Structural Properties of High-Multiplicity Bin Packing

Klaus Jansen ${ }^{1}$ Kim-Manuel Klein ${ }^{1}$

${ }^{1}$ University of Kiel

BP Seminar 2021

The Bin Packing Problem

Given a set of item sizes $s_{1}, \ldots, s_{d} \in(0,1]$ and multiplicities b_{1}, \ldots, b_{d} of the corresponding item sizes.
Objective: Find a packing into as few unit sized bins as possible.

The Bin Packing Problem

Given a set of item sizes $s_{1}, \ldots, s_{d} \in(0,1]$ and multiplicities b_{1}, \ldots, b_{d} of the corresponding item sizes.
Objective: Find a packing into as few unit sized bins as possible.

Example:

Item sizes: $s_{1}=\frac{1}{5}, s_{2}=\frac{1}{3}$

Multiplicities: $b_{1}=5, b_{2}=5$

Example:

Item sizes: $s_{1}=\frac{1}{5}, s_{2}=\frac{1}{3}$

Multiplicities: $b_{1}=5, b_{2}=5$

Example:

Item sizes: $s_{1}=\frac{1}{5}, s_{2}=\frac{1}{3}$

Multiplicities: $b_{1}=5, b_{2}=5$

Solution

The Knapsack Polytopes

The Knapsack polytope

$$
\mathcal{P}=\left\{x \in \mathbb{R}^{d} \mid s_{1} x_{1}+\ldots+s_{d} x_{d} \leq 1, x \geq 0\right\}
$$

for given sizes $s_{1}, \ldots, s_{d} \in(0,1]$.
Example

$$
\mathcal{P}=\left\{x \in \mathbb{R}^{2} \left\lvert\, \frac{1}{5} x_{1}+\frac{1}{3} x_{2} \leq 1\right., x \geq 0\right\}
$$

Geometric Interpretation

Consider a multiplicity λ_{p} for each $p \in \mathcal{P} \cap \mathbb{Z}^{d}$.
Every solution of the bin packing problem can be written as a sum

$$
\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} \lambda_{p} p=b
$$

Integer Programming Formulation

Observation
The vector $\left(x_{p}\right)_{p \in \mathcal{P} \cap \mathbb{Z}^{d}}$ belongs to the system

$$
\begin{aligned}
\min \sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} x_{p} & \\
\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} x_{p} p_{i} & =b_{i} \quad \text { for all } 1 \leq i \leq d \\
x & \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^{d}}
\end{aligned}
$$

Integer Points in the Knapsack Polytope

The number of integer points $p \in \mathcal{P} \cap \mathbb{Z}^{d}$ is bounded by $O\left(\left(\frac{1}{s}\right)^{d}\right)$, where s is the smallest item size.

Integer Programming Formulation

Observation

$$
\begin{aligned}
\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} x_{p} & =m \\
\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} x_{p} p_{i} & =b_{i} \quad \text { for all } 1 \leq i \leq d \\
x & \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^{d}}
\end{aligned}
$$

Using Lenstra: Running time of roughly $O\left(\left(\frac{1}{s}\right)^{d \cdot\left(\frac{1}{s}\right)^{d}}\right)$.

Structural Properties

Arguing about the set of possible solutions $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^{d}}$.

The Structure of Solutions

Theorem (Eisenbrand, Shmonin)
There exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^{d}}$ with
$\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} \lambda_{p} p=b$ and

$$
|\operatorname{supp}(\lambda)| \leq 2^{d} .
$$

The Structure of Solutions

Theorem (Goemans, Rothvoß)
There exists a set $X \subseteq \mathcal{P} \cap \mathbb{Z}^{d}$ with $|X| \leq d^{O(d)}(\log \Delta)^{d}$ such that for any point $b \in \mathbb{Z}^{d}$, there exists an integral vector
$\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^{d}}$ such that $b=\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} \lambda_{p} p$ and

1. $\lambda_{p} \leq 1 \quad \forall p \in\left(\mathcal{P} \cap \mathbb{Z}^{d}\right) \backslash X$
2. $|\operatorname{supp}(\lambda) \cap X| \leq 2^{2 d}$
3. $|\operatorname{supp}(\lambda) \backslash X| \leq 2^{2 d}$

The Structure of Solutions

Theorem (Goemans, Rothvoß)
There exists a set $X \subseteq \mathcal{P} \cap \mathbb{Z}^{d}$ with $|X| \leq d^{O(d)}(\log \Delta)^{d}$ such that for any point $b \in \mathbb{Z}^{d}$, there exists an integral vector
$\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^{d}}$ such that $b=\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} \lambda_{p} p$ and

1. $\lambda_{p} \leq 1 \quad \forall p \in\left(\mathcal{P} \cap \mathbb{Z}^{d}\right) \backslash X$
2. $|\operatorname{supp}(\lambda) \cap X| \leq 2^{2 d}$
3. $|\operatorname{supp}(\lambda) \backslash X| \leq 2^{2 d}$

Theorem (Goemans, Rothvoß)

Bin packing/makespan scheduling with d different item sizes can be solved in time $(\log \Delta)^{2^{O(d)}}$, where Δ is the maximum over all multiplicities b and denominators in s.

Integer Programming Formulation

Algorithm by Goemans and Rothvoß

- Guess the support \hat{X} in X with $|\hat{X}| \leq 2^{2 d}$.
- Solve the following IP:

$$
\begin{aligned}
& \sum_{p \in \hat{X}} \lambda_{p} p+\sum_{i=1}^{2^{2^{O(d)}}} q^{(i)}=b \\
& \sum_{j=1}^{d} s_{j} q_{j}^{(i)} \leq 1 \quad \text { for each } q^{(i)} \\
& \lambda \in \mathbb{Z}_{\geq 0}^{\hat{X}}, \quad q^{(i)} \in \mathbb{Z}_{\geq 0}^{d}
\end{aligned}
$$

Vertices of the Integer Polytope

Integer Polytope $\mathcal{P}_{I}=\operatorname{Conv}\left(\mathcal{P} \cap \mathbb{Z}^{d}\right)$

$$
\begin{aligned}
& x_{1}=\frac{3}{14} \\
& x_{2}=\frac{2}{7}
\end{aligned}
$$

Vertices of the Integer Polytope

Integer Polytope $\mathcal{P}_{I}=\operatorname{Conv}\left(\mathcal{P} \cap \mathbb{Z}^{d}\right)$

$$
\begin{aligned}
& x_{1}=\frac{3}{14} \\
& x_{2}=\frac{2}{7}
\end{aligned}
$$

Theorem (Cook, Hartmann, Kannan, McDiarmid) For polytope $\mathcal{P}=\left\{x \in \mathbb{R}^{d} \mid A x \leq c\right\}$ the integer polytope \mathcal{P}_{I} has at most $m^{d} \cdot O\left((\log \Delta)^{d}\right)$ vertices.

Structure Theorem

Theorem (Jansen, K.)
Let $V_{I} \subseteq \mathcal{P} \cap \mathbb{Z}^{d}$ be the set of vertices of the integer polytope \mathcal{P}_{1}. Then for any vector $b \in \mathbb{Z}^{d}$, there exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^{d}}$ such that $b=\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} \lambda_{p} p$ and

1. $\lambda_{p} \leq 2^{2^{0(d)}} \quad \forall p \in\left(\mathcal{P} \cap \mathbb{Z}^{d}\right) \backslash V_{l}$
2. $\left|\operatorname{supp}(\lambda) \cap V_{V}\right| \leq d \cdot 2^{d}$
3. $\left|\operatorname{supp}(\lambda) \backslash V_{l}\right| \leq 2^{2 d}$

Structure Theorem

Theorem (Jansen, K.)
Let $V_{I} \subseteq \mathcal{P} \cap \mathbb{Z}^{d}$ be the set of vertices of the integer polytope \mathcal{P}_{1}. Then for any vector $b \in \mathbb{Z}^{d}$, there exists an integral vector
$\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^{d}}$ such that $b=\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} \lambda_{p} p$ and

1. $\lambda_{p} \leq 2^{2^{O(d)}} \quad \forall p \in\left(\mathcal{P} \cap \mathbb{Z}^{d}\right) \backslash V_{l}$
2. $\left|\operatorname{supp}(\lambda) \cap V_{l}\right| \leq d \cdot 2^{d}$
3. $\left|\operatorname{supp}(\lambda) \backslash V_{I}\right| \leq 2^{2 d}$

Theorem (Jansen, K.)
The bin packing problem can be solved in time $\left|V_{l}\right|^{2^{O(d)}} \cdot(\log \Delta)^{O(1)}$ and hence in fpt-time, parameterized by the number of vertices V_{l}.

Consider the case that \mathcal{P}_{l} is a simplex with vertices $\mathcal{B}=\left\{B_{0}, B_{1}, \ldots, B_{d}\right\} \subset \mathbb{Z}^{d}$.
Given solution $\lambda \in \mathbb{Z}_{>0}^{\mathcal{P} \cap \mathbb{Z}^{d}}$ with
$b=\sum_{p \in \mathcal{B}} \lambda_{p} p+\sum_{p \in\left(\mathcal{P} \cap \mathbb{Z}^{d}\right) \backslash \mathcal{B}} \lambda_{p} p$.
Main Issue
How do we handle large multiplicities λ_{γ} with $\gamma \notin \mathcal{B}$?

Moving Weight into the Basis

Can we move weight from a multiplicity $\lambda_{\gamma} \in 2^{2^{\Omega(d)}}$ to the vertices B_{1}, \ldots, B_{d} ?

The Fundamental Parallelepiped

$$
\Pi=\left\{x_{0} B_{0}+x_{1} B_{1}+\ldots+x_{d} B_{d} \mid x_{i} \in[0,1]\right\}
$$

Partitioning the Cone

$$
\operatorname{Cone}(B)=\left\{\sum_{p \in \mathcal{B}} \lambda_{p} p+\Pi \mid \lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{B}}\right\}
$$

Partitioning the Cone

Suppose for a multiplicity $K \in \mathbb{Z}_{>1}$ and some $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{B}}$ that

$$
K \gamma \in \mathcal{P}+\sum_{p \in \mathcal{B}} \lambda_{p} p
$$

Partitioning the Cone

Then $K \gamma$ can be written as

$$
K \gamma=\gamma^{\prime}+\sum_{p \in \mathcal{B}} \lambda_{p} p
$$

for some $\gamma^{\prime} \in \mathcal{P} \cap \mathbb{Z}^{d}$

Partitioning the Cone

Then $K \gamma$ can be written as

$$
K \gamma=\gamma^{\prime}+\sum_{p \in \mathcal{B}} \lambda_{p} p
$$

for some $\gamma^{\prime} \in \mathcal{P} \cap \mathbb{Z}^{d}$

Integrality of γ^{\prime}

Conclusion:
If there exists a multiplicity $K>1$ such that

$$
K \gamma \in \mathcal{P}+\sum_{p \in \mathcal{B}} \lambda_{p} p
$$

then more weight can be shifted into the basis \mathcal{B}.
$\gamma \in \mathcal{P} \Leftrightarrow$ there exists $x \in[0,1]^{d+1}$ with $\mathcal{B}(x)=\gamma$ and $\sum x_{i}=1$
$\gamma \in \mathcal{P} \Leftrightarrow$ there exists $x \in[0,1]^{d+1}$ with $\mathcal{B}(x)=\gamma$ and $\sum x_{i}=1$
Splitting $K x$ into the integral part $\lfloor K x\rfloor$ and the fractional part $\{K x\}$.

$$
\begin{gathered}
(\lfloor K x\rfloor)_{i}=\left\lfloor K x_{i}\right\rfloor \\
\{K x\}=K x-\lfloor K x\rfloor
\end{gathered}
$$

$\gamma \in \mathcal{P} \Leftrightarrow$ there exists $x \in[0,1]^{d+1}$ with $\mathcal{B}(x)=\gamma$ and $\sum x_{i}=1$
Splitting $K x$ into the integral part $\lfloor K x\rfloor$ and the fractional part $\{K x\}$.

$$
\begin{gathered}
(\lfloor K x\rfloor)_{i}=\left\lfloor K x_{i}\right\rfloor \\
\{K x\}=K x-\lfloor K x\rfloor \\
K \gamma=\underbrace{K \mathcal{B} x=}_{=\sum_{p \in \mathcal{B}} \lambda_{p} p} \mathcal{B}(K x)=\mathcal{B}(\lfloor K x\rfloor+\{K x\}) \\
=\underbrace{\mathcal{B}(\lfloor K x\rfloor)}_{\in \Pi}+\mathcal{B}(\{K x\})
\end{gathered}
$$

Condition
$K \gamma \in \mathcal{P}+\sum_{p \in \mathcal{B}} \lambda_{p} p \quad \Leftrightarrow \quad \sum\{K x\}_{i}=1$

Example

$$
x=\underbrace{\left(\begin{array}{l}
0.3 \\
0.4 \\
0.1 \\
0.2
\end{array}\right)}_{\Sigma=1},
$$

Example

$$
x=\underbrace{\left(\begin{array}{l}
0.3 \\
0.4 \\
0.1 \\
0.2
\end{array}\right)}_{\Sigma=1},\{2 x\}=\underbrace{\left(\begin{array}{l}
0.6 \\
0.8 \\
0.2 \\
0.4
\end{array}\right)}_{\Sigma>1},
$$

Example

$$
x=\underbrace{\left(\begin{array}{l}
0.3 \\
0.4 \\
0.1 \\
0.2
\end{array}\right)}_{\Sigma=1},\{2 x\}=\underbrace{\left(\begin{array}{l}
0.6 \\
0.8 \\
0.2 \\
0.4
\end{array}\right)}_{\Sigma>1},\{3 x\}=\underbrace{\left(\begin{array}{c}
0.9 \\
0.2 \\
0.3 \\
0.6
\end{array}\right)}_{\Sigma>1},
$$

Example

$$
x=\underbrace{\left(\begin{array}{l}
0.3 \\
0.4 \\
0.1 \\
0.2
\end{array}\right)}_{\Sigma=1},\{2 x\}=\underbrace{\left(\begin{array}{l}
0.6 \\
0.8 \\
0.2 \\
0.4
\end{array}\right)}_{\sum>1},\{3 x\}=\underbrace{\left(\begin{array}{c}
0.9 \\
0.2 \\
0.3 \\
0.6
\end{array}\right)}_{\Sigma>1},\{4 x\}=\underbrace{\left(\begin{array}{c}
0.2 \\
0.6 \\
0.3 \\
0.6
\end{array}\right)}_{\Sigma>1},
$$

Example

$$
\begin{aligned}
& x=\underbrace{\left(\begin{array}{l}
0.3 \\
0.4 \\
0.1 \\
0.2
\end{array}\right)}_{\Sigma=1},\{2 x\}=\underbrace{\left(\begin{array}{l}
0.6 \\
0.8 \\
0.2 \\
0.4
\end{array}\right)}_{\Sigma>1},\{3 x\}=\underbrace{\left(\begin{array}{c}
0.9 \\
0.2 \\
0.3 \\
0.6
\end{array}\right)}_{\Sigma>1},\{4 x\}=\underbrace{\left(\begin{array}{l}
0.5 \\
0.6 \\
0.3 \\
0.6
\end{array}\right)}_{\Sigma>1}, \\
& \{5 x\}=\underbrace{\left(\begin{array}{l}
0.0 \\
0.5 \\
0.0
\end{array}\right)}_{\Sigma=1}
\end{aligned}
$$

Directed Diophantine Approximation:

Lemma
For given vector $x \in \mathbb{R}_{\geq 0}^{d}$ there exists a multiplicity $K \leq 2^{2(d)}$ such that

$$
\sum\{K x\}_{i}=1 .
$$

A Sketch of the Proof:

Suppose the components of x are sorted by their sizes i.e.

$$
x_{1} \geq x_{2} \geq \ldots \geq x_{d}
$$

- Is there a component d^{\prime} with a big jump in size i.e.
$x_{d^{\prime}}>x_{d^{\prime}+1} \prod_{i=1}^{d^{\prime}} \frac{1}{x_{i}} ?$
- Partition $[0,1]^{d^{\prime}}$ into boxes B_{x} by partitioning each component $1 \leq i \leq d^{\prime}$ into intervals $\left[k x_{i},(k+1) x_{i}\right)$ for $1 \leq k \leq\left\lfloor\frac{1}{x_{i}}\right\rfloor$.
- There are at most $2^{2^{O(d)}}$ many boxes B_{x}.

A Sketch of the Proof:

There exist two multiplicities $K, K^{\prime} \in 2^{2^{0(d)}}$ with $K^{\prime}>K>1$ and a box $B_{x} \subset[0,1]^{d^{\prime}}$ such that

$$
\{K x\},\left\{K^{\prime} x\right\} \in B_{x}
$$

It holds that

$$
\begin{aligned}
& -\left(K^{\prime}-K+1\right) x_{i} \geq 0 \\
& >\sum\{K x\}_{i}=\sum\left\{K^{\prime} x\right\}_{i}
\end{aligned}
$$

Hence,

$$
\sum\left\{\left(K^{\prime}-K+1\right) x\right\}_{i}=1
$$

Integer Programming Formulation

Algorithm by Goemans and Rothvoß

- Guess the support \hat{X} in V_{l} with $|\hat{X}| \leq 2^{2 d}$.
- Solve the following IP:

$$
\begin{aligned}
& \sum_{p \in \hat{X}} \lambda_{p} p+\sum_{i=1}^{2^{2^{O(d)}}} q^{(i)}=b \\
& \sum_{j=1}^{d} s_{j} q_{j}^{(i)} \leq 1 \quad \text { for each } q^{(i)} \\
& \lambda \in \mathbb{Z}_{\geq 0}^{\hat{X}}, \quad q^{(i)} \in \mathbb{Z}_{\geq 0}^{d}
\end{aligned}
$$

Guessing the support of \hat{X}

Using information from the solution of the relaxed linear program.

Conjecture:

Proximity
Given basic feasible solution x of the relaxed linear program. Then there exists an integral solution y such that

$$
\|x-y\|_{1} \leq f(d)
$$

for some function f.

Main Open Question:

- Is there an fpt-algorithm for the bin packing/makespan scheduling problem parameterized by d ?
- What about other objectives?
- Allowing an ϵ error in makespan scheduling.

