Online bin packing with overload cost

Kelin Luo

Eindhoven University of Technology
This is joint work with Frits C. R. Spieksma

June 2, 2021

Overview

(1) Problem

- Review: Online Bin Packing Problem
- Online Bin Packing Problem with Overload Cost
(2) Our Result
- Lower Bounds
- Algorithm and Upper Bounds
(3) Extension
(4) Conclusion

Content

(1) Problem

- Review: Online Bin Packing Problem
- Online Bin Packing Problem with Overload Cost
(2) Our Result
(3) Extension

4 Conclusion

Online Bin Packing Problem

Setting

n items with size $p \in(0,1]$ arrive one by one
Each item must be placed in a bin before the next item arrives

Goal

Pack all items into the minimum number of bins
such that the total size of items packed in each bin is at most 1

Online Bin Packing Problem

Setting

n items with size $p \in(0,1]$ arrive one by one
Each item must be placed in a bin before the next item arrives

Goal

Pack all items into the minimum number of bins
such that the total size of items packed in each bin is at most 1

Online Bin Packing Problem

Setting

n items with size $p \in(0,1]$ arrive one by one
Each item must be placed in a bin before the next item arrives

Goal

Pack all items into the minimum number of bins
such that the total size of items packed in each bin is at most 1

Online Bin Packing Problem

Setting

n items with size $p \in(0,1]$ arrive one by one
Each item must be placed in a bin before the next item arrives

Goal

Pack all items into the minimum number of bins such that the total size of items packed in each bin is at most 1

Online Bin Packing Problem

Setting

n items with size $p \in(0,1]$ arrive one by one
Each item must be placed in a bin before the next item arrives

Goal

Pack all items into the minimum number of bins such that the total size of items packed in each bin is at most 1

3 bins

2 bins

Online Bin Packing with Overload Cost (BPOC)

Setting

- n items with size $p \in(0,1]$ arrive one by one

Each item must be placed into a bin before the next item arrives

- Bin: extensible, unit overload cost c infinite number of identical bins

Online Bin Packing with Overload Cost (BPOC)

Setting

- n items with size $p \in(0,1]$ arrive one by one

Each item must be placed into a bin before the next item arrives

- Bin: extensible, unit overload cost c infinite number of identical bins

Sup. total size of items in $\operatorname{bin} i$ is $w_{i}, \operatorname{cost}_{i}=1+c \cdot \max \left\{w_{i}-1,0\right\}$

Goal: Pack all items into bins with minimum total cost

Online Bin Packing with Overload Cost (BPOC)

Setting

- Item p has size $p \in(0,1]$ arrives one by one
- $\operatorname{Bin} i$ has cost $_{i}=1+c \cdot \max \left\{w_{i}-1,0\right\}$

Goal

Pack all items into bin with minimum total cost

Online Bin Packing with Overload Cost (BPOC)

Setting

- Item p has size $p \in(0,1]$ arrives one by one
- Bin i has cost $_{i}=1+c \cdot \max \left\{w_{i}-1,0\right\}$

Goal

Pack all items into bin with minimum total cost

Online Bin Packing with Overload Cost (BPOC)

Setting

- Item p has size $p \in(0,1]$ arrives one by one
- Bin i has cost $_{i}=1+c \cdot \max \left\{w_{i}-1,0\right\}$

Goal

Pack all items into bin with minimum total cost

Related work: Overload

- Violate one item

Related work: Overload

- Violate one item
- Open-end Packing
- Ordered open-end bin packing problem (OOBP): last item (Yang and Leung 2003, Balogh et al., 2020)
- Strong open-end bin packing problem (SOBP): lightest one item (Epstein and Levin 2008, Epstein 2021)

Related work: Overload

- Violate one item
- Open-end Packing
- Bin Packing with Overflow (Perez-Salazar et al., 2021) Item X_{i} is observed after packing; Once overflows, incur cost $C \geq 1$ and no more packing. Goal: pack items into bins with minimum cost

Related work: Overload

- Violate one item
- Open-end Packing
- Bin packing with overflow (Perez-Salazar et al., 2021)
- Violate more: Online bin stretching m bins, stretching factor c
- $\mathrm{LB}=7 / 6, \mathrm{UB}=1.228$ (Speranza and Tuza 1999)
- $\mathrm{UB}=7 / 6,7 / 6,19 / 16$ for $\mathrm{m}=2,3,4$ (Ye and Zhang 2002)

Related work: Overload

- Violate one item
- Open-end Packing
- Bin packing with overflow (Perez-Salazar et al., 2021)
- Violate more: Online bin stretching

BPOC: Infinite number of extensible bins Min total cost
Absolute competitive ratio

Content

(1) Problem

(2) Our Result

- Lower Bounds
- Algorithm and Upper Bounds
(3) Extension

4 Conclusion

Lower bounds

Theorem

For any $c \geq 0$: no deterministic online algorithm for BPOC can achieve a competitive ratio smaller than $g(c)$.

$$
g(c)=\left\{\begin{array}{cl}
\max (1, c) & \text { if } 0 \leq c<\frac{3}{2} \\
\frac{3}{2}=1.5 & \text { if } \frac{3}{2} \leq c<1+2 \sqrt{3} \\
1+\frac{\sqrt{3}}{3} \approx 1.577 & \text { if } 1+2 \sqrt{3}<c<17 \\
\frac{5}{3} \approx 1.667 & \text { if } 17 \leq c
\end{array}\right.
$$

Lower Bound: $1<c \leq 17$

Item sequence: Continue to release N^{2} items with size $1 / N$, or stop when ALG opens a second bin.

$$
2+c(W-1-1 / N)
$$

Lower bounds

Theorem

For any $c \geq 0$: no deterministic online algorithm for BPOC can achieve a competitive ratio smaller than $g(c)$.

$$
g(c)=\left\{\begin{array}{cl}
\max (1, c) & \text { if } 0 \leq c<\frac{3}{2} \\
\frac{3}{2}=1.5 & \text { if } \frac{3}{2} \leq c<1+2 \sqrt{3} \\
1+\frac{\sqrt{3}}{3} \approx 1.577 & \text { if } 1+2 \sqrt{3}<c<17 \\
\frac{5}{3} \approx 1.667 & \text { if } 17 \leq c
\end{array}\right.
$$

János Balogh, József Békési, György Dósa, Jiří Sgall, Rob van Stee: The optimal absolute ratio for online bin packing, JCSS, 2019

Lower Bound: $5 / 3$ when $c \geq 17(1 / 3)$

Item sequence: release 6 items with size $2 / 17$

- ALG opens more than one bin: $\frac{\operatorname{cost}_{A L G}}{\operatorname{costopt}^{2}} \geq 2$
- ALG opens a single bin:

$2 / 17$	$2 / 17$
$2 / 17$	$2 / 17$
$2 / 17$	$2 / 17$

Lower Bound: $5 / 3$ when $c \geq 17(2 / 3)$

Item sequence: release 6 items with size $2 / 17$

- ALG opens a single bin: release 6 items with size $\frac{1}{3}+\frac{1}{3 c}$

Lower Bound: $5 / 3$ when $c \geq 17(2 / 3)$

Item sequence: release 6 items with size $2 / 17$

- ALG opens a single bin: release 6 items with size $\frac{1}{3}+\frac{1}{3 c}$

Lower Bound: $5 / 3$ when $c \geq 17(2 / 3)$

Item sequence: release 6 items with size 2/17

- ALG opens a single bin: release 6 items with size $\frac{1}{3}+\frac{1}{3 c}$

Lower Bound: $5 / 3$ when $c \geq 17(3 / 3)$

Item sequence: release 6 items with size 2/17

- ALG opens a single bin: release 6 items with size $\frac{1}{3}+\frac{1}{3 c}$
- ALG packs two items into one bin: release 6 items with size $\frac{1}{2}+\frac{1}{2 c}$

Lower Bound: $5 / 3$ when $c \geq 17(3 / 3)$

Item sequence: release 6 items with size 2/17

- ALG opens a single bin: release 6 items with size $\frac{1}{3}+\frac{1}{3 c}$
- ALG packs two items into one bin: release 6 items with size $\frac{1}{2}+\frac{1}{2 c}$

Lower Bound: $5 / 3$ when $c \geq 17(3 / 3)$

Item sequence: release 6 items with size 2/17

- ALG opens a single bin: release 6 items with size $\frac{1}{3}+\frac{1}{3 c}$
- ALG packs two items into one bin: release 6 items with size $\frac{1}{2}+\frac{1}{2 c}$

Lower Bound: $5 / 3$ when $c \geq 17(3 / 3)$

Item sequence: release 6 items with size 2/17

- ALG opens a single bin: release 6 items with size $\frac{1}{3}+\frac{1}{3 c}$
- ALG packs two items into one bin: release 6 items with size $\frac{1}{2}+\frac{1}{2 c}$

Upper bounds

- A trivial 2-competitive algorithm (Tight for algorithms without overload)
- First-Fit algorithm with fixed overload

A trivial 2-competitive Algorithm

- If $c \leq 1$, then pack all items into one bin.
- If $c>1$, use Any-Fit algorithm

Proof.

- Obs: any two opened bins has total size >1
- Obs: cost ${ }_{O P T} \geq \sum_{i} w_{i}$ when $c \geq 1$

Suppose Any-Fit opens k bins $\operatorname{cost}(A F)=k$ costopt $>k / 2$

A trivial 2-competitive Algorithm

- If $c \leq 1$, then pack all items into one bin.
- If $c>1$, use Any-Fit algorithm

Proof.

- Obs: any two opened bins has total size >1
- Obs: cost ${ }_{O P T} \geq \sum_{i} w_{i}$ when $c \geq 1$

Suppose Any-Fit opens k bins $\operatorname{cost}(A F)=k$
cost $_{O P T}>k / 2$

Tight case: two items with size $1 / 2+\epsilon$

First-Fit Algorithm with Fixed Overload (FFO)

Use First-Fit with a fixed overload, $O(c)$ for each bin

$$
O(c)= \begin{cases}\infty, & \text { if } 0<c \leq \frac{3}{2} \\ \frac{1}{c}, & \text { if } \frac{3}{2}<c \leq \frac{9}{5} \\ \frac{2}{3 c}, & \text { if } \frac{9}{5}<c \leq \frac{14}{3} \\ \frac{1}{3 c}, & \text { otherwise }\end{cases}
$$

First-Fit Algorithm with Fixed Overload (FFO)

Use First-Fit with a fixed overload, $O(c)$ for each bin

$$
O(c)= \begin{cases}\infty, & \text { if } 0<c \leq \frac{3}{2} \\ \frac{1}{c}, & \text { if } \frac{3}{2}<c \leq \frac{9}{5} \\ \frac{2}{3 c}, & \text { if } \frac{9}{5}<c \leq \frac{14}{3} \\ \frac{1}{3 c}, & \text { otherwise }\end{cases}
$$

FFO: Pack item into the first opened bin where it fits, total size is not more than $1+O(c)$, or opens a new bin if the item does not fit into any currently opened bin.

First-Fit Algorithm with Fixed Overload (FFO)

Use First-Fit with a fixed overload, $O(c)$ for each bin

$$
O(c)= \begin{cases}\infty, & \text { if } 0<c \leq \frac{3}{2} \\ \frac{1}{c}, & \text { if } \frac{3}{2}<c \leq \frac{9}{5} \\ \frac{2}{3 c}, & \text { if } \frac{9}{5}<c \leq \frac{14}{3} \\ \frac{1}{3 c}, & \text { otherwise }\end{cases}
$$

FFO: Pack item into the first opened bin where it fits, total size is not more than $1+O(c)$, or opens a new bin if the item does not fit into any currently opened bin.

Observation

- Obs.1: Total size of two opened bins by FFO $>1+O(c)$
- Obs.2: At least $k-1$ bins have size $>\frac{1+O(c)}{2}$

Upper Bound

Theorem

For any $c \geq 0$: FFO is a $h(c)$-competitive algorithm for BPOC.

$$
h(c)=\left\{\begin{array}{cl}
\max (1, c) & \text { if } 0 \leq c \leq \frac{3}{3} \\
\frac{3+c}{3} & \text { if } \frac{3}{2}<c \leq \frac{9}{5} \\
\frac{8}{5}=1.6 & \text { if } \frac{9}{5}<c \leq \frac{8}{3} \\
\frac{6 c}{3 c+} & \text { if } \frac{8}{3}<c \leq \frac{14}{3} \\
\frac{7}{4}=1.75 & \text { if } \frac{14}{3}<c
\end{array}\right.
$$

Upper Bound

Theorem

For any $c \geq 0$: FFO is a $h(c)$-competitive algorithm for BPOC.

$$
\begin{aligned}
& \text { Upper Bound } \\
& h(c)=\left\{\begin{array}{cl}
\max (1, c) & \text { if } 0 \leq c \leq \frac{3}{2} \\
\frac{3+c}{3} & \text { if } \frac{3}{2}<c \leq \frac{9}{5} \\
\frac{8}{5}=1.6 & \text { if } \frac{9}{5}<c \leq \frac{8}{3} \\
\frac{6 c}{3 c+2} & \text { if } \frac{8}{3}<c \leq \frac{14}{3} \\
\frac{7}{4}=1.75 & \text { if } \frac{14}{3}<c
\end{array}\right.
\end{aligned}
$$

Upper Bound when $c \leq 3 / 2$

For $c \leq 3 / 2, O(c)=\infty$, FFO pack all items into one bin

Upper Bound when $c \leq 3 / 2$

For $c \leq 3 / 2, O(c)=\infty$, FFO pack all items into one bin

Theorem

For any $c \leq 3 / 2$: FFO is a $\max \{1, c\}$-competitive algorithm for BPOC.

Proof.

Suppose the total size of items is W

- $c \leq 1, \operatorname{cost}_{\text {FFO }}=\operatorname{cost}_{O P T}$
- $c>1$,

$$
\begin{gathered}
\operatorname{cost}_{F F O}<c \cdot W \\
\operatorname{cost}_{O P T} \geq W
\end{gathered}
$$

Intuition of UB proof when $3 / 2<c<14 / 3$

Idea: Estimate the total item size based on the solution of FFO Bound cost of an optimal solution by cost OPT 2 total item size

Intuition of UB proof when $3 / 2<c<14 / 3$

Idea: Estimate the total item size based on the solution of FFO
Bound cost of an optimal solution by cost OPT 2 total item size Partition the k bins used by FFO:

- k_{1} : bins with total size $[1,1+O(c)]$
- k_{2} : bins with total size $\left[\frac{1+O(c)}{2}, 1\right)$
- $k_{3} \leq 1$: bins with total size $\left(0, \frac{1+O(c)}{2}\right)$

Optimal cost: more bins with overload cost, more total item size

Upper Bound when $3 / 2<c \leq 9 / 5(1 / 2)$

For $3 / 2<c \leq 9 / 5, O(c)=1 / c$

Theorem

For any $3 / 2<c \leq 9 / 5$: FFO is a $\frac{3+c}{3}$-competitive algorithm for BPOC.

Proof.

- o: average overload $=$ overload $/ k_{1}, 0 \leq 0 \leq 1 / c$

$$
\operatorname{cost}_{F F O}=k+c \cdot k_{1} \cdot o
$$

Upper Bound when $3 / 2<c \leq 9 / 5(1 / 2)$

For $3 / 2<c \leq 9 / 5, O(c)=1 / c$

Theorem

For any $3 / 2<c \leq 9 / 5$: FFO is a $\frac{3+c}{3}$-competitive algorithm for BPOC.

Proof.

- o: average overload $=$ overload $/ k_{1}, 0 \leq 0 \leq 1 / c$

$$
\operatorname{cost}_{\text {FFO }}=k+c \cdot k_{1} \cdot o
$$

$$
? ? \quad \frac{\operatorname{cost}_{F F O}}{\operatorname{cost}_{O P T}}
$$

Upper Bound when $3 / 2<c \leq 9 / 5(2 / 2)$

Known: $\operatorname{cost}_{\text {FFO }}=k+c \cdot k_{1} \cdot o$

Proof.

- $k_{2} \geq 1:$ costort $>k_{1}+k_{1} \cdot o+\frac{1+1 / c}{2}\left(k-k_{1}\right)$ (Obs. 2$)$

$$
\frac{\operatorname{cost}_{F F O}}{\operatorname{cost}_{O P T}} \leq \frac{k+c \cdot k_{1} \cdot o}{k_{1}+k_{1} \cdot o+(1 / 2+1 /(2 c))\left(k-k_{1}\right)} \leq(3+c) / 3
$$

Upper Bound when $3 / 2<c \leq 9 / 5(2 / 2)$

Known: $\operatorname{cost}_{\text {FFO }}=k+c \cdot k_{1} \cdot o$

Proof.

- $k_{2} \geq 1:$ cost $_{O P T}>k_{1}+k_{1} \cdot o+\frac{1+1 / c}{2}\left(k-k_{1}\right)$ (Obs. 2$)$

$$
\frac{\operatorname{cost}_{\text {FFO }}}{\operatorname{cost}_{O P T}} \leq \frac{k+c \cdot k_{1} \cdot o}{k_{1}+k_{1} \cdot o+(1 / 2+1 /(2 c))\left(k-k_{1}\right)} \leq(3+c) / 3
$$

- $k_{2}=0: \operatorname{cost}_{O P T}>k_{1}+\min \left\{k_{1} \cdot o,\left(k_{1}-1\right) \cdot o+\frac{1}{c}\right\}($ Obs. 1$)$

$$
\frac{\operatorname{cost}_{\text {FFO }}}{\operatorname{cost}_{O P T}} \leq \frac{k_{1}+c \cdot k_{1} \cdot o+1}{k_{1}+k_{1} \cdot o}<(3+c) / 3
$$

(Recall) Intuition of Upper Bound proof

Idea: Estimate the total item size based on the solution of FFO
Bound cost of an optimal solution by cost OPT 2 total item size Partition the set of bins used by FFO:

- k_{1} : bins with total size $[1,1+O(c)]$
- k_{2} : bins with total size $\left[\frac{1+O(c)}{2}, 1\right)$
- $k_{3} \leq 1$: bins with total size $\left(0, \frac{1+O(c)}{2}\right)$

Optimal cost: more bins with overload cost, more total item size

(Further) Intuition of UB proof when c is large

Partition k_{2} bins with size $\left[\frac{1+O(c)}{2}, 1\right)$ by FFO:

- k_{21} : bins with total size $\left[\frac{3(1+O(c))}{4}, 1\right)$
- k_{22} : bins with total size $\left[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4}\right)$
- k_{23} : bins with total size $\left[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3}\right)$

(Further) Intuition of UB proof when c is large

Observation

Except the earliest opened bin of $k_{22}+k_{23}$:

- Obs 3. Bin size $\left[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4}\right): \leq 2$ items, size $>\frac{1+O(c)}{4}$
- Obs 4. Bin size $\left[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3}\right): 1$ item, size $>\frac{1+O(c)}{2}$

(Further) Intuition of UB proof when c is large

Observation

Except the earliest opened bin of $k_{22}+k_{23}$:

- Obs 3. Bin size $\left[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4}\right): \leq 2$ items, size $>\frac{1+O(c)}{4}$
- Obs 4. Bin size $\left[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3}\right)$: 1 item, size $>\frac{1+O(c)}{2}$

$$
\begin{gathered}
\text { space } \geq(1+O(c)) / 4 \\
{\left[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4}\right)}
\end{gathered}
$$

(Further) Intuition of UB proof when c is large

Observation

Except the earliest opened bin of $k_{22}+k_{23}$:

- Obs 3. Bin size $\left[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4}\right): \leq 2$ items, size $>\frac{1+O(c)}{4}$
- Obs 4. Bin size $\left[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3}\right): 1$ item, size $>\frac{1+O(c)}{2}$

(Further) Intuition of UB proof when c is large

Observation

Except the earliest opened bin of $k_{22}+k_{23}$:

- Obs 3. Bin size $\left[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4}\right): \leq 2$ items, size $>\frac{1+O(c)}{4}$
- Obs 4. Bin size $\left[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3}\right): 1$ item, size $>\frac{1+O(c)}{2}$

(Further) Intuition of UB proof when c is large

Observation

Except the earliest opened bin of $k_{22}+k_{23}$:

- Obs 3. Bin size $\left[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4}\right): \leq 2$ items, size $>\frac{1+O(c)}{4}$
- Obs 4. Bin size $\left[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3}\right): 1$ item, size $>\frac{1+O(c)}{2}$

Optimal cost:

- Large item: bound the number of large items in each bin
- Small item: cost \approx size

Upper Bound when $c>14 / 3$

For $c>14 / 3, O(c)=\frac{1}{3 c}$

Upper Bound when $c>14 / 3$

For $c>14 / 3, O(c)=\frac{1}{3 c}$

Lemma 1

For items in $k_{23}+k_{3}$ bins, the optimal cost $\geq \frac{2}{3}\left(k_{23}+k_{3}\right)$.

Proof.

- Except the earliest opened bin, each has exactly 1 item
- Any two bin's item has size $>1+\frac{1}{3 c}$, cost $>4 / 3$
\Longrightarrow Each bin's item has cost $>\frac{2}{3}$

Upper Bound when $c>14 / 3$

FFO algorithm: when $c>14 / 3, O(c)=\frac{1}{3 c}$

Lemma 2

For items in $k_{22}+k_{23}$ bins, the optimal cost $\geq \frac{2}{3}\left(k_{22}+k_{23}-1\right)$.

- Except one bin, k_{22} bins each has ≤ 2 items
- k_{23} bins each has 1 item

Upper Bound when $c>14 / 3$

FFO algorithm: when $c>14 / 3, O(c)=\frac{1}{3 c}$
For item size $>1+O(c)$, cost $>1+c \times \frac{1}{3 c}=\frac{4}{3}$

Lemma 2

For items in $k_{22}+k_{23}$ bins, the optimal cost $\geq \frac{2}{3}\left(k_{22}+k_{23}-1\right)$.

Upper Bound when $c>14 / 3$

FFO algorithm: when $c>14 / 3, O(c)=\frac{1}{3 c}$
For item size $>1+O(c)$, cost $>1+c \times \frac{1}{3 c}=\frac{4}{3}$

Lemma 2

For items in $k_{22}+k_{23}$ bins, the optimal cost $\geq \frac{2}{3}\left(k_{22}+k_{23}-1\right)$.

Upper Bound when $c>14 / 3$

FFO algorithm: when $c>14 / 3, O(c)=\frac{1}{3 c}$
For item size $>1+O(c)$, cost $>1+c \times \frac{1}{3 c}=\frac{4}{3}$

Lemma 2

For items in $k_{22}+k_{23}$ bins, the optimal cost $\geq \frac{2}{3}\left(k_{22}+k_{23}-1\right)$.

Upper Bound when $c>14 / 3$

FFO algorithm: when $c>14 / 3, O(c)=\frac{1}{3 c}$
For item size $>1+O(c)$, cost $>1+c \times \frac{1}{3 c}=\frac{4}{3}$

Lemma 2

For items in $k_{22}+k_{23}$ bins, the optimal cost $\geq \frac{2}{3}\left(k_{22}+k_{23}-1\right)$.

Upper Bound when $c>14 / 3$

FFO algorithm: when $c>14 / 3, O(c)=\frac{1}{3 c}$
For item size $>1+O(c)$, cost $>1+c \times \frac{1}{3 c}=\frac{4}{3}$

Lemma 2

For items in $k_{22}+k_{23}$ bins, the optimal cost $\geq \frac{2}{3}\left(k_{22}+k_{23}-1\right)$.

Upper Bound when $c>14 / 3$

FFO algorithm: when $c>14 / 3, O(c)=\frac{1}{3 c}$
For item size $>1+O(c)$, cost $>1+c \times \frac{1}{3 c}=\frac{4}{3}$

Lemma 2

For items in $k_{22}+k_{23}$ bins, the optimal cost $\geq \frac{2}{3}\left(k_{22}+k_{23}-1\right)$.

Upper Bound when $c>14 / 3$

For $c>14 / 3, O(c)=\frac{1}{3 c}$

Theorem

For any $c>14 / 3$: FFO is a $7 / 4$-competitive algorithm for BPOC.

Proof.

Wlog, suppose the size of items in $k_{1}+k_{21}$ is small. Size of small items $\geq k_{1}+k_{1} \cdot o+\frac{3(1+O(c))}{4} k_{21}$

Analyze cost ${ }_{O P T}$ by distinguish $k_{23}+k_{3}$ and $k_{22}+k_{23}$ using:

- Items in $k_{23}+k_{3}$, the optimal cost $\geq \frac{2}{3}\left(k_{23}+k_{3}\right)$
- Items in $k_{22}+k_{23}$, the optimal cost $\geq \frac{2}{3}\left(k_{22}+k_{23}-1\right)$

Content

(1) Problem

(2) Our Result

(3) Extension 4) Conclusion

Convex Overload Cost

Setting

- Item p has size $p \in(0,1]$ arrives one by one Each item must be placed into a bin before the next item arrives
- Bin: extensible, overload cost function $f(x)$ infinite number of identical bins

Sup. total size of items in bin i is w_{i}, cost $_{i}=1+f\left(w_{i}-1\right)$

Goal: Pack item into a bin with the minimum cost

Convex Overload Cost: Lower Bounds

Theorem

For any convex cost function f : no deterministic online algorithm for BPOC can achieve a competitive ratio smaller than g.

$$
g=\left\{\begin{array}{cl}
\max \left(1,1 / f^{-1}(1)\right) & \text { if } 1 / f^{-1}(1) \leq \frac{3}{2} \\
\frac{3}{2}=1.5 & \text { if } \frac{3}{2}<1 / f^{-1}(1) \leq 1+2 \sqrt{3} \\
1+\frac{\sqrt{3}}{3} \approx 1.577 & \text { if } 1+2 \sqrt{3}<1 / f^{-1}(1)<17 \\
\frac{5}{3} \approx 1.667 & \text { if } 17 \leq 1 / f^{-1}(1)
\end{array}\right.
$$

Convex Overload Cost: Upper Bounds

Theorem for convex overload cost

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h\left(f^{-1}(\cdot)\right)\left(1+f^{-1}(\cdot)\right)$-competitive algorithm for BPOC.

Convex Overload Cost: Upper Bounds

Theorem for convex overload cost function

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h\left(f^{-1}(\cdot)\right)\left(1+f^{-1}(\cdot)\right)$-competitive algorithm for BPOC.

Convex Overload Cost: Upper Bounds

Theorem for convex overload cost function

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h\left(f^{-1}(\cdot)\right)\left(1+f^{-1}(\cdot)\right)$-competitive algorithm for BPOC.

$O P T^{\prime} \geq h \cdot F F O^{\prime} \geq h \cdot F F O$

$O P T \geq O P T^{\prime \prime} \geq\left(1+f^{-1}(\cdot)\right) \cdot O P T^{\prime}$

Convex Overload Cost: Upper Bounds

Theorem for convex overload cost function

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h\left(f^{-1}(\cdot)\right)\left(1+f^{-1}(\cdot)\right)$-competitive algorithm for BPOC.

$O P T^{\prime} \geq h \cdot F F O^{\prime} \geq h \cdot F F O \quad O P T \geq O P T^{\prime \prime} \geq\left(1+f^{-1}(\cdot)\right) \cdot O P T^{\prime}$
$\rightarrow O P T \geq h \cdot\left(1+f^{-1}(\cdot)\right) \cdot F F O$

Convex Overload Cost: Upper Bounds

Theorem for convex overload cost

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h\left(f^{-1}(\cdot)\right)\left(1+f^{-1}(\cdot)\right)$-competitive algorithm for BPOC.

For $f^{-1}(1 / 3)<\frac{1}{14}$, we have $h\left(f^{-1}(\cdot)\right)=\frac{7}{4}$
Competitive ratio: $\frac{7}{4} \cdot\left(1+f^{-1}\left(\frac{1}{3}\right)\right)<\frac{15}{8}<2$

Convex Overload Cost: Upper Bounds

Theorem for convex overload cost

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h\left(f^{-1}(\cdot)\right)\left(1+f^{-1}(\cdot)\right)$-competitive algorithm for BPOC.

For $f^{-1}(1 / 3)<\frac{1}{14}$, we have $h\left(f^{-1}(\cdot)\right)=\frac{7}{4}$
Competitive ratio: $\frac{7}{4} \cdot\left(1+f^{-1}\left(\frac{1}{3}\right)\right)<\frac{15}{8}<2$

Content

(1) Problem
(2) Our Result
(3) Extension
4 Conclusion

Conclusion

Absolute competitive analysis for BPOC Apply LBs and UBs to more general cost functions

Future direction:

- Gap between lower bound and upper bound
- Asymptotic competitive analysis

Thank you!

