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Introduction Structural Results Techniques

The Bin Packing Problem

Given a set of item sizes s1, . . . , sd ∈ (0,1] and multiplicities
b1, . . . ,bd of the corresponding item sizes.
Objective: Find a packing into as few unit sized bins as
possible.

Example:

Item sizes: s1 = 1
5 , s2 = 1

3
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1
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Multiplicities: b1 = 5,b2 = 5
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The Knapsack Polytopes
The Knapsack polytope

P = {x ∈ Rd | s1x1 + . . .+ sdxd ≤ 1, x ≥ 0}

for given sizes s1, . . . , sd ∈ (0,1].

Example

p1 p2 x1

x2

P

P = {x ∈ R2 | 1
5x1 + 1

3x2 ≤ 1, x ≥ 0}

p1

p2
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Geometric Interpretation

Consider a multiplicity λp for each p ∈ P ∩ Zd .
Every solution of the bin packing problem can be written as a
sum ∑

p∈P∩Zd λpp = b.

p1 p2 p2 p1

p2

b
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Integer Programming Formulation

Observation
The vector (xp)p∈P∩Zd belongs to the system

min
∑

p∈P∩Zd

xp∑
p∈P∩Zd

xppi = bi for all 1 ≤ i ≤ d

x ∈ ZP∩Zd

≥0
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Integer Points in the Knapsack Polytope

x1

x2

P

The number of integer points p ∈ P ∩ Zd is bounded by
O((1

s )d ), where s is the smallest item size.
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Integer Programming Formulation

Observation

∑
p∈P∩Zd

xp = m∑
p∈P∩Zd

xppi = bi for all 1 ≤ i ≤ d

x ∈ ZP∩Zd

≥0

Using Lenstra: Running time of roughly O((1
s )d ·( 1

s )d
).
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Structural Properties

Arguing about the set of possible solutions λ ∈ ZP∩Zd

≥0 .

b
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The Structure of Solutions

Theorem (Eisenbrand, Shmonin)
There exists an integral vector λ ∈ ZP∩Zd

≥0 with∑
p∈P∩Zd λpp = b and

|supp(λ)| ≤ 2d .
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The Structure of Solutions

Theorem (Goemans, Rothvoß)
There exists a set X ⊆ P ∩ Zd with |X | ≤ dO(d)(log ∆)d such
that for any point b ∈ Zd , there exists an integral vector
λ ∈ ZP∩Zd

≥0 such that b =
∑

p∈P∩Zd λpp and

1. λp ≤ 1 ∀p ∈ (P ∩ Zd ) \ X
2. |supp(λ) ∩ X | ≤ 22d

3. |supp(λ) \ X | ≤ 22d

Theorem (Goemans, Rothvoß)
Bin packing/makespan scheduling with d different item sizes
can be solved in time (log ∆)2O(d)

, where ∆ is the maximum
over all multiplicities b and denominators in s.



Introduction Structural Results Techniques

The Structure of Solutions

Theorem (Goemans, Rothvoß)
There exists a set X ⊆ P ∩ Zd with |X | ≤ dO(d)(log ∆)d such
that for any point b ∈ Zd , there exists an integral vector
λ ∈ ZP∩Zd

≥0 such that b =
∑

p∈P∩Zd λpp and

1. λp ≤ 1 ∀p ∈ (P ∩ Zd ) \ X
2. |supp(λ) ∩ X | ≤ 22d

3. |supp(λ) \ X | ≤ 22d

Theorem (Goemans, Rothvoß)
Bin packing/makespan scheduling with d different item sizes
can be solved in time (log ∆)2O(d)

, where ∆ is the maximum
over all multiplicities b and denominators in s.



Introduction Structural Results Techniques

Integer Programming Formulation

Algorithm by Goemans and Rothvoß

I Guess the support X̂ in X with |X̂ | ≤ 22d .
I Solve the following IP:

∑
p∈X̂

λpp +
22O(d)∑

i=1

q(i) = b

d∑
j=1

sjq
(i)
j ≤ 1 for each q(i)

λ ∈ ZX̂
≥0, q(i) ∈ Zd

≥0
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Vertices of the Integer Polytope

Integer Polytope PI = Conv(P ∩ Zd )

s1

s2

PI

x1 = 3
14

x2 = 2
7

Theorem (Cook, Hartmann, Kannan, McDiarmid)
For polytope P = {x ∈ Rd | Ax ≤ c} the integer polytope PI
has at most md ·O((log ∆)d ) vertices.
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Structure Theorem

Theorem (Jansen, K.)
Let VI ⊆ P ∩ Zd be the set of vertices of the integer polytope
PI . Then for any vector b ∈ Zd , there exists an integral vector
λ ∈ ZP∩Zd

≥0 such that b =
∑

p∈P∩Zd λpp and

1. λp ≤ 22O(d) ∀p ∈ (P ∩ Zd ) \ VI

2. |supp(λ) ∩ VI | ≤ d · 2d

3. |supp(λ) \ VI | ≤ 22d

Theorem (Jansen, K.)
The bin packing problem can be solved in time
|VI |2

O(d) · (log ∆)O(1) and hence in fpt-time, parameterized by the
number of vertices VI .
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Consider the case that PI is a simplex with vertices
B = {B0,B1, . . . ,Bd} ⊂ Zd .

Given solution λ ∈ ZP∩Zd

≥0 with
b =

∑
p∈B λpp +

∑
p∈(P∩Zd )\B λpp.

Main Issue
How do we handle large multiplicities λγ with γ 6∈ B?
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Moving Weight into the Basis

B1

B2
B0 = 0

γ

2γ

3γ

4γ

Can we move weight from a multiplicity λγ ∈ 22Ω(d)
to the

vertices B1, . . . ,Bd?
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The Fundamental Parallelepiped

Π = {x0B0 + x1B1 + . . .+ xdBd | xi ∈ [0,1]}

B1

B2

B0 = 0

γ
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Partitioning the Cone

Cone(B) = {
∑
p∈B

λpp + Π | λ ∈ ZB≥0}

B1

B2

B0 = 0

γ Π
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Partitioning the Cone
Suppose for a multiplicity K ∈ Z>1 and some λ ∈ ZB≥0 that

Kγ ∈ P +
∑
p∈B

λpp

B1

B2
B0 = 0

γ

2γ

3γ
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Partitioning the Cone
Then Kγ can be written as

Kγ = γ′ +
∑
p∈B

λpp

for some γ′ ∈ P ∩ Zd

B1

B2
B0 = 0

3γ
γ′

3γ = γ′ + B1 + B2
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Integrality of γ′

γ′ = Kγ︸︷︷︸
∈Zd

−
∑
p∈B

λpp︸ ︷︷ ︸
∈Zd

B1

B2
B0 = 0

3γ
γ′

3γ = γ′ + B1 + B2
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Conclusion:
If there exists a multiplicity K > 1 such that

Kγ ∈ P +
∑
p∈B

λpp

then more weight can be shifted into the basis B.
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γ ∈ P ⇔ there exists x ∈ [0,1]d+1 with B(x) = γ and
∑

xi = 1

Splitting Kx into the integral part bKxc and the fractional part
{Kx}.

(bKxc)i = bKxic

{Kx} = Kx − bKxc

Kγ = KBx = B(Kx) = B(bKxc+ {Kx})
= B(bKxc)︸ ︷︷ ︸

=
∑

p∈B λpp

+B({Kx})︸ ︷︷ ︸
∈Π
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Condition
Kγ ∈ P +

∑
p∈B λpp ⇔

∑
{Kx}i = 1
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Example

x =


0.3
0.4
0.1
0.2


︸ ︷︷ ︸∑

=1

,

{2x} =


0.6
0.8
0.2
0.4


︸ ︷︷ ︸∑

>1

, {3x} =


0.9
0.2
0.3
0.6


︸ ︷︷ ︸∑

>1

,{4x} =


0.2
0.6
0.3
0.6


︸ ︷︷ ︸∑

>1

,

{5x} =


0.5
0.0
0.5
0.0


︸ ︷︷ ︸∑

=1
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Directed Diophantine Approximation:

Lemma
For given vector x ∈ Rd

≥0 there exists a multiplicity K ≤ 22O(d)

such that ∑
{Kx}i = 1.



Introduction Structural Results Techniques

A Sketch of the Proof:

Suppose the components of x are sorted by their sizes i.e.

x1 ≥ x2 ≥ . . . ≥ xd .

I Is there a component d ′ with a big jump in size i.e.
xd ′ > xd ′+1

∏d ′

i=1
1
xi

?

I Partition [0,1]d
′

into boxes Bx by partitioning each
component 1 ≤ i ≤ d ′ into intervals [kxi , (k + 1)xi) for
1 ≤ k ≤ b 1

xi
c.

I There are at most 22O(d)
many boxes Bx .
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A Sketch of the Proof:

There exist two multiplicities K ,K ′ ∈ 22O(d)
with K ′ > K > 1 and

a box Bx ⊂ [0,1]d
′

such that

{Kx}, {K ′x} ∈ Bx .

It holds that
I (K ′ − K + 1)xi ≥ 0,
I

∑
{Kx}i =

∑
{K ′x}i ,

Hence, ∑
{(K ′ − K + 1)x}i = 1
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Integer Programming Formulation

Algorithm by Goemans and Rothvoß

I Guess the support X̂ in VI with |X̂ | ≤ 22d .
I Solve the following IP:

∑
p∈X̂

λpp +
22O(d)∑

i=1

q(i) = b

d∑
j=1

sjq
(i)
j ≤ 1 for each q(i)

λ ∈ ZX̂
≥0, q(i) ∈ Zd

≥0
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Guessing the support of X̂

Using information from the solution of the relaxed linear
program.

s1

s2

PI

b

b
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Conjecture:

Proximity
Given basic feasible solution x of the relaxed linear program.
Then there exists an integral solution y such that

‖x − y‖1 ≤ f (d)

for some function f .
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Main Open Question:

I Is there an fpt-algorithm for the bin packing/makespan
scheduling problem parameterized by d?

I What about other objectives?
I Allowing an ε error in makespan scheduling.
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