution and
the concept class Fn consisting of all the functions of the form v1 ∨ f , where f
is any parity function over variables v2, . . . , vn. Then |Fn| = 2n−1, and any two
distinct elements (v1 ∨ f), (v1 ∨ f ′) ∈ Fn have correlation 1/2:

〈v1 ∨ f, v1 ∨ f ′〉 = 2 P
[
(v1 ∨ f) = (v1 ∨ f ′)

]
− 1 = 2

(
1
2

+
1
2 P[f = f ′]

)
− 1 =

1
2

(as the parity functions are uncorrelated under the uniform distribution), and so
by Theorem 8 strong learning of Fn requires superpolynomial number of queries,
meanwhile weak learning requires none.7

5 Characterizing Strong Learnability

In this section we give a complete characterization of strong learnability. More
precisely we define a dimension notion that is a generalization of the weak SQ
dimension SQDim from Sect. 3, and show that it is closely related to the learning
complexity.

Definition 6. For a concept class F let d0(F , γ) denote the largest d such that
some f1, . . . , fd ∈ F fulfill

• | 〈fi, fj〉 | ≤ γ for 1 ≤ i < j ≤ d, and
• | 〈fi, fj〉 − 〈fk, f`〉 | ≤ 1/d for all 1 ≤ i < j ≤ d and 1 ≤ k < ` ≤ d.

7 Yang [11] has also shown a similar result for another concept class, but the argument
there is more complicated.



Actually, this dimension notion is a kind of combination of the strong SQ
dimension of Simon [8] (see also Sect. 6) and Yang [10].

Theorem 7. Let F be a concept class and let d := d0(F , 1 − ε/2). Then any
consistent algorithm that uses tolerance τ ≤ min{1/(4d+4), ε/4} requires at most
d/τ queries to learn F with accuracy 1− ε. Specifically, setting τ = min{1/(4d+
4), ε/4}, the algorithm finds an (1− ε)-approximation of the target concept after
4d ·max{d+ 1, 1/ε} queries, implying SLCF,F (τ, 1− ε) ≤ 4d ·max{d+ 1, 1/ε}.

Proof. Assume that some consistent algorithm used tolerance as above, queried
h1, . . . , hq in this order, and got the answers c1, . . . , cq in this order. Suppose
that for some 1 ≤ i1 < i2 < · · · < i` ≤ q and some c ∈ [−1, 1] it holds that
cij ∈ [c− τ, c+ τ ] for j = 1, . . . , `. The algorithm is consistent, thus

〈
hij , hik

〉
∈

[cij − τ, cij + τ ] for 1 ≤ j < k ≤ `, consequently
〈
hij , hik

〉
∈ [c − 2τ, c + 2τ ] ⊆

[c − 1/(2d + 2), c + 1/(2d + 2)] for 1 ≤ j < k ≤ `. Also note that | 〈hi, hj〉 | ≤
|ci|+ τ ≤ 1− ε/2 for 1 ≤ i < j ≤ q, since c1, . . . , cq have absolute value less then
1 − 3ε/4 (as otherwise the algorithm would have successfully terminated). The
two together imply however that ` ≤ d0(F , 1− ε/2). As this was true for any c,
it follows that q ≤ d0(F , 1− ε/2)(2/(2τ)). ut

The proof for the other direction has the same structure as the proof for
Theorem 5, with some necessary modifications.

Theorem 8. Let F ⊆ C(X) be any concept class for some domain X, and as-
sume d := d0(F , 1−2ε) ≥ 3. Then if the tolerance τ is bigger than

√
3/(2bd/2c),

then SLCF,C(X)(τ, 1−ε) ≥ dτ2/3. In particular SLCF,C(X)(1/
3
√
d, 1−ε) ≥ 3

√
d/3.

Proof. Assume 3/(2τ2) ≤ bd/2c and let d′ := d3/(2τ2)e. By the choice of d there
exist f1, . . . , fd ∈ F and c ∈ (−1+2ε, 1−2ε) satisfying | 〈fi, fj〉− c| ≤ 1/(2d) for
all 1 ≤ i < j ≤ d. We show an (adversary) answering strategy that ensures to
eliminate only a small number of the fi functions after each query. Let h ∈ C(X)
be an arbitrary query function used by the learner, and assume for simplicity
that 〈f1, h〉 ≥ 〈f2, h〉 ≥ · · · ≥ 〈fd, h〉. Define α := 〈fd′ , h〉, β := 〈fd−d′+1, h〉,
A := [d′] and B := {d− d′ + 1, d− d′ + 2, . . . , d}. Then 1− ε ≥ α ≥ β ≥ −1 + ε
whenever d ≥ 3 (recall Observation 2 and that d′ ≤ d/2 by our assumption on
τ), furthermore A and B are disjoint sets of cardinality d′. First note that∥∥∥∥∥ 1
d′

∑
i∈A

fi −
1
d′

∑
i∈B

fi

∥∥∥∥∥
2

=
1

(d′)2

(∑
i∈A
‖fi‖2 +

∑
i∈B
‖fi‖2 +

∑
i,j∈A:i 6=j

〈fi, fj〉

+
∑

i,j∈B:i 6=j

〈fi, fj〉 − 2
∑
i∈A

∑
j∈B
〈fi, fj〉

)

≤ 1
(d′)2

(
2d′ + d′(d′ − 1)

(
c+

1
2d

)
+ d′(d′ − 1)

(
c+

1
2d

)
− 2(d′)2

(
c− 1

2d

))



≤ 4
d′

+
2
d
,

and so, by the Cauchy-Schwarz inequality〈
h,

1
d′

∑
i∈A

fi −
1
d′

∑
i∈B

fi

〉
≤

∥∥∥∥∥ 1
d′

∑
i∈A

fi −
1
d′

∑
i∈B

fi

∥∥∥∥∥ ≤
√

4
d′

+
2
d
≤
√

6
d′

.

On the other hand, by the definition of A and B it also holds that〈
h,

1
d′

∑
i∈A

fi −
1
d′

∑
i∈B

fi

〉
=

1
d′

∑
i∈A
〈h, fi〉 −

1
d′

∑
j∈B
〈h, fj〉 ≥ α− β ,

and so α−β ≤
√

6/d′ ≤ 2τ . Thus, answering the learner’s query with (α+β)/2,
all but at most 2d′−2 functions will be consistent with the answer. This, in turn,
implies the desired lower bound d/(2d′− 2) ≥ dτ2/3 on the learning complexity.

ut

The main result of this section is the following corollary of the two theorems
above:

Corollary 9. The following statements are equivalent for any family {Fn}∞n=1

of concept classes under arbitrary (fixed) distribution:

– d0(Fn, 1− ε) is polynomially bounded in n and 1/ε,
– {Fn}∞n=1 is strongly learnable by some (possibly improper) algorithm,
– {Fn}∞n=1 is strongly learnable by all consistent learning algorithms.

6 The Relation of d0 to Other Learnability Related
Notions

In this section we consider the relation of d0 and the strong SQ dimensions
of Simon [8] and Feldman [5]. We also discuss the relation of d0 to the notion
introduced in [2] to analyze learnability.

6.1 SQDim∗

Let us first deal with SQDim∗ from [8].

Definition 10 ([8]). Given some concept class F , a subclass F ′ of it is (γ,H)-
trivial for some query class H and constant 0 < γ < 1, if some function
h ∈ H has correlation of at least γ with at least half of the functions in F ′.
The remaining subclasses of F are said to be (γ,H)-nontrivial. The strong
SQ dimension associated with concept class F and query class H is the func-
tion SQDim∗F,H(γ) := supF ′ SQDimF ′−BF′ , where F ′ ranges over all (γ,H)-
nontrivial subclasses of F , and where BF ′ = (1/|F ′|)

∑
f∈F ′ f .



As it turns out below, it doesn’t really matter, which query class is used, as
long as it contains the concept class itself.

Observation 11. When F ⊆ H, then any (1 − ε,F)-trivial subset of F is also
(1−ε,H)-trivial, meanwhile, by Observation 2, it also holds that any (1−ε/2,H)-
trivial subset of F is also (1− ε,F)-trivial. Thus

SQDim∗F,H(1− ε) ≤ SQDim∗F,F (1− ε) ≤ SQDim∗F,H
(

1− ε

2

)
.

.

The following equation we shall need later.

〈f, g〉 = 〈f −B, g −B〉+ 〈f,B〉+ 〈g,B〉 − ‖B‖2 . (2)

Theorem 12. For any concept classes F and H satisfying F ⊆ H it holds that
max{32/ε2, 9d2

0(F , 1− ε2/32)} ≥ SQDim∗F,H(1− ε).

Proof. According to Observation 11, it is enough to show that the statement of
the theorem holds for H = F .

Let F ′ be a (1 − ε,F)-nontrivial subset of F , and let F ′0 be a subset of F ′
such that SQDimF ′0−BF′ = |F ′0|. Assume furthermore that d := |F ′0| ≥ 32/ε2.

Consider the correlation of BF ′ with all the functions in F ′0. Obviously there
exist some c ∈ [−1, 1] and some d′ ≥

√
d/3 such that for some distinct functions

f1, . . . , fd′ ∈ F ′0 it holds that 〈fi, BF ′〉 ∈ [c−1/
√

9d, c+1/
√

9d] for j = 1, . . . , d′.
Then for arbitrary indices i, j, k, ` ∈ [d′] fulfilling i 6= j and k 6= ` it holds (using
(2)) that

| 〈fi, fj〉 − 〈fk, f`〉 | =|(〈fi −BF ′ , fj −BF ′〉 − 〈fk −BF ′ , f` −BF ′〉)
+ (〈fi, BF ′〉 − 〈fk, BF ′〉) + (〈fj , BF ′〉 − 〈f`, BF ′〉)|

≤2
d

+
2 · 2√

9d

≤ 3√
d

(3)

using that d ≥ 32. To prove the theorem it thus suffices to show that the corre-
lation of any two distinct elements of F ′ has absolute value at most 1− ε2/32.8

To upper bound 〈fi, fj〉 for some 1 ≤ i < j ≤ d′ first note that using (2) with
f = fi, g = fj and B = BF ′ , and then applying the Cauchy-Schwarz inequality

〈fi, fj〉 ≤
1
d

+ ‖BF ′‖ (2− ‖BF ′‖) . (4)

8 Note that we cannot apply Observation 2 (or Proposition 3) directly to bound
〈fi, fj〉, because nontriviality only guarantees that none of the fi functions have
high correlation with at least half of F ′, which doesn’t prevent them from having
really high correlation with some smaller portion of F ′. It thus has to be shown that
no such set contains another fi.



Also note that the (1− ε,F)-nontriviality of F ′ implies that

‖BF ′‖2 =
1
|F ′|2

∑
g,f∈F ′

〈g, f〉 ≤ 1
|F ′|

∑
g∈F ′

1
|F ′|

(
|F ′|

2
(1− ε) +

|F ′|
2

)
= 1− ε

2
,

and therefore ‖BF ′‖ ≤
√

1− ε/2 ≤ 1−ε/4. Combining this with (4), and noting
that x(2− x) is monotone increasing on (0, 1) we get that

〈fi, fj〉 ≤
1
d

+
(

1− ε

4

)(
1 +

ε

4

)
= 1 +

1
d
− ε2

16
.

Thus, since d ≥ 32/ε2, we have 〈fi, fj〉 ≤ 1− ε2/32.
Finally, let us give a lower bound for the pairwise correlation. If one pair had

correlation less than −1+1/32, then, according to (3) all other pairs would have
correlation at most −1 + 1/32 + 3/

√
d, implying

0 ≤

∥∥∥∥∥∥
d′∑
i=1

fi

∥∥∥∥∥∥
2

=
d′∑
i=1

‖fi‖2 + 2
∑

1≤i<j≤d′
〈fi, fj〉

≤ d′ + d′(d′ − 1)
(
−1 +

1
32

+
3√
d

)
,

which would lead to a contradiction, as d ≥ 32. Consequently 〈fi, fj〉 ≥ −1 +
ε2/32 for 1 ≤ i < j ≤ d′. ut

Theorem 13. Let F and H be concept classes satisfying F ⊆ H. Then

d0(F , 1−ε) ≤ max{2, 2 ·SQDim∗F,F (1−ε/2)} ≤ max{2, 2 ·SQDim∗F,H(1−ε/4)} .

Proof. The second inequality follows from Observation 11.
To prove the first inequality, let F ′ := {f1, . . . , fd} ⊆ F be such that

| 〈fi, fj〉 | < 1 − ε and | 〈fi, fj〉 − 〈fk, f`〉 | < 1/d for 1 ≤ i < j ≤ d and
1 ≤ k < ` ≤ d. Then

| 〈fi −BF ′ , fj −BF ′〉 |

=

∣∣∣∣∣∣〈fi, fj〉+
1
d2

d∑
k,`=1

〈fk, f`〉 −
1
d

d∑
k=1

(〈fi, fk〉+ 〈fj , fk〉)

∣∣∣∣∣∣
≤

∣∣∣∣∣1d
d∑
k=1

(〈fi, fj〉 − 〈fi, fk〉)

∣∣∣∣∣+

∣∣∣∣∣∣ 1
d2

d∑
k,`=1

(〈fk, f`〉 − 〈fj , fk〉)

∣∣∣∣∣∣
≤ 2
d
.

Furthermore, by Observation 2, F ′ is (1− ε/2,F)-nontrivial. ut



6.2 SSQ-DIM

The dimension notion introduced in [5] is a kind of simplified version of SQDim∗:

Definition 14 ([5]). For concept class F over domain X let SSQ-DIM(F , ε) :=
maxh SQDim{f ′∈(F−h):‖f ′‖2≥ε}, where h ranges over all mappings from X to
[−1, 1].

Furthermore the proof of Theorem 12 and Theorem 13 can be easily modified
to show some similar results about the relation of d0 and SSQ-DIM as follows.

Theorem 15. For any concept class F it holds that max{32, 2/ε, 9d2
0(F , 1 −

ε/2)} ≥ SSQ-DIM(F , ε).
Proof. Let d := SSQ-DIM(F , ε), let h : X → [−1, 1] (where X is the domain of
F), and let f1, . . . , fd ∈ F fulfill | 〈fi − h, fj − h〉 | ≤ 1/d and ‖fi − h‖2 ≥ ε for
i, j ∈ [d] distinct. Let d′ := d

√
d/3e. Then, again, we can assume without loss

of generality that for some c ∈ [−1, 1] we have | 〈fi, h〉 − c| ≤ 1/d′ for i ∈ [d′].
Consequently (as in the proof of Theorem 12) | 〈fi, fj〉 − 〈fk, f`〉 | ≤ 3/

√
d for

1 ≤ i < j ≤ d′ and 1 ≤ k < ` ≤ d′.
Now all that is left is to bound the pairwise correlations of functions fi,

i ∈ [d]. For this note that

ε ≤ ‖fi − h‖2 = ‖fi‖2 + ‖h‖2 − 2 〈fi, h〉 ,

and so
〈fi, h〉 ≤

1
2

(
1− ε+ ‖h‖2

)
(5)

for i ∈ [d′]. Thus

〈fi, fj〉
(2)
= 〈fi − h, fj − h〉+ 〈fi, h〉+ 〈fj , h〉 − ‖h‖2

(5)

≤ 1
d

+ 1− ε ,

which is upper bounded by 1 − ε/2 when d ≥ 2/ε. Finally, the lower bound
for the pairwise correlations (for d ≥ 32) can be proved just as in the proof of
Theorem 12.

Theorem 16. For any concept class F it holds that d0(F , 1 − ε) ≤ max{2, 2 ·
SSQ-DIM(F , ε2/16)}.
Proof. Let F ′ = {f1, . . . , fd} ⊆ F be such that | 〈fi, fj〉 − 〈fk, f`〉 | ≤ 1/d and
| 〈fi, fj〉 | ≤ 1 − ε for 1 ≤ i < j ≤ d′ and 1 ≤ k < ` ≤ d′. We choose h := BF ′ .
Then, as in the proof of Theorem 13, | 〈fi −BF ′ , fj −BF ′〉 | ≤ 2/d.

Now we show that the fi functions are “not too close” to BF ′ . For this note
that by Cauchy-Schwarz

‖fi −BF ′‖2 = 1 + ‖BF ′‖2 − 2 〈fi, BF ′〉 ≥ 1 + ‖BF ′‖ (‖BF ′‖ − 2) ,

and so, since x(x− 2) is monotone decreasing on (0, 1), and because

‖BF ′‖2 =
1
d2

d∑
i=1

‖fi‖2 +
2
d2

∑
1≤i<j≤d

〈fi, fj〉 ≤
1
d

+
d− 1
d

(1− ε) ≤ 1− ε

2

for d ≥ 2, which implies ‖BF ′‖ ≤ 1−ε/4, we conclude that ‖fi −BF ′‖2 ≥ ε2/16.



6.3 Capacity

In [2] Ben-David et al. related the learning complexity of a class F to its capacity
CAP(F , ε) := min{|G| : ∀f ∈ F ∃g ∈ G s.t. 〈f, g〉 ≥ 1 − ε}. For the concept
class Fn = {v1, . . . vn} consisting of the monotone conjunctions of length 1 this
is polynomial in the learning complexity (in specific CAP(Fn, ε) = n) under
uniform distribution, but for the monotone conjunctions this is superpolynomial
(choose s = log log n in Example 19). The two notions are thus not polynomially
related.

7 d0 for Conjunctions Under the Uniform Distribution

In this section, as an example, we compute the exact value of d0 for the class
of conjunctions under the uniform distribution, up to a constant factor. (Note
however that this class is efficiently learnable in the Statistical Query model even
distribution independently [6], so d0 is obviously polynomial in n and in 1/ε.)

First of all let us compute the correlation of two conjunctions t and t′ that
have length ` and `′ respectively, and share exactly s literals (as usual, −1 is
interpreted as “true” and 1 as “false”):

〈t, t′〉 = E[t · t′]
= 1− 2 P[t 6= t′]
= 1− 2(P[t = −1] + P[t′ = −1]− 2 P[t = t′ = −1])

=
{

1− 2/2` − 2/2`
′

if t and t′ conflict,
1− 2/2` − 2/2`

′
+ 4/2`+`

′−s otherwise.
(6)

Next we prove a technical lemma we shall need later. Here we apply the
convention that for some x ∈ {0, 1}n the number of 1s in x is denoted |x|, and
that for x, y ∈ {0, 1}n x∨y (resp. x∧y) is the vector of length n with 1 on those
components that are 1 in at least one of x and y (resp. in both x and y), and is
0 everywhere else. For conjunctions we use similar notations, that is, |t| denotes
the number of literals appearing in term t, and t ∧ t′ denotes the term obtained
by joining the literals appearing in terms t and t′.

Lemma 17. If for some H ⊆ {0, 1}n and for some integer c it holds that |x ∨
y| = c for arbitrary distinct x, y ∈ H, then |H| ≤ n+ 1.

Proof. For x ∈ H let xc denote the vector obtained by flipping the bits in x.
Then by De Morgan xc ∧ yc = (x ∨ y)c, and thus |xc ∧ yc| = n− c for arbitrary
x, y ∈ H. Construct the n× |H| matrix X such that its columns are the vectors
from H in an arbitrary order, and let C be the |H| × |H| matrix having n− c in
each entry. First of all note that X>X − C is a diagonal matrix. If it contains
some zero element in the diagonal, then |xc| = n − c for some x ∈ H, implying
that for all other y ∈ H yc has 1 everywhere where x does and that each such yc



must have 1 at some unique position where the others have 0. This immediately
implies |H| ≤ n+1. Otherwise, when X>X−C is a nonsingular diagonal matrix,

|H| = rank
(
X>X − C

)
≤ rank

(
X>X

)
+ 1 = rank(X) + 1 ≤ min{n, |H|}+ 1

implying the statement of the claim. ut

Proposition 18. Let Fn be the set of conjunctions over variables v1, . . . , vn.
Then under the uniform distribution d0(Fn, 1− ε) ≤ 1 + max{2n+ 2, 8/ε2}.

Proof. Let t1, . . . , td be terms satisfying | 〈ti, tj〉 | ≤ 1−ε and | 〈ti, tj〉−〈tk, t`〉 | ≤
1/d for i, j, k, ` ∈ [d] fulfilling i 6= j and k 6= `. Assume for simplicity that td
is the longest term among them. Then by (6) it holds that 1 − ε ≥ 〈ti, td〉 ≥
1− 4 P[ti = −1], implying

P[ti = −1] = 2−|ti| ≥ ε

4
, (7)

and thus

P[ti = tj = −1] =
{

0 if ti and tj conflict
2−|ti∧tj | ≥ (ε/4)2 otherwise

(8)

for distinct i, j ∈ [d− 1].
Let us assume that 1/d < ε2/8.
If for some I ⊆ [d − 1] it holds that all ti, i ∈ I, has the same length, then

for any indices i, j, k, ` ∈ I fulfilling i 6= j and k 6= `

ε2

32
>

1
4d
≥ 1

4
| 〈ti, tj〉 − 〈tk, t`〉 |

(6)
= |P[ti = tj = −1]− P[tk = t` = −1]| .

Note that it cannot happen that ti and tj conflict with each other, but tk and
t` do not—or vice versa—, since by (8) that would mean that the right hand
side is at least ε2/16, resulting in a contradiction. So either all ti with i ∈ I
conflict each other, or there is no conflicting pair among the terms with index in
I. The former case implies that {ti = −1}i∈I are all contradicting events, and

so 1 ≥
∑
i∈I P[ti = −1]

(7)

≥ |I| · (ε/4), giving the bound |I| ≤ 4/ε. In the latter
case, since by (8) both 2−|ti∨tj | and 2−|tk∨t`| are at least ε2/16, we have that
2−|ti∨tj | > (1/2)2−|tk∨t`| and 2−|tk∨t`| > (1/2)2−|ti∨tj |. This, however implies
that |ti∨ tj | = |tk∨ t`|, and so, by Lemma 17 (applied for H ⊆ {0, 1}n consisting
of the vectors that represent some ti with i ∈ I by having 1 on position j iff ti
contains variable vj), I has cardinality at most n+ 1.

We have just seen that the sum of the number of terms of minimal length and
the number of terms of length one more is at most max{2n+ 2, 8/ε}. However,
there cannot be distinct indices i, j, k ∈ [d − 1] fulfilling |ti| + 2 ≤ |tj |, |tk|, as
otherwise

ε2

8
>

1
d



≥ | 〈ti, tj〉 − 〈tj , tk〉 |
= |2 P[ti = −1]− 4 P[ti = tj = −1]− 2 P[tk = −1] + 4 P[tk = tj = −1]|

≥ 1
2
· P[ti = −1]

(7)

≥ ε

8
,

a contradiction. ut

Note that this bound is sharp up to a constant factor according to the ex-
ample below and that the terms consisting of one unnegated variable form an
orthogonal system of cardinality n. It also immediately follows that these results
remain tight even if we restrict Fn to be the set of monotone conjunctions over
v1, . . . , vn.

Example 19. Let Fn be the set of all monotone conjunctions over variables
v1, . . . , vn and let Fn(`) consist of all t ∈ Fn of length `. Set ε := 2−` and
note that if t1, t2 ∈ Fn(`) share s < ` variables, then under the uniform distribu-

tion | 〈t1, t2〉 |
(6)
= 1− 4/2` + 4/22`−s ≤ 1− 2ε. If additionally t3, t4 ∈ Fn(`) share

s′ < ` variables, then | 〈t1, t2〉 − 〈t3, t4〉 |
(6)
=
∣∣∣4/22`−s − 4/22`−s′

∣∣∣ = ε24
∣∣∣2s − 2s

′
∣∣∣.

Now we choose ` = `(n) := c log n for some c > 1 (and thus ε = ε(n) = 1/nc)
and s = s(n) := log log n, and prove that d0(Fn, 1 − ε) = Ω(ε2) = Ω(n2c) by
showing that one can find an I ⊆ Fn(`) of cardinality Ω(n2c) that contains no
two distinct conjunctions sharing more than s variables. Such an I can simply
be obtained using the greedy method, since when n− ` ≥ 2(`− s) then for any
t ∈ Fn(`) there are exactly

∑`−s
i=0

(
`
i

)(
n−`
i

)
≤ `2`

(
n−`
`−s
)

conjunctions in Fn(`) that
share at least s variables with t, thus (noting that |Fn(`)| =

(
n
`

)
) I can always

be expanded by some term when it has cardinality less than(
n
`

)
`2`
(
n−`
`−s
) ∼ 1

`2`
·

√
n(`− s)(n− 2`+ s)
`(n− `)(n− `)

· n
n(`− s)`−s(n− 2`+ s)n−2`+s

``(n− `)n−`(n− `)n−`

∼ 1
`2`
· 1 ·

(
nn``−snn−2`+s

``nn−`nn−`

· (1− s/`)(`/s−1)s(1− (2`− s)/n)(n/(2`−s)−1)(2`−s)

(1− `/n)(n/`−1)`(1− `/n)(n/`−1)`

)

∼ 1
`2`
· 1 ·

(
ns

`s
· e
−se−(2`−s)

e−`e−`

)
=

1
`2`

ns

`s

(using Stirling’s formula).



8 Proper vs. Improper Learning in the Distribution
Independent Case

In the distribution dependent case (i.e., when the learner knows the underlying
distribution) proper and improper learning are basically the same (recall Corol-
lary 9). In this section we contrast this result showing that in the distribution
independent case proper and improper learning can differ significantly. Consider
for example the class of singletons: Fn := {fx : x ∈ {−1, 1}n}, where fx evalu-
ates to −1 on x, and evaluates to 1 on every other input. Since Fn is a subset of
conjunctions, which was shown by Kearns in [6] to be efficiently learnable in the
Statistical Query model, Fn can be learned using polynomially many improper
queries.

Let us now define for each x, y ∈ {−1, 1}n a distribution Dx,y, which assigns
probability 1/2 to both x and y, and assigns probability 0 to every other input.
The key observation is that in case of proper learning each query must be one
of the fx functions. But then, as long as there are at least two of them that are
not yet queried, the adversary can just return 0 as the answer. Finally, when
only two singletons—say fx and fy—are unqueried, the adversary chooses one
of them as the target concept, and says that the underlying distribution is Dx,y.
This way the answers of the adversary remain consistent (no matter how small
the tolerance parameter of the learner was), and, at the same time, force the
learner to ask at least 2n − 1 queries—even for weakly learning the class.9

It might also worth mentioning that for the singletons SQDimDFn
≤ 5 under

any distribution D, because, denoting by px the probability assigned to input
x ∈ {−1, 1}n, 1/6 ≥ 〈fx, fy〉D = 1−2px−2py implies that at least one of px and
py is 5/24 or greater, and thus if six functions from Fn had pairwise correlation
at most 1/6, then at least five distinct inputs would have probability 5/24 or
greater—a contradiction. This result shows that the number of proper queries
required for weakly learning some concept class can differ significantly in the
distribution dependent and in the distribution independent case: in some cases
it is constant versus exponential.

9 Open Problems

The approach used in the proof of Theorem 7 raises the problem, how to find
some hypothesis h that is consistent with the answers so far. When we do consider
the running time of the learning algorithm, this becomes a crucial question
regarding the applicability of this approach. It is also interesting whether this
problem is always efficiently solvable when the class is efficiently learnable in the
SQ model. (Note that for example the learning algorithm for conjunctions in [6]
is not consistent.)

Recall also that the characterization results in the paper are all for the dis-
tribution dependent characterization. It would be nice to have characterization
9 This doesn’t contradict the result of Aslam and Decatur [1] mentioned in Section 4,

since their boosting algorithm uses improper queries.



results for the distribution independent case as well. However, the overall goal
would be to characterize learnability in the PAC model in the presence of random
noise.
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