Online bin packing with overload cost

Kelin Luo

Eindhoven University of Technology This is joint work with Frits C. R. Spieksma

June 2, 2021

Overview

Problem

- Review: Online Bin Packing Problem
- Online Bin Packing Problem with Overload Cost

Our Result

- Lower Bounds
- Algorithm and Upper Bounds

3 Extension

Content

Problem

- Review: Online Bin Packing Problem
- Online Bin Packing Problem with Overload Cost

2 Our Result

3 Extension

4 Conclusion

Kelin Luo (TU/e)

n items with size $p \in (0, 1]$ arrive one by one Each item must be placed in a bin before the next item arrives

Goal

n items with size $p \in (0, 1]$ arrive one by one Each item must be placed in a bin before the next item arrives

Goal

n items with size $p \in (0, 1]$ arrive one by one Each item must be placed in a bin before the next item arrives

Goal

n items with size $p \in (0, 1]$ arrive one by one Each item must be placed in a bin before the next item arrives

Goal

n items with size $p \in (0, 1]$ arrive one by one Each item must be placed in a bin before the next item arrives

Goal

Setting

- n items with size p ∈ (0,1] arrive one by one
 Each item must be placed into a bin before the next item arrives
- Bin: extensible, unit overload cost *c infinite* number of identical bins

Setting

- n items with size p ∈ (0,1] arrive one by one
 Each item must be placed into a bin before the next item arrives
- Bin: extensible, unit overload cost *c infinite* number of identical bins

Sup. total size of items in bin *i* is w_i , $cost_i = 1 + c \cdot max\{w_i - 1, 0\}$

Goal: Pack all items into bins with minimum total cost

Setting

- Item p has size $p \in (0, 1]$ arrives one by one
- Bin *i* has $cost_i = 1 + c \cdot max\{w_i 1, 0\}$

Goal

Pack all items into bin with minimum total cost

Setting

- Item p has size $p \in (0, 1]$ arrives one by one
- Bin *i* has $cost_i = 1 + c \cdot max\{w_i 1, 0\}$

Goal

Pack all items into bin with minimum total cost

Setting

- Item p has size $p \in (0, 1]$ arrives one by one
- Bin *i* has $cost_i = 1 + c \cdot max\{w_i 1, 0\}$

Goal

Pack all items into bin with minimum total cost

Related work: Overload

• Violate one item

- 4 ∃ ▶

Related work: Overload

- Violate one item
 - Open-end Packing
 - Ordered open-end bin packing problem (OOBP): last item (Yang and Leung 2003, Balogh et al., 2020)
 - Strong open-end bin packing problem (SOBP): lightest one item (Epstein and Levin 2008, Epstein 2021)

Violate one item

- Open-end Packing
- Bin Packing with Overflow (Perez-Salazar et al., 2021) Item X_i is observed after packing; Once overflows, incur cost C ≥ 1 and no more packing.

Goal: pack items into bins with minimum cost

- Violate one item
 - Open-end Packing
 - Bin packing with overflow (Perez-Salazar et al., 2021)
- Violate more: Online bin stretching

m bins, stretching factor c

- LB=7/6, UB=1.228 (Speranza and Tuza 1999)
- UB= 7/6, 7/6, 19/16 for m=2, 3, 4 (Ye and Zhang 2002)

- Violate one item
 - Open-end Packing
 - Bin packing with overflow (Perez-Salazar et al., 2021)
- Violate more: Online bin stretching
 - BPOC: Infinite number of extensible bins Min total cost Absolute competitive ratio

1 Problem

2 Our Result

Lower Bounds

Kelin Luo (TU/e)

• Algorithm and Upper Bounds

3 Extension

4 Conclusion

Theorem

For any $c \ge 0$: no deterministic online algorithm for BPOC can achieve a competitive ratio smaller than g(c).

Item sequence: Continue to release N^2 items with size 1/N, or stop when ALG opens a second bin.

2 + c(W - 1 - 1/N)

Theorem

For any $c \ge 0$: no deterministic online algorithm for BPOC can achieve a competitive ratio smaller than g(c).

$$g(c) = \begin{cases} \max(1, c) & \text{if } 0 \le c < \frac{3}{2} \\ \frac{3}{2} = 1.5 & \text{if } \frac{3}{2} \le c < 1 + 2\sqrt{3} \\ 1 + \frac{\sqrt{3}}{3} \approx 1.577 & \text{if } 1 + 2\sqrt{3} < c < 17 \\ \frac{5}{3} \approx 1.667 & \text{if } 17 \le c \end{cases}$$

János Balogh, József Békési, György Dósa, Jiří Sgall, Rob van Stee: The optimal absolute ratio for online bin packing, JCSS, 2019

- ALG opens more than one bin: $\frac{cost_{ALG}}{cost_{OPT}} \ge 2$
- ALG opens a single bin:

Item sequence: release 6 items with size 2/17

• ALG opens a single bin: release 6 items with size $\frac{1}{3} + \frac{1}{3c}$

Item sequence: release 6 items with size 2/17

• ALG opens a single bin: release 6 items with size $\frac{1}{3} + \frac{1}{3c}$

Item sequence: release 6 items with size 2/17

• ALG opens a single bin: release 6 items with size $\frac{1}{3} + \frac{1}{3c}$

- ALG opens a single bin: release 6 items with size $\frac{1}{3} + \frac{1}{3c}$
 - ALG packs two items into one bin: release 6 items with size $\frac{1}{2} + \frac{1}{2c}$

- ALG opens a single bin: release 6 items with size $\frac{1}{3} + \frac{1}{3c}$
 - ALG packs two items into one bin: release 6 items with size $\frac{1}{2} + \frac{1}{2c}$

- ALG opens a single bin: release 6 items with size $\frac{1}{3} + \frac{1}{3c}$
 - ALG packs two items into one bin: release 6 items with size $\frac{1}{2} + \frac{1}{2c}$

- ALG opens a single bin: release 6 items with size $\frac{1}{3} + \frac{1}{3c}$
 - ALG packs two items into one bin: release 6 items with size $\frac{1}{2} + \frac{1}{2c}$

- A trivial 2-competitive algorithm (Tight for algorithms without overload)
- First-Fit algorithm with fixed overload

• If $c \leq 1$, then pack all items into one bin.

• If c > 1, use Any-Fit algorithm

Proof.

ullet Obs: any two opened bins has total size >1

• Obs:
$$cost_{OPT} \geq \sum_{i} w_i$$
 when $c \geq 1$

Suppose Any-Fit opens k bins cost(AF) = k $cost_{OPT} > k/2$ • If $c \leq 1$, then pack all items into one bin.

• If c > 1, use Any-Fit algorithm

Proof.

• Obs: any two opened bins has total size > 1

• Obs:
$$cost_{OPT} \ge \sum_i w_i$$
 when $c \ge 1$

Suppose Any-Fit opens k bins cost(AF) = k $cost_{OPT} > k/2$

Tight case: two items with size $1/2 + \epsilon$

First-Fit Algorithm with Fixed Overload (FFO)

Use First-Fit with a fixed overload, O(c) for each bin

$$O(c) = \begin{cases} \infty, & \text{if } 0 < c \leq \frac{3}{2} \\ \frac{1}{c}, & \text{if } \frac{3}{2} < c \leq \frac{9}{5} \\ \frac{2}{3c}, & \text{if } \frac{9}{5} < c \leq \frac{14}{3} \\ \frac{1}{3c}, & otherwise \end{cases}$$

First-Fit Algorithm with Fixed Overload (FFO)

Use First-Fit with a fixed overload, O(c) for each bin

$$O(c) = \begin{cases} \infty, & \text{if } 0 < c \leq \frac{3}{2} \\ \frac{1}{c}, & \text{if } \frac{3}{2} < c \leq \frac{9}{5} \\ \frac{2}{3c}, & \text{if } \frac{9}{5} < c \leq \frac{14}{3} \\ \frac{1}{3c}, & otherwise \end{cases}$$

FFO: Pack item into the first opened bin where it fits, total size is not more than 1 + O(c), or opens a new bin if the item does not fit into any currently opened bin.

First-Fit Algorithm with Fixed Overload (FFO)

Use First-Fit with a fixed overload, O(c) for each bin

$$O(c) = \begin{cases} \infty, & \text{if } 0 < c \leq \frac{3}{2} \\ \frac{1}{c}, & \text{if } \frac{3}{2} < c \leq \frac{9}{5} \\ \frac{2}{3c}, & \text{if } \frac{9}{5} < c \leq \frac{14}{3} \\ \frac{1}{3c}, & otherwise \end{cases}$$

FFO: Pack item into the first opened bin where it fits, total size is not more than 1 + O(c), or opens a new bin if the item does not fit into any currently opened bin.

Observation

- Obs.1: Total size of two opened bins by FFO > 1 + O(c)
- Obs.2: At least k-1 bins have size $> \frac{1+O(c)}{2}$

Theorem

For any $c \ge 0$: FFO is a h(c)-competitive algorithm for BPOC.

Theorem

For any $c \ge 0$: FFO is a h(c)-competitive algorithm for BPOC.

Upper Bound when $c \leq 3/2$

For $c \leq 3/2$, $O(c) = \infty$, FFO pack all items into one bin

For $c \leq 3/2$, $O(c) = \infty$, FFO pack all items into one bin

Theorem

For any $c \leq 3/2$: FFO is a max $\{1, c\}$ -competitive algorithm for BPOC.

Proof.

Suppose the total size of items is W

•
$$c \leq 1$$
, $cost_{FFO} = cost_{OPT}$

● *c* > 1,

 $cost_{FFO} < c \cdot W$ $cost_{OPT} > W$

Intuition of UB proof when 3/2 < c < 14/3

Idea: Estimate the total item size based on the solution of FFO Bound cost of an optimal solution by $cost_{OPT} \ge$ total item size

Intuition of UB proof when 3/2 < c < 14/3

- **Idea:** Estimate the total item size based on the solution of FFO Bound cost of an optimal solution by $cost_{OPT} \ge$ total item size Partition the k bins used by FFO:
 - k_1 : bins with total size [1, 1 + O(c)]
 - k_2 : bins with total size $\left[\frac{1+O(c)}{2},1\right)$
 - $k_3 \leq 1$: bins with total size $(0, \frac{1+O(c)}{2})$

Optimal cost: more bins with overload cost, more total item size

Upper Bound when $3/2 < c \le 9/5$ (1/2)

For
$$3/2 < c \le 9/5$$
, $O(c) = 1/c$

Theorem

For any $3/2 < c \le 9/5$: FFO is a $\frac{3+c}{3}$ -competitive algorithm for BPOC.

Proof.

• o: average overload= overload/ k_1 , $0 \le o \le 1/c$

 $cost_{FFO} = k + c \cdot k_1 \cdot o$

Kelin Luo (TU/e)

< □ > < □ > < □ > < □ >

Upper Bound when $3/2 < c \le 9/5$ (1/2)

For
$$3/2 < c \le 9/5$$
, $O(c) = 1/c$

Theorem

For any $3/2 < c \le 9/5$: FFO is a $\frac{3+c}{3}$ -competitive algorithm for BPOC.

Proof.

• o: average overload= overload/ k_1 , $0 \le o \le 1/c$

$$cost_{FFO} = k + c \cdot k_1 \cdot o$$

$$?? \quad \frac{cost_{FFO}}{cost_{OPT}}$$

Kelin Luo (TU/e)

< < >> < <</p>

Upper Bound when $3/2 < c \le 9/5$ (2/2)

Known:
$$cost_{FFO} = k + c \cdot k_1 \cdot o$$

Proof.

•
$$k_2 \ge 1$$
: $cost_{OPT} > k_1 + k_1 \cdot o + \frac{1+1/c}{2}(k-k_1)$ (Obs. 2)

$$\frac{cost_{FFO}}{cost_{OPT}} \le \frac{k + c \cdot k_1 \cdot o}{k_1 + k_1 \cdot o + (1/2 + 1/(2c))(k - k_1)} \le (3 + c)/3$$

(日)

Upper Bound when $3/2 < c \le 9/5$ (2/2)

Known:
$$cost_{FFO} = k + c \cdot k_1 \cdot o$$

Proof.

•
$$k_2 \ge 1$$
: $cost_{OPT} > k_1 + k_1 \cdot o + \frac{1+1/c}{2}(k-k_1)$ (Obs. 2)

$$\frac{cost_{FFO}}{cost_{OPT}} \le \frac{k + c \cdot k_1 \cdot o}{k_1 + k_1 \cdot o + (1/2 + 1/(2c))(k - k_1)} \le (3 + c)/3$$

• $k_2 = 0$: $cost_{OPT} > k_1 + min\{k_1 \cdot o, (k_1 - 1) \cdot o + \frac{1}{c}\}$ (Obs. 1)

$$\frac{\textit{cost}_{\textit{FFO}}}{\textit{cost}_{\textit{OPT}}} \leq \frac{k_1 + c \cdot k_1 \cdot o + 1}{k_1 + k_1 \cdot o} < (3 + c)/3$$

< □ > < □ > < □ > < □ > < □ > < □ >

(Recall) Intuition of Upper Bound proof

- **Idea:** Estimate the total item size based on the solution of FFO Bound cost of an optimal solution by $cost_{OPT} \ge$ total item size Partition the set of bins used by FFO:
 - k_1 : bins with total size [1, 1 + O(c)]
 - k_2 : bins with total size $\left[\frac{1+O(c)}{2},1\right)$
 - $k_3 \leq 1$: bins with total size $(0, \frac{1+O(c)}{2})$

Optimal cost: more bins with overload cost, more total item size

Partition k_2 bins with size $\left[\frac{1+O(c)}{2}, 1\right)$ by FFO:

- k_{21} : bins with total size $[\frac{3(1+O(c))}{4}, 1)$
- k_{22} : bins with total size $\left[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4}\right)$

• k_{23} : bins with total size $[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3})$

Observation

Except the earliest opened bin of
$$k_{22} + k_{23}$$
:
• Obs 3. Bin size $\left[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4}\right)$: ≤ 2 items, size $> \frac{1+O(c)}{4}$
• Obs 4. Bin size $\left[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3}\right)$: 1 item, size $> \frac{1+O(c)}{2}$

$$\left[\frac{2(1+O(c))}{3},\frac{3(1+O(c))}{4}\right)$$

Observation

Except the earliest opened bin of
$$k_{22} + k_{23}$$
:
• Obs 3. Bin size $\left[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4}\right)$: ≤ 2 items, size $> \frac{1+O(c)}{4}$
• Obs 4. Bin size $\left[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3}\right)$: 1 item, size $> \frac{1+O(c)}{2}$

$$\left[\frac{2(1+O(c))}{3}, \frac{5(1+O(c))}{4}\right]$$

Observation

Except the earliest opened bin of
$$k_{22} + k_{23}$$
:
• Obs 3. Bin size $[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4})$: ≤ 2 items, size $> \frac{1+O(c)}{4}$
• Obs 4. Bin size $[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3})$: 1 item, size $> \frac{1+O(c)}{2}$

$$\left[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3}\right)$$

Observation

Except the earliest opened bin of
$$k_{22} + k_{23}$$
:
• Obs 3. Bin size $[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4})$: ≤ 2 items, size $> \frac{1+O(c)}{4}$
• Obs 4. Bin size $[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3})$: 1 item, size $> \frac{1+O(c)}{2}$

$$\left[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3}\right)$$

Kelin Luo (TU/e)

June 2, 2021 29 / 43

Observation

Except the earliest opened bin of
$$k_{22} + k_{23}$$
:
• Obs 3. Bin size $[\frac{2(1+O(c))}{3}, \frac{3(1+O(c))}{4})$: ≤ 2 items, size $> \frac{1+O(c)}{4}$
• Obs 4. Bin size $[\frac{1+O(c)}{2}, \frac{2(1+O(c))}{3})$: 1 item, size $> \frac{1+O(c)}{2}$

Optimal cost:

- Large item: bound the number of large items in each bin
- Small item: cost \approx size

For
$$c > 14/3$$
, $O(c) = \frac{1}{3c}$

(日)

For
$$c > 14/3$$
, $O(c) = \frac{1}{3c}$

Lemma 1

For items in $k_{23} + k_3$ bins, the optimal cost $\geq \frac{2}{3}(k_{23} + k_3)$.

Proof.

- Except the earliest opened bin, each has exactly 1 item
- Any two bin's item has size $> 1 + \frac{1}{3c}$, cost > 4/3

 \implies Each bin's item has cost $> \frac{2}{3}$

FFO algorithm: when c > 14/3, $O(c) = \frac{1}{3c}$

Lemma 2

- Except one bin, k_{22} bins each has ≤ 2 items
- k₂₃ bins each has 1 item

FFO algorithm: when c > 14/3, $O(c) = \frac{1}{3c}$ For item size > 1 + O(c), cost > $1 + c \times \frac{1}{3c} = \frac{4}{3}$

Lemma 2

FFO algorithm: when c > 14/3, $O(c) = \frac{1}{3c}$ For item size> 1 + O(c), cost > $1 + c \times \frac{1}{3c} = \frac{4}{3}$

Lemma 2

FFO algorithm: when c > 14/3, $O(c) = \frac{1}{3c}$ For item size > 1 + O(c), cost > $1 + c \times \frac{1}{3c} = \frac{4}{3}$

Lemma 2

FFO algorithm: when c > 14/3, $O(c) = \frac{1}{3c}$ For item size> 1 + O(c), cost > $1 + c \times \frac{1}{3c} = \frac{4}{3}$

Lemma 2

FFO algorithm: when c > 14/3, $O(c) = \frac{1}{3c}$ For item size > 1 + O(c), cost > $1 + c \times \frac{1}{3c} = \frac{4}{3}$

Lemma 2

For items in $k_{22} + k_{23}$ bins, the optimal cost $\geq \frac{2}{3}(k_{22} + k_{23} - 1)$.

FFO algorithm: when c > 14/3, $O(c) = \frac{1}{3c}$ For item size > 1 + O(c), cost > $1 + c \times \frac{1}{3c} = \frac{4}{3}$

Lemma 2

For
$$c > 14/3$$
, $O(c) = \frac{1}{3c}$

Theorem

For any c > 14/3: FFO is a 7/4 -competitive algorithm for BPOC.

Proof.

Wlog, suppose the size of items in $k_1 + k_{21}$ is small. Size of small items $\geq k_1 + k_1 \cdot o + \frac{3(1+O(c))}{4}k_{21}$

Analyze $cost_{OPT}$ by distinguish $k_{23} + k_3$ and $k_{22} + k_{23}$ using:

- Items in $k_{23} + k_3$, the optimal cost $\geq \frac{2}{3}(k_{23} + k_3)$
- Items in $k_{22} + k_{23}$, the optimal cost $\geq \frac{2}{3}(k_{22} + k_{23} 1)$

Content

イロト イヨト イヨト イ

Setting

- Item p has size p ∈ (0, 1] arrives one by one
 Each item must be placed into a bin before the next item arrives
- Bin: extensible, overload cost function f(x) infinite number of identical bins

Sup. total size of items in bin *i* is w_i , $cost_i = 1 + f(w_i - 1)$

Goal: Pack item into a bin with the minimum cost

Theorem

For any convex cost function f: no deterministic online algorithm for BPOC can achieve a competitive ratio smaller than g.

Theorem for convex overload cost

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h(f^{-1}(\cdot))(1 + f^{-1}(\cdot))$ -competitive algorithm for BPOC.

Theorem for convex overload cost function

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h(f^{-1}(\cdot))(1 + f^{-1}(\cdot))$ -competitive algorithm for BPOC.

Theorem for convex overload cost function

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h(f^{-1}(\cdot))(1 + f^{-1}(\cdot))$ -competitive algorithm for BPOC.

 $OPT' \ge h \cdot FFO' \ge h \cdot FFO$

 $\textit{OPT} \geq \textit{OPT}'' \geq (1 + f^{-1}(\cdot)) \cdot \textit{OPT}'$

Theorem for convex overload cost function

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h(f^{-1}(\cdot))(1 + f^{-1}(\cdot))$ -competitive algorithm for BPOC.

 $OPT' \ge h \cdot FFO' \ge h \cdot FFO$ $OPT \ge OPT'' \ge (1 + f^{-1}(\cdot)) \cdot OPT'$

 $\rightarrow OPT \geq h \cdot (1 + f^{-1}(\cdot)) \cdot FFO$

Theorem for convex overload cost

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h(f^{-1}(\cdot))(1+f^{-1}(\cdot))$ -competitive algorithm for BPOC.

For $f^{-1}(1/3) < \frac{1}{14}$, we have $h(f^{-1}(\cdot)) = \frac{7}{4}$ Competitive ratio: $\frac{7}{4} \cdot (1 + f^{-1}(\frac{1}{3})) < \frac{15}{8} < 2$

Theorem for convex overload cost

For any convex cost function f with $f^{-1}(1) \leq \frac{2}{3}$: FFO with overload $f^{-1}(\cdot)$ is a $h(f^{-1}(\cdot))(1+f^{-1}(\cdot))$ -competitive algorithm for BPOC.

For $f^{-1}(1/3) < \frac{1}{14}$, we have $h(f^{-1}(\cdot)) = \frac{7}{4}$ Competitive ratio: $\frac{7}{4} \cdot (1 + f^{-1}(\frac{1}{3})) < \frac{15}{8} < 2$

-

・ロト ・ 日 ト ・ 目 ト ・

Absolute competitive analysis for BPOC Apply LBs and UBs to more general cost functions

Future direction:

- Gap between lower bound and upper bound
- Asymptotic competitive analysis

Thank you!