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Overview:

Main Topics

I Scheduling on Identical Machines
I Integer Programming
I Bin Packing
I Open Problems
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Scheduling on Identical Machines P||Cmax :

I Given: n jobs with processing times pj
I and m machines
I Objective: Minimize makespan (maximum machine load)

Proc. time
Makespan

Jobs Machines
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Literature:

Complexity

I Strongly NP-hard: If P 6= NP, then there is no FPTAS.

Known Algorithms
There is a PTAS with running time:

I nO( 1
ε2 ) [Hochbaum & Shmoys ’87]

I nO( 1
ε

log( 1
ε

)) [Leung 97]
There is an EPTAS with running time:

I 22Õ( 1
ε )

+ O(n log n) [Alon et al. ’98 & H. & S. ’96]

I 2Õ( 1
ε2 )

+ O(n log n) [Jansen ’10]
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Closing the Gap:

Lower Bound [Chen, Jansen, Zhang ’13]

I If the Exponential Time Hypothesis holds, there is no
EPTAS with running time 2( 1

ε
)1−δ

+ poly(n).

Our Main Result:

Theorem [Jansen, Klein, Verschae ’16]
Minimum makespan scheduling admits an EPTAS with running
time

2Õ( 1
ε

) + O(n).
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General Strategy:

General scheme for designing a PTAS:

1. Guess the makespan T of the optimal solution.
2. Round instance (1 + ε) multiplicative loss in objective.
3. Solve the rounded instance using an ILP formulation.
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Rounding:

Lemma (Rounding and scaling)
T = 1/ε2 and jobs sizes belong to Π = {π1, . . . , πd}:
I Π ⊆ {1

ε ,
1
ε + 1, . . . , 1

ε2 } and, → integer numbers

I |Π| = O(1
ε log(1

ε )) = Õ(1
ε ). → few sizes

1
ε2

1
ε
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Configurations:

A configuration represents one possibility of assigning jobs
from Π to a single machine.

Example (The set of configurations)

K = , , , . . .
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Configurations:

Knapsack polytope

P = {k ∈ R|Π|≥0 : k t · π ≤ T}

Polyhedral view

k1

k2 π
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Configurations:

Set of configurations

K := P ∩ Z|Π|≥0

Observation 1

|K | ≤ (T + 1)|Π| == 2O( 1
ε

log2( 1
ε

)) = 2Õ( 1
ε

).
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Integer Programming Formulation

Observation 2:
The vector (xk )k∈K belongs to the system

∑
k∈K

xk = m∑
k∈K

kixk = ni for all πi ∈ Π

x ∈ ZK
≥0


# of constraints = Õ(1

ε )

# variables = 2Õ( 1
ε

)
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Solving the ILP, first Approach:
Method [Alon et al. ’98] and [Hochbaum & Shmoys ’97] uses

Theorem [Kannan ’87 / Lenstra ’83]
An integer program with N variables can be solved in time
2Õ(N) s (where s is the length of the input).

In our case N = |K | = 2Õ( 1
ε

) and thus the running time is

2Õ(N) log(n) = 22Õ( 1
ε )

log(n)← doubly exponential!

Main Idea: Try to reduce the number of variables.
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Solving the ILP, second Approach:
Guess the support [Jansen ’10]

Theorem [Eisenbrand & Shmonin ’06]
There is an optimum sol. x∗ for {ctx : Ax = b, x ≥ 0, x integer}
s.t. |support(x∗)| ≤ O(M(log(M ·∆)) where
I M = number of constraints,
I ∆ = largest coefficient in A, c.

In our case:
I M = |Π| = Õ(1

ε ), and ∆ = 1
ε

I |support(x∗)| ≤ Õ(1
ε )
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Solving the ILP, second Approach:
Guess the support [Jansen ’10]

Algorithm:

1. Try each possible support: there are Õ(1
ε ) ·

( |K |
Õ( 1

ε
)

)
= 2Õ( 1

ε2 )

many.
2. Solve ILP restricted to guessed variables with Kannan’s

algorithm (running time 2Õ( 1
ε

) log(n))

3. Total running time: 2Õ( 1
ε2 )

log(n).
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Solving the ILP, third Approach:
Understanding the Optimum

Definition
A configuration k is complex if it contains more than log(T + 1)
different sizes; o.w. it is simple.

Example (log(T + 1) = 1)

k1

k2

simple

complex

Example (log(T + 1) = 3)

Simple Complex
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Solving the ILP, third Approach:
Understanding the Optimum

A “subconfiguration” k ′ ≤ k of configuration k is called maximal
if it contains all possible jobs of each taken size.

Original
Configuration

Maximal
Subconfiguration

Non-Maximal
Subconfiguration
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Lemma
Every complex conf. k ∈ K contains two maximal disjoint
subconfigurations k1, k2 s.t. the total size of k1 and k2 coincide.

Complex
Configuration k

Subconfiguration
k1

h

Subconfiguration
k2

h
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Lemma
Every complex conf. k ∈ K contains two maximal disjoint
subconfigurations k1, k2 s.t. π · k1 = π · k2.

Proof.
I Let C > log(T + 1) be the number of sizes (colors) in k .
I Number of maximal subconfigurations = 2C > T + 1.
I Total size of each configuration is in {0,1,2, . . . ,T}.
I Pigeonhole principle⇒ there are two maximal

subconfigurations of same total size.
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Solving the ILP, third Approach:

Lemma (Sparsification Lemma (informal))
If a complex configuration is taken twice in a solution, then we
can replace it by two other “less complex” configurations.

k2

k1

k2

k1

k1

k1

k2

k2
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Solving the ILP, third Approach:
Theorem (Thin solutions)
If the ILP is feasible, then there is a solution x∗ such that:
I At most Õ(1

ε ) machines get complex configurations.
I Each complex configuration is used at most once.
I |support(x∗)| ≤ O(|Π| log(|Π|T )) = Õ(1

ε ).

simple
confs

complex
confs
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Lemma
The number of simple configurations in K is 2O(log2( 1

ε
)) = 2Õ(1).

Proof.
Let D = log(T + 1) and T = 1/ε2.

# simple conf ≤
D∑

i=0

(
|Π|
i

)
× (T + 1)i

≤ (D + 1)|Π|D × (T + 1)D

≤ (
1
ε

log(
1
ε

))O(log( 1
ε

))

≤ 2O(log2( 1
ε

)) ≤ 2Õ(1).
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Solving the ILP, third Approach:
Algorithm

Part 1: Complex Configurations.
1. Guess jobs assigned to complex configurations and

number of complex machines.
2. Solve that subinstance optimally with a dynamic program.
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Solving the ILP: Third Approach
Algorithm

Part 2: Remaining Instance.
1. Guess the (simple!) configurations in support:

# possibilities ≤
(

2Õ(1)

Õ(1
ε )

)
= 2Õ( 1

ε
)

2. For each possibility solve the ILP restricted to those
variables with Kannan’s algorithm.

Total running time: 2Õ( 1
ε

) log(n)
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Main Result:
Algorithm

Theorem [Jansen, Klein, Verschae ’16]
The minimum makespan problem on identical machines admits
an EPTAS with running time

2O( 1
ε

log4( 1
ε

)) = 2Õ( 1
ε

) + O(n).
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Integer Linear Programming

max ctx
Ax = b

x ∈ Zn
≥0

where A ∈ ZM×N , b ∈ ZM , c ∈ ZN .

Considered case
M (#constraints) is a constant, entries of A are small (≤ ∆).
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Pseudo-polynomial Algorithms

Known Algorithms
There is an algorithm with running time:
I (M(∆ + ‖b‖∞))O(M2) [Papadimitrou ’81]
I N ·O(M∆)2M · ‖b‖2∞. [Eisenbrand & Weismantel ’18]

Theorem [Jansen & Rohwedder ’19]
IP can be solved in time O(M∆)2M · log(‖b‖∞) + O(NM).
Moreover, improving the exponent to 2M − δ is equivalent to
finding a truly subquadratic algorithm for (min, +)-convolution.
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Feasibility problem

Theorem [Jansen & Rohwedder ’19]
Algorithm with running time:
O(M∆)M · log(∆) · log(∆ + ‖b‖∞) + O(NM). Improving
exponent to M − δ would contradict the Strong Exponential
Time Hypothesis (SETH).

Previous best result
N ·O(M∆)M · ‖b‖∞. [Eisenbrand & Weismantel ’18]
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Application P||Cmax

Configuration IP ∑
k∈K xk = m∑
k∈K kixk = ni ∀πi ∈ Π

xk ∈ Z≥0 ∀k ∈ K

has M + 1 = O(1
ε log(1

ε )) constraints and N = |K | = 2O( 1
ε

) many
variables. The value ∆ = maxk ,i ki ≤ 1

ε and ‖b‖∞ ≤ n.

New result: Including preprocessing O(n + 1
ε log(1

ε )), we get:

O(M∆)M · log(∆) · log(∆ + ‖b‖∞) + O(NM) + O(n + 1
ε log(1

ε ))

≤ 2O( 1
ε

log2( 1
ε

)) log(n) + O(n) ≤ 2O( 1
ε

log2( 1
ε

)) + O(n).
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Steinitz Lemma

Let ‖·‖ be a norm in RM and v (1), . . . , v (t) ∈ RM with ‖v (i)‖ ≤ 1
∀i and v (1) + · · ·+ v (t) = 0. Then there is a permutation π ∈ St
with ‖

∑j
i=1 v (π(i))‖ ≤ M for all j = 1, . . . , t .

0 00
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Consider an optimal solution x∗ of (IP)
and the sequence of column vectors

A1, . . . ,A1︸ ︷︷ ︸
x∗

1 times

,A2, . . . ,A2︸ ︷︷ ︸
x∗

2 times

, . . .

Recall that ‖Ai‖∞ ≤ ∆.

max ctx
Ax = b (IP)

x ∈ ZN
≥0

b

0

b

0



Overview Scheduling Integer Programming Bin Packing Open Problems

Steinitz for IP (formally)

Corollary
Let v (1), . . . , v (t) denote columns of A with

∑t
i=1 v (i) = b. Then

there exists a permutation π ∈ St such that for all j ∈ {1, . . . , t}∥∥∥∥∥∥
j∑

i=1

v (π(i)) − j · b/t

∥∥∥∥∥∥
∞

≤ 2M∆.

This follows easily from the Steinitz Lemma: Insert vectors
v (i)−b/t

∆ in the Steinitz Lemma. Notice ‖v (i)−b/t
∆ ‖∞ ≤ 2.
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Eisenbrand & Weismantel

b

0

u v

if v − u = Ai is column;
weight ci

I Every 0− b path gives
a feasible solution

I Longest path is optimal
I O(M∆)M · ‖b‖∞

vertices
I N ·O(M∆)M · ‖b‖∞

edges
I Running time:

N ·O(M∆)2M · ‖b‖2∞

Observation: There is an optimal solution of bounded norm,
i.e., ‖x‖1 ≤ O(M∆)M · ‖b‖∞.
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Our Approach

b

0

1
2b

b′ = v (1) + . . .+ v (t/2)

Let v (1) + . . .+ v (t) = b be
columns corresponding to an
optimal solution of (IP).

Equivalent:
v (1) + . . .+ v (t/2) is optimal for

{max ctx ,Ax = b′, x ∈ ZN
≥0}

and v (t/2+1) + . . .+ v (t) is for

{max ctx ,Ax = b−b′, x ∈ ZN
≥0}.

If ordered via Steinitz Lemma, b′ and b−b′ are not far from 1
2b.
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Assume w.l.o.g. there is an optimal solution x with ‖x‖1 = 2K ,
where K ∈ log(O(M∆)M · ‖b‖∞) = O(M log(M∆) + log(‖b‖∞))

Solve for every i = K ,K − 1, . . . ,0 and every b′ with∥∥∥∥b′ − 1
2i b
∥∥∥∥
∞
≤ 4M∆

the problem

max ctx
Ax = b′

‖x‖1 = 2K−i

x ∈ ZN
≥0.

Original problem for i = 0 and b′ = b.

b

0
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Consider iteration i < K and b′ with ‖b′ − 1/2i · b‖∞ ≤ 4M∆.

Let v (1), . . . , v (2K−i ) be a solution of
max{ctx ,Ax = b′, ‖x‖1 = 2K−i , x ∈ ZN

≥0} ordered via Steinitz.
Set b′′ := v (1) + . . .+ v (2K−i−1). Then we obtain∥∥∥∥b′′ − 1

2i+1 b
∥∥∥∥
∞
≤
∥∥∥∥b′′ − 1

2
b′
∥∥∥∥
∞︸ ︷︷ ︸

≤2m∆

+

∥∥∥∥1
2

b′ − 1
2i+1 b

∥∥∥∥
∞︸ ︷︷ ︸

≤1/2·4M∆

≤ 4M∆

Similarly,
∥∥(b′ − b′′)− 1

2i+1 b
∥∥
∞ ≤ 4M∆.

Our algorithm: Guess b′′ (O(M∆)M candidates), look up
solutions for (i + 1,b′′) and (i + 1,b′ − b′′), and take the best.
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Merging solutions

(MAX, +)-CONVOLUTION

Input: r1, . . . , rn ∈ R,
s1, . . . , sn ∈ R

Output: t1, . . . , tn ∈ R with
ti = maxj [rj + si−j ]

r1, . . . ,r i
2−1, r i

2
, r i

2 +1,. . . , ri−1

s1, . . . ,s i
2−1, s i

2
, s i

2 +1,. . . , si−1

ti
T (n) time algorithm for (min, +)-convolution⇒
T (O(M∆)M) ·O(M log(M∆) + log(‖b‖∞)) + O(NM) for IP.

With T (n) = O(n2/ log(n)): O(M∆)2M · log(‖b‖∞) + O(NM).
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Feasibility of IP
BOOLEAN-CONVOLUTION

Input: r1, . . . , rn ∈ {0,1},
s1, . . . , sn ∈ {0,1}

Output: t1, . . . , tn ∈ {0,1} s.t.
ti =

∨
j [rj ∧ si−j ]

r1, . . . ,r i
2−1, r i

2
, r i

2 +1,. . . , ri−1

s1, . . . ,s i
2−1, s i

2
, s i

2 +1,. . . , si−1

ti
Boolean Convolution can be computed in T (n) = O(n log n).

⇒ Feasibility of IP in time

T (O(M∆)M) · (M log(M∆) + log(‖b‖∞)) + O(NM)
= O(M∆)M · log(∆) · log(∆ + ‖b‖∞) + O(NM).
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Bin Packing:

Problem Definition
I d item sizes
I si : size of item
I bi : multiplicity of item size si

I Objective: Find a packing into a minimum number of unit
bins.
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Cone:
Given a set of points P ⊂ Zd then

Cone(P) = {
∑
p∈P

λpp | λ ∈ RP
≥0}

p1

p2
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Integer Cone:
Given a set of points P ⊂ Zd then

int .cone(P) = {
∑
p∈P

λpp | λ ∈ ZP
≥0}

p1

p2p3
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Integer Cones of Polytopes:
Given Polytope P = {x ∈ Rd | Ax ≤ c} for some matrix
A ∈ Zm×d and a vector c ∈ Zd .

Knapsack polytope P = {x ∈ Rd | s1x1 + . . . sdxd ≤ 1, x ≥ 0}
for sizes s1, . . . , sd .

x1

x2

P

We consider int .cone(P ∩ Zd ).
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The Bin Packing Problem:
Given: a set of item sizes s1, . . . , sd ∈ (0,1] and multiplicities
b1, . . . ,bd of the corresponding item sizes.
Objective: Find a packing into a minimum number of unit bins.

Example:
Item sizes: s1 = 1

5 , s2 = 1
3 with multiplicities: b1 = 5,b2 = 5

p1 p2 p2
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The Bin Packing Problem:
Each vector λ ∈ ZP∩Zd

≥0 with∑
p∈P∩Zd λpp = b ∈ int .cone(P ∩ Zd ) represents a possible

solution of the bin packing problem.

p1 p2 p2 p1

p2

b
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Structural Properties:

Arguments about the set of possible solutions λ ∈ ZP∩Zd

≥0 .

b
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The Structure of the Integer Cone:

Theorem [Eisenbrand, Shmonin ’06]
For any integral point b ∈ int .cone(P ∩ Zd ), there exists an
integral vector λ ∈ ZP∩Zd

≥0 such that b =
∑

p∈P∩Zd λpp and
|supp(λ)| ≤ 2d .
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The Structure of the Integer Cone:
Theorem [Goemans & Rothvoß’14]
There exists a set X ⊆ P ∩ Zd with |X | ≤ mddO(d)(log ∆)d such
that for any point b ∈ int .cone(P ∩ Zd ), there exists an integral
vector λ ∈ ZP∩Zd

≥0 such that b =
∑

p∈P∩Zd λpp and

1. λp ≤ 1 ∀p ∈ (P ∩ Zd ) \ X
2. |supp(λ) ∩ X | ≤ 22d

3. |supp(λ) \ X | ≤ 22d

Theorem [Goemans & Rothvoß’14]
Bin packing with d different item sizes can be solved in time
(log ∆)2O(d)

, where ∆ is the maximum over all multiplicities b
and denominators in s.
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Vertices of the Integer Polytope:
Integer Polytope PI = Conv(P ∩ Zd )

x1

x2

PI

s1 = 3
14

s2 = 2
7

Theorem [Cook et al. ’92]
For a polytope P = {x ∈ Rd | Ax ≤ c} the integer polytope PI
has at most md ·O((log ∆)d ) vertices.
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Our Structure Theorem:
Theorem [Jansen & Klein ’17]
Let VI ⊆ P ∩ Zd be the set of vertices of the integer polytope
PI . Then for any vector b ∈ int .cone(P ∩ Zd ), there exists an
integral vector λ ∈ ZP∩Zd

≥0 such that b =
∑

p∈P∩Zd λpp and

1. λp ≤ 22O(d) ∀p ∈ (P ∩ Zd ) \ VI

2. |supp(λ) ∩ VI | ≤ d · 2d

3. |supp(λ) \ VI | ≤ 22d

Theorem [Jansen & Klein ’17]
The bin packing problem can be solved in time
|VI |2

O(d) · (log ∆)O(1) and hence in FPT-time, parameterized by
the number of vertices VI .
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Main Open Questions:

I Is there an EPTAS for scheduling on identical machines
with running time 2O(1/ε) + O(n)?

I Is there an FPT-algorithm for bin packing parameterized by
the number d of different sizes?
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Thanks for your attention!
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