New Algorithmic Results for Scheduling and Bin Packing

Klaus Jansen¹

¹University of Kiel

Joint Work with Lin Chen, Kim-Manuel Klein, Lars Rohwedder, José Verschae and Gouchuan Zhang

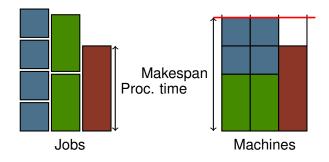
Overview:

Main Topics

- Scheduling on Identical Machines
- Integer Programming
- Bin Packing
- Open Problems

Scheduling on Identical Machines $P||C_{max}$:

- Given: n jobs with processing times p_j
- and *m* machines
- Objective: Minimize makespan (maximum machine load)



Literature:

Complexity

Strongly NP-hard: If $P \neq NP$, then there is no FPTAS.

Known Algorithms

There is a PTAS with running time:

 $n^{O(\frac{1}{\varepsilon^2})}$ [Hochbaum & Shmoys '87]
 $n^{O(\frac{1}{\varepsilon}\log(\frac{1}{\varepsilon}))}$ [Leung 97]

There is an EPTAS with running time:

2^{2^{Õ(¹/ε)}} + O(n log n) [Alon et al. '98 & H. & S. '96]
 2^{Õ(¹/ε²)} + O(n log n) [Jansen '10]

Closing the Gap:

Lower Bound [Chen, Jansen, Zhang '13]

► If the *Exponential Time Hypothesis* holds, there is no EPTAS with running time $2^{(\frac{1}{\epsilon})^{1-\delta}} + \text{poly}(n)$.

Our Main Result:

Theorem [Jansen, Klein, Verschae '16] Minimum makespan scheduling admits an EPTAS with running time

 $2^{\widetilde{O}(\frac{1}{\varepsilon})}+O(n).$

General Strategy:

General scheme for designing a PTAS:

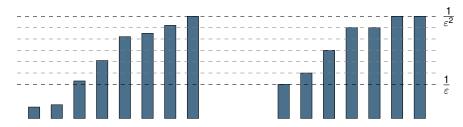
- 1. Guess the makespan T of the optimal solution.
- 2. Round instance \rightsquigarrow (1 + ε) multiplicative loss in objective.
- 3. Solve the rounded instance using an ILP formulation.

Bin Packing

Open Problems

Rounding:

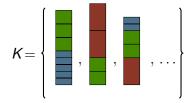
Lemma (Rounding and scaling) $T = 1/\varepsilon^2$ and jobs sizes belong to $\Pi = \{\pi_1, \dots, \pi_d\}$: $\square \subseteq \{\frac{1}{\varepsilon}, \frac{1}{\varepsilon} + 1, \dots, \frac{1}{\varepsilon^2}\}$ and, \rightarrow integer numbers $\square |\Pi| = O(\frac{1}{\varepsilon} \log(\frac{1}{\varepsilon})) = \widetilde{O}(\frac{1}{\varepsilon})$. \rightarrow few sizes



Configurations:

A *configuration* represents one possibility of assigning jobs from Π to a single machine.

Example (The set of configurations)

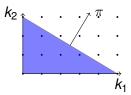


Configurations:

Knapsack polytope

$$\boldsymbol{P} = \{\boldsymbol{k} \in \mathbb{R}_{\geq 0}^{|\boldsymbol{\Pi}|} : \boldsymbol{k}^t \cdot \boldsymbol{\pi} \leq \boldsymbol{T}\}$$

Polyhedral view



Configurations:

Set of configurations

$$K := P \cap \mathbb{Z}_{>0}^{|\Pi|}$$

Observation 1

$$|\mathcal{K}| \leq (\mathcal{T}+1)^{|\Pi|} == 2^{\mathcal{O}(rac{1}{arepsilon}\log^2(rac{1}{arepsilon}))} = 2^{\widetilde{\mathcal{O}}(rac{1}{arepsilon})}.$$

Integer Programming Formulation

Observation 2: The vector $(x_k)_{k \in K}$ belongs to the system

$$\sum_{\substack{k \in K \\ k \in K}} x_k = m$$

$$\sum_{\substack{k \in K \\ k \in K}} k_i x_k = n_i \quad \text{for all } \pi_i \in \Pi$$

$$x \in \mathbb{Z}_{\geq 0}^K$$

of constraints = $\widetilde{O}(\frac{1}{\varepsilon})$ # variables = $2^{\widetilde{O}(\frac{1}{\varepsilon})}$

Solving the ILP, first Approach:

Method [Alon et al. '98] and [Hochbaum & Shmoys '97] uses

Theorem [Kannan '87 / Lenstra '83] An integer program with *N* variables can be solved in time $2^{\tilde{O}(N)} s$ (where *s* is the length of the input).

In our case $N = |K| = 2^{\widetilde{O}(\frac{1}{\varepsilon})}$ and thus the running time is

$$2^{\widetilde{O}(N)}\log(n) = 2^{2^{\widetilde{O}(\frac{1}{\varepsilon})}}\log(n) \leftarrow \text{doubly exponential!}$$

Main Idea: Try to reduce the number of variables.

Solving the ILP, second Approach:

Guess the support [Jansen '10]

Theorem [Eisenbrand & Shmonin '06] There is an optimum sol. x^* for $\{c^t x : Ax = b, x \ge 0, x \text{ integer}\}$ s.t. $|\text{support}(x^*)| \le O(M(\log(M \cdot \Delta)))$ where

- ► *M* = number of constraints,
- Δ = largest coefficient in *A*, *c*.

In our case:

•
$$M = |\Pi| = \widetilde{O}(\frac{1}{\varepsilon})$$
, and $\Delta = \frac{1}{\varepsilon}$

 $|\operatorname{support}(x^*)| \leq \widetilde{O}(\frac{1}{\varepsilon})$

Solving the ILP, second Approach:

Guess the support [Jansen '10]

Algorithm:

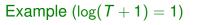
- 1. Try each possible support: there are $\widetilde{O}(\frac{1}{\varepsilon}) \cdot {\binom{|K|}{\widetilde{O}(\frac{1}{\varepsilon})}} = 2^{\widetilde{O}(\frac{1}{\varepsilon^2})}$ many.
- 2. Solve ILP restricted to guessed variables with Kannan's algorithm (running time $2^{\tilde{O}(\frac{1}{\epsilon})} \log(n)$)
- 3. Total running time: $2^{\widetilde{O}(\frac{1}{\epsilon^2})} \log(n)$.

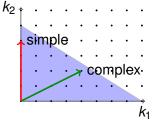
Solving the ILP, third Approach:

Understanding the Optimum

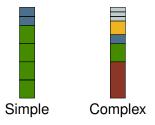
Definition

A configuration k is *complex* if it contains more than log(T + 1) different sizes; o.w. it is *simple*.





Example $(\log(T+1) = 3)$

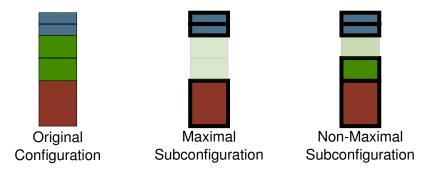


Solving the ILP, third Approach:

Understanding the Optimum

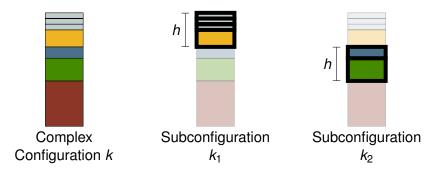
A "subconfiguration" $k' \le k$ of configuration k is called *maximal*

if it contains all possible jobs of each taken size.



Lemma

Every complex conf. $k \in K$ contains two maximal disjoint subconfigurations k_1, k_2 s.t. the total size of k_1 and k_2 coincide.



Lemma

Every complex conf. $k \in K$ contains two maximal disjoint subconfigurations k_1, k_2 s.t. $\pi \cdot k_1 = \pi \cdot k_2$.

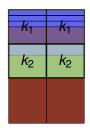
Proof.

- Let $C > \log(T + 1)$ be the number of sizes (colors) in *k*.
- Number of maximal subconfigurations $= 2^C > T + 1$.
- ► Total size of each configuration is in {0, 1, 2, ..., *T*}.
- ► Pigeonhole principle ⇒ there are two maximal subconfigurations of same total size.

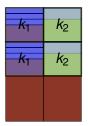
Solving the ILP, third Approach:

Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we can replace it by two other "less complex" configurations.



 $\sim \sim \sim$

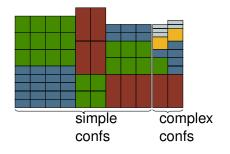


Solving the ILP, third Approach:

Theorem (Thin solutions)

If the ILP is feasible, then there is a solution x^* such that:

- At most $\widetilde{O}(\frac{1}{\varepsilon})$ machines get complex configurations.
- Each complex configuration is used at most once.
- $|support(x^*)| \leq O(|\Pi|\log(|\Pi|T)) = \widetilde{O}(\frac{1}{\varepsilon}).$



Lemma

The number of simple configurations in K is $2^{O(\log^2(\frac{1}{\epsilon}))} = 2^{\widetilde{O}(1)}$.

Proof. Let $D = \log(T + 1)$ and $T = 1/\varepsilon^2$.

$$\begin{split} \text{\# simple conf} &\leq \sum_{i=0}^{D} \binom{|\Pi|}{i} \times (T+1)^{i} \\ &\leq (D+1) |\Pi|^{D} \times (T+1)^{D} \\ &\leq (\frac{1}{\varepsilon} \log(\frac{1}{\varepsilon}))^{O(\log(\frac{1}{\varepsilon}))} \\ &< 2^{O(\log^{2}(\frac{1}{\varepsilon}))} < 2^{\widetilde{O}(1)}. \end{split}$$

Solving the ILP, third Approach: Algorithm

Part 1: Complex Configurations.

- 1. Guess jobs assigned to complex configurations and number of complex machines.
- 2. Solve that subinstance optimally with a dynamic program.

Solving the ILP: Third Approach

Part 2: Remaining Instance.

1. Guess the (simple!) configurations in support:

possibilities
$$\leq egin{pmatrix} \mathbf{2}^{\widetilde{\mathcal{O}}(1)} \ \widetilde{\mathcal{O}}(rac{1}{arepsilon}) \end{pmatrix} = \mathbf{2}^{\widetilde{\mathcal{O}}(rac{1}{arepsilon})}$$

2. For each possibility solve the ILP restricted to those variables with Kannan's algorithm.

Total running time: $2^{\tilde{O}(\frac{1}{\varepsilon})} \log(n)$

Main Result:

Algorithm

Theorem [Jansen, Klein, Verschae '16]

The minimum makespan problem on identical machines admits an EPTAS with running time

$$2^{O(\frac{1}{\varepsilon}\log^4(\frac{1}{\varepsilon}))} = 2^{\widetilde{O}(\frac{1}{\varepsilon})} + O(n).$$

Bin Packing

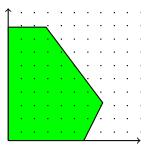
Integer Linear Programming

 $\max c^t x$ Ax = b $x \in \mathbb{Z}_{\geq 0}^n$

where
$$A \in \mathbb{Z}^{M imes N}$$
, $b \in \mathbb{Z}^M$, $c \in \mathbb{Z}^N$.

Considered case

M (#constraints) is a constant, entries of *A* are small ($\leq \Delta$).



Pseudo-polynomial Algorithms

Known Algorithms

There is an algorithm with running time:

- $\blacktriangleright (M(\Delta + \|b\|_{\infty}))^{O(M^2)}$ [Papadimitrou '81]
- ► $N \cdot O(M\Delta)^{2M} \cdot ||b||_{\infty}^2$. [Eisenbrand & Weismantel '18]

Theorem [Jansen & Rohwedder '19]

IP can be solved in time $O(M\Delta)^{2M} \cdot \log(||b||_{\infty}) + O(NM)$. Moreover, improving the exponent to $2M - \delta$ is equivalent to finding a truly subquadratic algorithm for (min, +)-convolution.

Feasibility problem

Theorem [Jansen & Rohwedder '19]

Algorithm with running time: $O(M\Delta)^{M} \cdot \log(\Delta) \cdot \log(\Delta + ||b||_{\infty}) + O(NM)$. Improving exponent to $M - \delta$ would contradict the Strong Exponential Time Hypothesis (SETH).

Previous best result $N \cdot O(M\Delta)^M \cdot ||b||_{\infty}$.

[Eisenbrand & Weismantel '18]

Application P||C_{max}

Configuration IP

$$\begin{array}{ll} \sum_{k \in K} x_k = m \\ \sum_{k \in K} k_i x_k = n_i \quad \forall \pi_i \in \Pi \\ x_k \in \mathbb{Z}_{\geq 0} \qquad \forall k \in K \end{array}$$

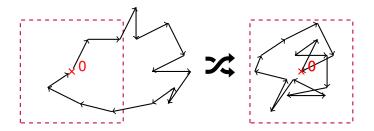
has $M + 1 = O(\frac{1}{\epsilon} \log(\frac{1}{\epsilon}))$ constraints and $N = |K| = 2^{O(\frac{1}{\epsilon})}$ many variables. The value $\Delta = \max_{k,i} k_i \leq \frac{1}{\epsilon}$ and $||b||_{\infty} \leq n$.

New result: Including preprocessing $O(n + \frac{1}{\epsilon} \log(\frac{1}{\epsilon}))$, we get:

$$\begin{array}{l} O(M\Delta)^{M} \cdot \log(\Delta) \cdot \log(\Delta + \|b\|_{\infty}) + O(NM) + O(n + \frac{1}{\epsilon}\log(\frac{1}{\epsilon})) \\ \leq 2^{O(\frac{1}{\epsilon}\log^{2}(\frac{1}{\epsilon}))} \log(n) + O(n) \leq 2^{O(\frac{1}{\epsilon}\log^{2}(\frac{1}{\epsilon}))} + O(n). \end{array}$$

Steinitz Lemma

Let $\|\cdot\|$ be a norm in \mathbb{R}^M and $v^{(1)}, \ldots, v^{(t)} \in \mathbb{R}^M$ with $\|v^{(i)}\| \leq 1$ $\forall i \text{ and } v^{(1)} + \cdots + v^{(t)} = 0$. Then there is a permutation $\pi \in S_t$ with $\|\sum_{i=1}^j v^{(\pi(i))}\| \leq M$ for all $j = 1, \ldots, t$.



Overview

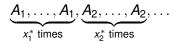
Scheduling

Integer Programming

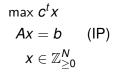
Bin Packing

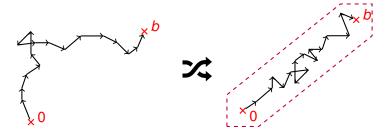
Open Problems

Consider an optimal solution x^* of (IP) and the sequence of column vectors



Recall that $||A_i||_{\infty} \leq \Delta$.





Steinitz for IP (formally)

Corollary

Let $v^{(1)}, \ldots, v^{(t)}$ denote columns of *A* with $\sum_{i=1}^{t} v^{(i)} = b$. Then there exists a permutation $\pi \in S_t$ such that for all $j \in \{1, \ldots, t\}$

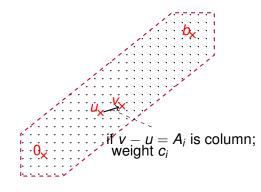
$$\left\|\sum_{i=1}^{j} \mathbf{v}^{(\pi(i))} - j \cdot \mathbf{b}/t\right\|_{\infty} \leq 2M\Delta$$

This follows easily from the Steinitz Lemma: Insert vectors $\frac{v^{(i)}-b/t}{\Delta}$ in the Steinitz Lemma. Notice $\|\frac{v^{(i)}-b/t}{\Delta}\|_{\infty} \leq 2$.

Bin Packing

Open Problems

Eisenbrand & Weismantel



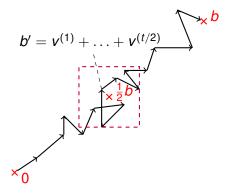
- Every 0 b path gives a feasible solution
- Longest path is optimal
- ► O(M∆)^M · ||b||_∞ vertices
- $N \cdot O(M\Delta)^M \cdot \|b\|_{\infty}$ edges
- Running time: $N \cdot O(M\Delta)^{2M} \cdot ||b||_{\infty}^{2}$

Observation: There is an optimal solution of bounded norm, i.e., $\|x\|_1 \leq O(M\Delta)^M \cdot \|b\|_{\infty}$.

Bin Packing

Open Problems

Our Approach



Let $v^{(1)} + \ldots + v^{(t)} = b$ be columns corresponding to an optimal solution of (IP). Equivalent: $v^{(1)} + \ldots + v^{(t/2)}$ is optimal for $\{\max c^t x, Ax = b', x \in \mathbb{Z}_{\geq 0}^N\}$

and $v^{(t/2+1)} + ... + v^{(t)}$ is for

 $\{\max c^t x, Ax = b - b', x \in \mathbb{Z}_{\geq 0}^N\}.$

If ordered via Steinitz Lemma, b' and b - b' are not far from $\frac{1}{2}b$.

Bin Packing

Assume w.l.o.g. there is an optimal solution x with $||x||_1 = 2^K$, where $K \in \log(O(M\Delta)^M \cdot ||b||_{\infty}) = O(M\log(M\Delta) + \log(||b||_{\infty}))$

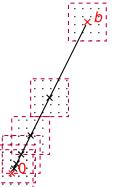
Solve for every i = K, K - 1, ..., 0 and every b' with $\left\| b' - \frac{1}{2^{i}} b \right\|_{L^{2}} \leq 4M\Delta$

the problem

Overview

$$\begin{aligned} \max c^t x \\ Ax &= b' \\ \|x\|_1 &= 2^{K-i} \\ x \in \mathbb{Z}_{\geq 0}^N. \end{aligned}$$

Original problem for i = 0 and b' = b.



Consider iteration i < K and b' with $||b' - 1/2^i \cdot b||_{\infty} \le 4M\Delta$.

Let $v^{(1)}, \ldots, v^{(2^{K-i})}$ be a solution of $\max\{c^t x, Ax = b', \|x\|_1 = 2^{K-i}, x \in \mathbb{Z}_{\geq 0}^N\}$ ordered via Steinitz. Set $b'' := v^{(1)} + \ldots + v^{(2^{K-i-1})}$. Then we obtain

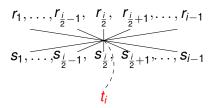
$$\left\|b'' - \frac{1}{2^{i+1}}b\right\|_{\infty} \leq \underbrace{\left\|b'' - \frac{1}{2}b'\right\|_{\infty}}_{\leq 2m\Delta} + \underbrace{\left\|\frac{1}{2}b' - \frac{1}{2^{i+1}}b\right\|_{\infty}}_{\leq 1/2 \cdot 4M\Delta} \leq 4M\Delta$$

Similarly, $\|(b' - b'') - \frac{1}{2^{i+1}}b\|_{\infty} \le 4M\Delta$. Our algorithm: Guess b'' ($O(M\Delta)^M$ candidates), look up solutions for (i + 1, b'') and (i + 1, b' - b''), and take the best.

Merging solutions

(MAX, +)-CONVOLUTION

Input: $r_1, \ldots, r_n \in \mathbb{R}$, $s_1, \ldots, s_n \in \mathbb{R}$ Output: $t_1, \ldots, t_n \in \mathbb{R}$ with $t_i = \max_j [r_j + s_{i-j}]$



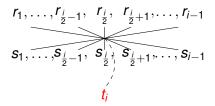
T(n) time algorithm for (min, +)-convolution \Rightarrow $T(O(M\Delta)^M) \cdot O(M \log(M\Delta) + \log(\|b\|_{\infty})) + O(NM)$ for IP.

With $T(n) = O(n^2/\log(n))$: $O(M\Delta)^{2M} \cdot \log(||b||_{\infty}) + O(NM)$.

Feasibility of IP

BOOLEAN-CONVOLUTION

Input: $r_1, ..., r_n \in \{0, 1\},$ $s_1, ..., s_n \in \{0, 1\}$ Output: $t_1, ..., t_n \in \{0, 1\}$ s.t. $t_i = \bigvee_j [r_j \land s_{i-j}]$



Boolean Convolution can be computed in $T(n) = O(n \log n)$.

\Rightarrow Feasibility of IP in time

$$T(O(M\Delta)^M) \cdot (M \log(M\Delta) + \log(\|b\|_{\infty})) + O(NM) = O(M\Delta)^M \cdot \log(\Delta) \cdot \log(\Delta + \|b\|_{\infty}) + O(NM).$$

Bin Packing:

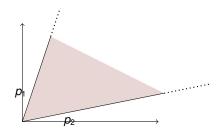
Problem Definition

- d item sizes
- s_i: size of item
- b_i: multiplicity of item size s_i
- Objective: Find a packing into a minimum number of unit bins.

Cone:

Given a set of points $P \subset \mathbb{Z}^d$ then

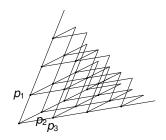
$$\mathcal{C}\textit{one}(\mathcal{P}) = \{\sum_{oldsymbol{p}\in\mathcal{P}}\lambda_{oldsymbol{p}}oldsymbol{p}\mid\lambda\in\mathbb{R}^{\mathcal{P}}_{\geq0}\}$$



Integer Cone:

Given a set of points $P \subset \mathbb{Z}^d$ then

$$\mathit{int.cone}(\mathcal{P}) = \{\sum_{\mathcal{p}\in\mathcal{P}}\lambda_{\mathcal{p}}\mathcal{p} \mid \lambda\in\mathbb{Z}^{\mathcal{P}}_{\geq0}\}$$

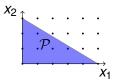


Bin Packing

Integer Cones of Polytopes:

Given Polytope $\mathcal{P} = \{x \in \mathbb{R}^d \mid Ax \leq c\}$ for some matrix $A \in \mathbb{Z}^{m \times d}$ and a vector $c \in \mathbb{Z}^d$.

Knapsack polytope $\mathcal{P} = \{x \in \mathbb{R}^d \mid s_1 x_1 + \dots s_d x_d \leq 1, x \geq 0\}$ for sizes s_1, \dots, s_d .



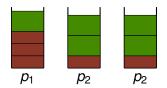
We consider *int*.*cone*($\mathcal{P} \cap \mathbb{Z}^d$).

The Bin Packing Problem:

Given: a set of item sizes $s_1, \ldots, s_d \in (0, 1]$ and multiplicities b_1, \ldots, b_d of the corresponding item sizes. Objective: Find a packing into a minimum number of unit bins.

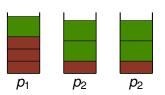
Example:

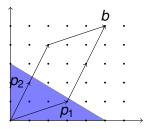
Item sizes: $s_1 = \frac{1}{5}$, $s_2 = \frac{1}{3}$ with multiplicities: $b_1 = 5$, $b_2 = 5$



The Bin Packing Problem:

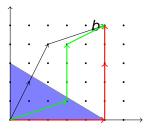
Each vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^d}$ with $\sum_{p \in \mathcal{P} \cap \mathbb{Z}^d} \lambda_p p = b \in int.cone(\mathcal{P} \cap \mathbb{Z}^d)$ represents a possible solution of the bin packing problem.





Structural Properties:

Arguments about the set of possible solutions $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^d}$.



The Structure of the Integer Cone:

Theorem [Eisenbrand, Shmonin '06] For any integral point $b \in int.cone(\mathcal{P} \cap \mathbb{Z}^d)$, there exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^d}$ such that $b = \sum_{p \in \mathcal{P} \cap \mathbb{Z}^d} \lambda_p p$ and $|supp(\lambda)| \leq 2^d$.

The Structure of the Integer Cone:

Theorem [Goemans & Rothvoß'14] There exists a set $X \subseteq \mathcal{P} \cap \mathbb{Z}^d$ with $|X| \leq m^d d^{O(d)} (\log \Delta)^d$ such that for any point $b \in int.cone(\mathcal{P} \cap \mathbb{Z}^d)$, there exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^d}$ such that $b = \sum_{p \in \mathcal{P} \cap \mathbb{Z}^d} \lambda_p p$ and

1.
$$\lambda_{\boldsymbol{
ho}} \leq 1$$
 $\forall \boldsymbol{
ho} \in (\mathcal{P} \cap \mathbb{Z}^d) \setminus X$

2.
$$|supp(\lambda) \cap X| \leq 2^{2a}$$

3.
$$|supp(\lambda) \setminus X| \leq 2^{2d}$$

Theorem [Goemans & Rothvoß'14]

Bin packing with *d* different item sizes can be solved in time $(\log \Delta)^{2^{O(d)}}$, where Δ is the maximum over all multiplicities *b* and denominators in *s*.

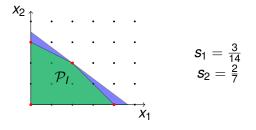
Integer Programming

Bin Packing

Open Problems

Vertices of the Integer Polytope:

Integer Polytope $\mathcal{P}_{l} = Conv(\mathcal{P} \cap \mathbb{Z}^{d})$



Theorem [Cook et al. '92] For a polytope $\mathcal{P} = \{x \in \mathbb{R}^d \mid Ax \leq c\}$ the integer polytope \mathcal{P}_l has at most $m^d \cdot O((\log \Delta)^d)$ vertices.

Our Structure Theorem:

Theorem [Jansen & Klein '17]

Let $V_I \subseteq \mathcal{P} \cap \mathbb{Z}^d$ be the set of vertices of the integer polytope \mathcal{P}_I . Then for any vector $b \in int.cone(\mathcal{P} \cap \mathbb{Z}^d)$, there exists an integral vector $\lambda \in \mathbb{Z}_{>0}^{\mathcal{P} \cap \mathbb{Z}^d}$ such that $b = \sum_{p \in \mathcal{P} \cap \mathbb{Z}^d} \lambda_p p$ and

1.
$$\lambda_{p} \leq 2^{2^{O(d)}} \quad \forall p \in (\mathcal{P} \cap \mathbb{Z}^{d}) \setminus V_{I}$$

- 2. $|supp(\lambda) \cap V_l| \leq d \cdot 2^d$
- 3. $|supp(\lambda) \setminus V_l| \leq 2^{2d}$

Theorem [Jansen & Klein '17]

The bin packing problem can be solved in time $|V_l|^{2^{O(d)}} \cdot (\log \Delta)^{O(1)}$ and hence in *FPT*-time, parameterized by the number of vertices V_l .

Main Open Questions:

- Is there an EPTAS for scheduling on identical machines with running time 2^{O(1/ε)} + O(n)?
- Is there an FPT-algorithm for bin packing parameterized by the number d of different sizes?

Thanks for your attention!