Structural Properties of High-Multiplicity Bin Packing

Klaus Jansen¹ Kim-Manuel Klein¹

¹University of Kiel

BP Seminar 2021

The Bin Packing Problem

Given a set of item sizes $s_1, \ldots, s_d \in (0, 1]$ and multiplicities b_1, \ldots, b_d of the corresponding item sizes. Objective: Find a packing into as few unit sized bins as possible.

The Bin Packing Problem

Given a set of item sizes $s_1, \ldots, s_d \in (0, 1]$ and multiplicities b_1, \ldots, b_d of the corresponding item sizes. Objective: Find a packing into as few unit sized bins as possible.

Example:

Item sizes:
$$s_1 = \frac{1}{5}, s_2 = \frac{1}{3}$$

Multiplicities: $b_1 = 5, b_2 = 5$

Item sizes:
$$s_1 = \frac{1}{5}, s_2 = \frac{1}{3}$$

Multiplicities: $b_1 = 5, b_2 = 5$

1

Item sizes:
$$s_1 = \frac{1}{5}, s_2 = \frac{1}{3}$$

Multiplicities: $b_1 = 5, b_2 = 5$

Solution

The Knapsack Polytopes

The Knapsack polytope

$$\mathcal{P} = \{x \in \mathbb{R}^d \mid s_1 x_1 + \ldots + s_d x_d \leq 1, x \geq 0\}$$

for given sizes $s_1, \ldots, s_d \in (0, 1]$. Example

Geometric Interpretation

Consider a multiplicity λ_p for each $p \in \mathcal{P} \cap \mathbb{Z}^d$.

Every solution of the bin packing problem can be written as a sum

$$\sum_{\boldsymbol{p}\in\mathcal{P}\cap\mathbb{Z}^d}\lambda_{\boldsymbol{p}}\boldsymbol{p}=\boldsymbol{b}.$$

Integer Programming Formulation

Observation The vector $(x_p)_{p \in \mathcal{P} \cap \mathbb{Z}^d}$ belongs to the system

$$\min \sum_{\substack{p \in \mathcal{P} \cap \mathbb{Z}^d \\ p \in \mathcal{P} \cap \mathbb{Z}^d}} x_p p_i = b_i \quad \text{for all } 1 \le i \le d$$
$$x \in \mathbb{Z}_{\ge 0}^{\mathcal{P} \cap \mathbb{Z}^d}$$

Integer Points in the Knapsack Polytope

The number of integer points $p \in \mathcal{P} \cap \mathbb{Z}^d$ is bounded by $O((\frac{1}{s})^d)$, where *s* is the smallest item size.

Integer Programming Formulation

Observation

$$\sum_{\substack{p \in \mathcal{P} \cap \mathbb{Z}^d \\ p \in \mathcal{P} \cap \mathbb{Z}^d}} x_p p_i = b_i \quad \text{for all } 1 \le i \le d$$
$$x \in \mathbb{Z}_{\ge 0}^{\mathcal{P} \cap \mathbb{Z}^d}$$

Using Lenstra: Running time of roughly $O((\frac{1}{s})^{d \cdot (\frac{1}{s})^d})$.

Structural Properties

Arguing about the set of possible solutions $\lambda \in \mathbb{Z}_{>0}^{\mathcal{P} \cap \mathbb{Z}^d}$.

The Structure of Solutions

Theorem (Eisenbrand, Shmonin)

There exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^d}$ with $\sum_{p \in \mathcal{P} \cap \mathbb{Z}^d} \lambda_p p = b$ and

 $|supp(\lambda)| \leq 2^d$.

The Structure of Solutions

Theorem (Goemans, Rothvoß)

There exists a set $X \subseteq \mathcal{P} \cap \mathbb{Z}^d$ with $|X| \leq d^{O(d)} (\log \Delta)^d$ such that for any point $b \in \mathbb{Z}^d$, there exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^d}$ such that $b = \sum_{p \in \mathcal{P} \cap \mathbb{Z}^d} \lambda_p p$ and

1.
$$\lambda_{p} \leq 1$$
 $\forall p \in (\mathcal{P} \cap \mathbb{Z}^{d}) \setminus X$

- 2. $|supp(\lambda) \cap X| \leq 2^{2d}$
- 3. $|supp(\lambda) \setminus X| \leq 2^{2d}$

The Structure of Solutions

Theorem (Goemans, Rothvoß)

There exists a set $X \subseteq \mathcal{P} \cap \mathbb{Z}^d$ with $|X| \leq d^{O(d)} (\log \Delta)^d$ such that for any point $b \in \mathbb{Z}^d$, there exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^d}$ such that $b = \sum_{p \in \mathcal{P} \cap \mathbb{Z}^d} \lambda_p p$ and

1.
$$\lambda_{m{
ho}} \leq 1$$
 $\forall m{
ho} \in (\mathcal{P} \cap \mathbb{Z}^d) \setminus X$

2.
$$|supp(\lambda) \cap X| \leq 2^{2d}$$

3.
$$|supp(\lambda) \setminus X| \leq 2^{2d}$$

Theorem (Goemans, Rothvoß)

Bin packing/makespan scheduling with d different item sizes can be solved in time $(\log \Delta)^{2^{O(d)}}$, where Δ is the maximum over all multiplicities b and denominators in s.

Integer Programming Formulation

Algorithm by Goemans and Rothvoß

- Guess the support \hat{X} in X with $|\hat{X}| \leq 2^{2d}$.
- Solve the following IP:

$$\sum_{eta \in \hat{X}} \lambda_{eta} eta + \sum_{i=1}^{2^{2^{\mathcal{O}(d)}}} eta^{(i)} = eta \ \sum_{j=1}^{d} s_j eta^{(i)}_j \le 1 \quad ext{for each } eta^{(i)} \ \lambda \in \mathbb{Z}^{\hat{X}}_{\geq 0}, \quad eta^{(i)} \in \mathbb{Z}^d_{\geq 0}$$

Vertices of the Integer Polytope

Integer Polytope $\mathcal{P}_I = Conv(\mathcal{P} \cap \mathbb{Z}^d)$

Vertices of the Integer Polytope

Integer Polytope $\mathcal{P}_I = Conv(\mathcal{P} \cap \mathbb{Z}^d)$

Theorem (Cook, Hartmann, Kannan, McDiarmid) For polytope $\mathcal{P} = \{x \in \mathbb{R}^d \mid Ax \leq c\}$ the integer polytope \mathcal{P}_I has at most $m^d \cdot O((\log \Delta)^d)$ vertices.

Structure Theorem

Theorem (Jansen, K.)

Let $V_I \subseteq \mathcal{P} \cap \mathbb{Z}^d$ be the set of vertices of the integer polytope \mathcal{P}_I . Then for any vector $b \in \mathbb{Z}^d$, there exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^d}$ such that $b = \sum_{p \in \mathcal{P} \cap \mathbb{Z}^d} \lambda_p p$ and 1. $\lambda_p \leq 2^{2^{O(d)}} \quad \forall p \in (\mathcal{P} \cap \mathbb{Z}^d) \setminus V_I$ 2. $|supp(\lambda) \cap V_I| \leq d \cdot 2^d$ 3. $|supp(\lambda) \setminus V_I| \leq 2^{2d}$

Structure Theorem

Theorem (Jansen, K.)

Let $V_I \subseteq \mathcal{P} \cap \mathbb{Z}^d$ be the set of vertices of the integer polytope \mathcal{P}_I . Then for any vector $b \in \mathbb{Z}^d$, there exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^d}$ such that $b = \sum_{p \in \mathcal{P} \cap \mathbb{Z}^d} \lambda_p p$ and 1. $\lambda_p \leq 2^{2^{O(d)}} \quad \forall p \in (\mathcal{P} \cap \mathbb{Z}^d) \setminus V_I$

- 2. $|supp(\lambda) \cap V_l| \leq d \cdot 2^d$
- 3. $|supp(\lambda) \setminus V_l| \leq 2^{2d}$

Theorem (Jansen, K.)

The bin packing problem can be solved in time $|V_l|^{2^{O(d)}} \cdot (\log \Delta)^{O(1)}$ and hence in fpt-time, parameterized by the number of vertices V_l .

Consider the case that \mathcal{P}_l is a simplex with vertices $\mathcal{B} = \{B_0, B_1, \dots, B_d\} \subset \mathbb{Z}^d$.

Given solution $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^d}$ with $b = \sum_{p \in \mathcal{B}} \lambda_p p + \sum_{p \in (\mathcal{P} \cap \mathbb{Z}^d) \setminus \mathcal{B}} \lambda_p p$.

Main Issue

How do we handle large multiplicities λ_{γ} with $\gamma \notin \mathcal{B}$?

Moving Weight into the Basis

Can we move weight from a multiplicity $\lambda_{\gamma} \in 2^{2^{\Omega(d)}}$ to the vertices B_1, \ldots, B_d ?

The Fundamental Parallelepiped

$$\Pi = \{x_0B_0 + x_1B_1 + \ldots + x_dB_d \mid x_i \in [0, 1]\}$$

Partitioning the Cone

Techniques

Partitioning the Cone

Suppose for a multiplicity $K \in \mathbb{Z}_{>1}$ and some $\lambda \in \mathbb{Z}_{>0}^{\mathcal{B}}$ that

Partitioning the Cone

Then $K\gamma$ can be written as

$$K\gamma = \gamma' + \sum_{p \in \mathcal{B}} \lambda_p p$$

for some $\gamma' \in \mathcal{P} \cap \mathbb{Z}^d$

Partitioning the Cone

Then $K\gamma$ can be written as

$$K\gamma = \gamma' + \sum_{p \in \mathcal{B}} \lambda_p p$$

Integrality of γ'

Conclusion:

If there exists a multiplicity K > 1 such that

$$K\gamma \in \mathcal{P} + \sum_{p \in \mathcal{B}} \lambda_p p$$

then more weight can be shifted into the basis \mathcal{B} .

 $\gamma \in \mathcal{P} \Leftrightarrow$ there exists $x \in [0, 1]^{d+1}$ with $\mathcal{B}(x) = \gamma$ and $\sum x_i = 1$

 $\gamma \in \mathcal{P} \Leftrightarrow$ there exists $x \in [0, 1]^{d+1}$ with $\mathcal{B}(x) = \gamma$ and $\sum x_i = 1$

Splitting Kx into the integral part $\lfloor Kx \rfloor$ and the fractional part $\{Kx\}$.

$$(\lfloor Kx \rfloor)_i = \lfloor Kx_i \rfloor$$

$$\{Kx\} = Kx - \lfloor Kx \rfloor$$

 $\gamma \in \mathcal{P} \Leftrightarrow$ there exists $x \in [0, 1]^{d+1}$ with $\mathcal{B}(x) = \gamma$ and $\sum x_i = 1$

Splitting Kx into the integral part $\lfloor Kx \rfloor$ and the fractional part $\{Kx\}$.

$$(\lfloor Kx \rfloor)_i = \lfloor Kx_i \rfloor$$

$$\{Kx\} = Kx - \lfloor Kx \rfloor$$

$$K\gamma = K\mathcal{B}x = \mathcal{B}(Kx) = \mathcal{B}(\lfloor Kx \rfloor + \{Kx\})$$
$$= \underbrace{\mathcal{B}(\lfloor Kx \rfloor)}_{=\sum_{p \in \mathcal{B}} \lambda_p p} + \underbrace{\mathcal{B}(\{Kx\})}_{\in \Pi}$$

$\begin{array}{ll} \text{Condition} \\ \mathcal{K}\gamma \in \mathcal{P} + \sum_{\boldsymbol{p} \in \mathcal{B}} \lambda_{\boldsymbol{p}} \boldsymbol{p} & \Leftrightarrow & \sum \{\mathcal{K}x\}_i = 1 \end{array}$

$$x = \underbrace{\begin{pmatrix} 0.3\\ 0.4\\ 0.1\\ 0.2 \end{pmatrix}}_{\sum=1},$$

$$x = \underbrace{\begin{pmatrix} 0.3 \\ 0.4 \\ 0.1 \\ 0.2 \end{pmatrix}}_{\sum=1}, \{2x\} = \underbrace{\begin{pmatrix} 0.6 \\ 0.8 \\ 0.2 \\ 0.4 \end{pmatrix}}_{\sum>1},$$

$$x = \underbrace{\begin{pmatrix} 0.3 \\ 0.4 \\ 0.1 \\ 0.2 \end{pmatrix}}_{\sum=1}, \{2x\} = \underbrace{\begin{pmatrix} 0.6 \\ 0.8 \\ 0.2 \\ 0.4 \end{pmatrix}}_{\sum>1}, \{3x\} = \underbrace{\begin{pmatrix} 0.9 \\ 0.2 \\ 0.3 \\ 0.6 \end{pmatrix}}_{\sum>1},$$

$$x = \underbrace{\begin{pmatrix} 0.3 \\ 0.4 \\ 0.1 \\ 0.2 \end{pmatrix}}_{\sum=1}, \{2x\} = \underbrace{\begin{pmatrix} 0.6 \\ 0.8 \\ 0.2 \\ 0.4 \end{pmatrix}}_{\sum>1}, \{3x\} = \underbrace{\begin{pmatrix} 0.9 \\ 0.2 \\ 0.3 \\ 0.6 \end{pmatrix}}_{\sum>1}, \{4x\} = \underbrace{\begin{pmatrix} 0.2 \\ 0.6 \\ 0.3 \\ 0.6 \end{pmatrix}}_{\sum>1},$$

$$x = \underbrace{\begin{pmatrix} 0.3\\0.4\\0.1\\0.2 \end{pmatrix}}_{\sum=1}, \{2x\} = \underbrace{\begin{pmatrix} 0.6\\0.8\\0.2\\0.4 \end{pmatrix}}_{\sum>1}, \{3x\} = \underbrace{\begin{pmatrix} 0.9\\0.2\\0.3\\0.6 \end{pmatrix}}_{\sum>1}, \{4x\} = \underbrace{\begin{pmatrix} 0.2\\0.6\\0.3\\0.6 \end{pmatrix}}_{\sum>1}, \{5x\} = \underbrace{\begin{pmatrix} 0.5\\0.0\\0.5\\0.0 \end{pmatrix}}_{\sum=1}$$

Directed Diophantine Approximation:

Lemma

For given vector $x \in \mathbb{R}^d_{\geq 0}$ there exists a multiplicity $K \leq 2^{2^{O(d)}}$ such that

$$\sum \{Kx\}_i = 1.$$

A Sketch of the Proof:

Suppose the components of *x* are sorted by their sizes i.e.

$$x_1 \geq x_2 \geq \ldots \geq x_d.$$

- ► Is there a component d' with a big jump in size i.e. $x_{d'} > x_{d'+1} \prod_{i=1}^{d'} \frac{1}{x_i}$?
- Partition [0, 1]^{d'} into boxes B_x by partitioning each component 1 ≤ i ≤ d' into intervals [kx_i, (k + 1)x_i) for 1 ≤ k ≤ ⌊1/x_i⌋.
- There are at most $2^{2^{O(d)}}$ many boxes B_x .

Techniques

A Sketch of the Proof:

There exist two multiplicities $K, K' \in 2^{2^{O(d)}}$ with K' > K > 1 and a box $B_x \subset [0, 1]^{d'}$ such that

 $\{\mathbf{K}\mathbf{x}\},\{\mathbf{K}'\mathbf{x}\}\in \mathbf{B}_{\mathbf{x}}.$

It holds that

•
$$(K'-K+1)x_i \geq 0$$
,

$$\blacktriangleright \sum \{Kx\}_i = \sum \{K'x\}_i,$$

Hence,

$$\sum\{(K'-K+1)x\}_i=1$$

Integer Programming Formulation

Algorithm by Goemans and Rothvoß

- Guess the support \hat{X} in V_l with $|\hat{X}| \leq 2^{2d}$.
- Solve the following IP:

$$\sum_{eta \in \hat{X}} \lambda_{eta} eta + \sum_{i=1}^{2^{2^{\mathcal{O}(d)}}} eta^{(i)} = eta \ \sum_{j=1}^{d} s_j eta^{(i)}_j \le 1 \quad ext{for each } eta^{(i)} \ \lambda \in \mathbb{Z}^{\hat{X}}_{\geq 0}, \quad eta^{(i)} \in \mathbb{Z}^d_{\geq 0}$$

Techniques

Guessing the support of \hat{X}

Using information from the solution of the relaxed linear program.

Conjecture:

Proximity

Given basic feasible solution x of the relaxed linear program. Then there exists an integral solution y such that

$$\|x-y\|_1 \leq f(d)$$

for some function *f*.

Main Open Question:

- Is there an fpt-algorithm for the bin packing/makespan scheduling problem parameterized by d?
- What about other objectives?
- Allowing an ϵ error in makespan scheduling.