New Algorithmic Results for Scheduling and Bin
Packing

Klaus Jansen '

"University of Kiel

Joint Work with Lin Chen, Kim-Manuel Klein, Lars
Rohwedder, José Verschae and Gouchuan Zhang

Overview
°

Overview:

Main Topics

» Scheduling on Identical Machines
» Integer Programming

» Bin Packing

» Open Problems

Scheduling

900000000000 0000000000

Scheduling on Identical Machines P||Cpax:

» Given: n jobs with processing times p;

» and m machines

» Objective: Minimize makespan (maximum machine load)

Makespan
Proc. time

Jobs

Machines

Scheduling
O®00000000000000000000

Literature:

Complexity
» Strongly NP-hard: If P # NP, then there is no FPTAS.

Known Algorithms
There is a PTAS with running time:

» nO2) [Hochbaum & Shmoys '87]

> nO(Liog(1)) [Leung 97]
There is an EPTAS with running time:

> 22°2) | O(nlog n) [Alon et al. ‘98 & H. & S. '96]

> 2002) 4 O(nlog) [Jansen 10]

Scheduling
0000000000000 00000000

Closing the Gap:

Lower Bound [Chen, Jansen, Zhang '13]

» If the Exponential Time Hypothesis holds, there is no
EPTAS with running time 2(2)"° + poly(n).

Our Main Result:

Theorem [Jansen, Klein, Verschae ’16]
Minimum makespan scheduling admits an EPTAS with running
time _

20) 4+ O(n).

Scheduling
000@000000000000000000

General Strategy:

General scheme for designing a PTAS:
1. Guess the makespan T of the optimal solution.
2. Round instance ~~ (1 4 ¢) multiplicative loss in objective.
3. Solve the rounded instance using an ILP formulation.

Scheduling
0000@00000000000000000

Rounding:

Lemma (Rounding and scaling)
T = 1/? and jobs sizes belong to N = {rq,...,7q}:

»nc{l i1, 5} andg, — integer numbers
> M= O(tlog(1)) = O(1). — few sizes

| | | | | | |
| | | | | | |
™ |—= o)
N

N 3
O 1
]
I
IR
-
s
[

Scheduling
0000000000000 00000000

Configurations:

A configuration represents one possibility of assigning jobs
from I to a single machine.

Example (The set of configurations)

Scheduling
000000@000000000000000

Configurations:

Knapsack polytope

P={keRly: Kkt -7 <T)

Polyhedral view

Scheduling
0000000 e00000000000000

Configurations:

Set of configurations

K:=pPnzl)

Observation 1

K| < (T + 1) == 20 10g*(2)) — 20(2),

Scheduling
0000000 0e0000000000000

Integer Programming Formulation

Observation 2:
The vector (xx)kek belongs to the system

S =m

kek # of constraints = O(1)
D kx =n forallm el # variables = 2°(°)
keK

x €zX,

Scheduling
000000000 e000000000000

Solving the ILP, first Approach:

Method [Alon et al. '98] and [Hochbaum & Shmoys '97] uses

Theorem [Kannan '87 / Lenstra '83]
An integer program with N variables can be solved in time
20(N) s (where s is the length of the input).

In our case N = |K| = 2°() and thus the running time is

Q

5O(N) o2 ()

log(n) log(n) < doubly exponentiall

Main Idea: Try to reduce the number of variables.

Scheduling
0000000000800 000000000

Solving the ILP, second Approach:

Guess the support [Jansen ’10]

Theorem [Eisenbrand & Shmonin '06]
There is an optimum sol. x* for {c!x : Ax = b, x > 0, x integer}
s.t. |support(x*)| < O(M(log(M - A)) where

» M = number of constraints,

» A = largest coefficient in A, c.

In our case:
> M=|N=0(1),and A =1
> |support(x*)| < O(1)

Scheduling
00000000000 e0000000000

Solving the ILP, second Approach:

Guess the support [Jansen ’10]

Algorithm:

1. Try each possible support: there are O(1) - (gﬁ)) _ 20(2)
many.

2. Solve ILP restricted to guessed variables with Kannan’s
algorithm (running time 2°(2) log(n))

3. Total running time: 20(z) log(n).

Scheduling
0000000000 00e000000000

Solving the ILP, third Approach:

Understanding the Optimum
Definition
A configuration k is complex if it contains more than log(T + 1)
different sizes; o.w. it is simple.

Example (log(T + 1) = 1) Example (log(T +1) = 3)

- - - _rcomplex
ki

Simple Complex

Scheduling
0000000000000 e00000000

Solving the ILP, third Approach:

Understanding the Optimum
A “subconfiguration” k” < k of configuration k is called maximal
if it contains all possible jobs of each taken size.

Original Maximal Non-Maximal
Configuration Subconfiguration Subconfiguration

Scheduling
0000000000000 0e0000000

Lemma
Every complex conf. k € K contains two maximal disjoint
subconfigurations Ky, ko s.t. the total size of ky and ko coincide.

Complex Subconfiguration Subconfiguration
Configuration k ki ko

Scheduling
0000000000000 00e000000

Lemma
Every complex conf. k € K contains two maximal disjoint
subconfigurations ki, ko s.t. m- ki = 7 - Ko.

Proof.

» Let C > log(T + 1) be the number of sizes (colors) in k.
» Number of maximal subconfigurations = 2¢ > T + 1.
> Total size of each configuration isin {0,1,2,..., T}.

» Pigeonhole principle = there are two maximal
subconfigurations of same total size.

Scheduling

0000000000000 000e00000

Solving the ILP, third Approach:

Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we
can replace it by two other “less complex” configurations.

Scheduling
0000000000000 0000e0000

Solving the ILP, third Approach:

Theorem (Thin solutions)

If the ILP is feasible, then there is a solution x* such that:
» At most 5(%) machines get complex configurations.
» Each complex configuration is used at most once.
> [support(x*)| < O(|N|log(|N| T)) = O(1).

simple complex
confs confs

Scheduling
0000000000000 00000e000

Lemma i _
The number of simple configurations in K is 20(1°g”(2)) = 20(1)

Proof.
Let D = log(T +1)and T = 1/£2.

D
#simpleconng()
< (D+1)|NP x (T+1)P
1 1.0 1
< (X 1og(1))0loe(1))
_(8 Og(g)))
< 20(og%(1)) < 20(1).

Scheduling
0000000000000 000000e00

Solving the ILP, third Approach:

Algorithm

Part 1: Complex Configurations.

1. Guess jobs assigned to complex configurations and
number of complex machines.

2. Solve that subinstance optimally with a dynamic program.

Scheduling
000000000000 00000000e0

Solving the ILP: Third Approach

Algorithm

Part 2: Remaining Instance.
1. Guess the (simple!) configurations in support:

26(1) =01
possibilities < <~) =200
o(})
2. For each possibility solve the ILP restricted to those
variables with Kannan'’s algorithm.

Total running time: 2°() log(n)

Scheduling
000000000000 000000000e

Main Result:
Algorithm

Theorem [Jansen, Klein, Verschae ’16]

The minimum makespan problem on identical machines admits
an EPTAS with running time

202 log'(1)) — 202) 4 O(n).

Integer Programming
©000000000000

Integer Linear Programming

max c!x
Ax=>b
n
X € Zx

where A e ZM*N p c ZM ¢ e ZN.

Considered case
M (#constraints) is a constant, entries of A are small (< A).

Integer Programming
0®00000000000

Pseudo-polynomial Algorithms

Known Algorithms

There is an algorithm with running time:
> (M(A + ||b|so))OM) [Papadimitrou '81]
> N-O(MAZM .| b|2.. [Eisenbrand & Weismantel 18]

Theorem [Jansen & Rohwedder '19]

IP can be solved in time O(MA)?M - log(||b||o0) + O(NM).
Moreover, improving the exponent to 2M — ¢ is equivalent to
finding a truly subquadratic algorithm for (min, +)-convolution.

Integer Programming
0080000000000

Feasibility problem

Theorem [Jansen & Rohwedder ’19]

Algorithm with running time:

O(MAYM - log(A) - log(A + ||b]|oo) + O(NM). Improving
exponent to M — ¢ would contradict the Strong Exponential
Time Hypothesis (SETH).

Previous best result
N - O(MAM - |1b]| - [Eisenbrand & Weismantel *18]

Integer Programming
0008000000000

Application P||Cmax

Configuration IP

D kek Xk =M
ZKEK k,'Xk =n; V7T,' el
Xk € Z>0 Vk e K

has M+1 = O(log(1)) constraints and N = |K| = 2°() many
variables. The value A = max; k; < I and [|b|| < n.

New result: Including preprocessing O(n + % |og(%)), we get:

O(MA)M - log(A) - log(A + ||b]|so) + O(NM) + O(n + Llog(1))
< 20(2108%(1)) |og(n) + O(n) < 202 10€*(2)) 4+ O(n).

Integer Programming

0000800000000

Steinitz Lemma
Let |- be a norm in RM and v() ... v(D € RM with ||v()|| < 1

viand v(V) + ... + v() = 0. Then there is a permutation = € S
with |30, vCO)| < Mforallj=1,... ¢

Integer Programming
00000@0000000

Consider an optimal solution x* of (IP)
and the sequence of column vectors

A A A A max C' X
g0 1 D, ... D, ..
bl bl 9 bl V? 9 AX — b (IP)
x{ times x5 times
x € 7%,

Recall that || Ajl|cc < A.

b

pZed

Integer Programming
0000008000000

Steinitz for IP (formally)

Corollary
Let v(1), ..., v{) denote columns of Awith L, v() = b, Then
there exists a permutation = € St such that forall j € {1,...,t}

< 2MA.

i
Z vir()) —j. b/t

i=1

(e 9]

This follows easily from the Steinitz Lemma Insert vectors
"()gb/t in the Steinitz Lemma. Notice H b/tHoo <2.

Integer Programming
0000000800000

Eisenbrand & Weismantel

SRR » Every 0 — b path gives
bx E a feasible solution
PISEREEEEEEAS » Longest path is optimal
Lol > O(MAYM - ||bl|oc
e vertices

AT > N-O(MAYM - bl|
Lol Py — u = Ajis column; edges
: Ox weight ¢; » Running time:
R N - O(MAY - |b]2,

Observation: There is an optimal solution of bounded norm,
e, [|x]l1 < O(MAY - ||b]|oc.

Integer Programming
0000000080000

Our Approach

Let v(D + ...+ v() = bbe
columns corresponding to an
optimal solution of (IP).

Equivalent:
v .+ v(t/2) is optimal for

{maxc!x,Ax =b/,x € Z 0}

and v(t/2+1) 1 4+ v s for

0 {maxc!x,Ax =b—b/,x e ZY S0t

If ordered via Steinitz Lemma, b’ and b— b’ are not far from }b.

Integer Programming
0000000008000

Assume w.l.0.g. there is an optimal solution x with ||x|{ = 2%,
where K € log(O(MA) - ||b||ls) = O(Mlog(MA) + log(]|b]|))

Solve forevery i = K,K —1,...,0 and every b’ with

b — ;bH <4MA

o

the problem

max clx
Ax = b
Ix]ly = 2K

x € Z%,,.

Original problem for i = 0 and b’ = b.

Integer Programming
0000000000800

Consider iteration i < K and b with |6/ — 1/2'- b||s, < 4MA.

Let v, ... v D pea solution of
max{c'x, Ax = b/, |||y = 2K~ x € Z¥;} ordered via Steinitz.
Set b := v + ...+ v Then we obtain

1 1 1 1
b - et <o g0 |3 gt <ama
‘ 27 7 27 . 12 217
<oma <1/24MA
Similarly, [|(b' — b") — 51=<b|| _ < 4MA.

Our algorithm: Guess b” (O(MA)M candidates), look up
solutions for (i +1,b") and (i + 1, b’ — b"), and take the best.

Integer Programming
0000000000080

Merging solutions

(MAX, +)-CONVOLUTION

n,.. ,r§;_1, I’é, ré+1,...,r,-_1
Input: ry,...,meR, >+<
S1,...,8p €R 31,._,,5571,35-,\ é+1""’si_1
Output: &,...,f € R with K
i = man[I’j + S,',j] t;

T(n) time algorithm for (min, +)-convolution =
T(O(MAYM) . O(Mlog(MA) + log(]|b]|o0)) + O(NM) for IP.

With T(n) = O(r?/ log(n)): O(MAY2M - log(|[b]|s0) + O(NM).

Feasibility of IP

BOOLEAN-CONVOLUTION
r1,...,l’é'_1, I’é', ré-+1,...,r,-_1

Input: ry,...,rm e {0,1},
S1,...,8p€{0,1} S1,%‘§SF1
Output: #,...,t, € {0,1} s.t. 2 2

b= \/j[rj/\s,-_j] l‘,'/

Boolean Convolution can be computed in T(n) = O(nlog n).

= Feasibility of IP in time

T(O(MA)M) - (Mlog(MA) + log([| b)) + O(NM)
= O(MA)YM . log(A) - log(A + ||b]|ec) + O(NM).

Bin Packing
©0000000000

Bin Packing:

Problem Definition

» d item sizes

> s;: size of item

» b;: multiplicity of item size s;

» Objective: Find a packing into a minimum number of unit
bins.

Bin Packing
0®000000000

Cone:
Given a set of points P C 7 then

Cone(P) = {Z AP | X € Rgo}
peP

Bin Packing
0000000000

Integer Cone:
Given a set of points P ¢ Z¢ then

int.cone(P) = {Z Aop | X € 28}
peP

Bin Packing
000®0000000

Integer Cones of Polytopes:

Given Polytope P = {x € R? | Ax < ¢} for some matrix
A € 7Z™<9 and a vector ¢ € Z9.

Knapsack polytope P = {x € R? | syxq +...8qxg < 1,x > 0}
for sizes sy, ..., sq.

X2

We consider int.cone(P N Z9).

Bin Packing
0000®000000

The Bin Packing Problem:

Given: a set of item sizes sy, ..., 54 € (0, 1] and multiplicities
by, ..., by of the corresponding item sizes.
Objective: Find a packing into a minimum number of unit bins.

Example:
ltem sizes: sy = {, s, = 1 with multiplicities: by = 5, b, = 5

P P2 P2

Bin Packing
00000@00000

The Bin Packing Problem:
Each vector A € ZZ{”" with

> peprzd ApP = b € int.cone(P N 79) represents a possible
solution of the bin packing problem.

Bin Packing
[oleleYeleTe] YoTelele)

Structural Properties:

Arguments about the set of possible solutions \ € ZPQZ".

Bin Packing
00000008000

The Structure of the Integer Cone:

Theorem [Eisenbrand, Shmonin ’06]
For any integral point b € int.cone(P N Z9), there exists an
integral vector A € ZZG%" such that b = >_pepnzd ApP and

supp(X)| < 2°.

Bin Packing
00000000800

The Structure of the Integer Cone:

Theorem [Goemans & Rothvo(3'14]
There exists a set X € P N z9 with |X| < m?d9(¥(log A)? such
that for any point b € int.cone(P N Z9), there exists an integral
vector A € ZZ)% such that b = Yy pza App @nd

1.0 <1 VYpe(PNnzZI\ X

2. |supp(\) N X| < 229

3. [supp(A) \ X| < 227

Theorem [Goemans & Rothvo(3'14]
Bin packing with d different item sizes can be solved in time

(log A)Qo(d), where A is the maximum over all multiplicities b
and denominators in s.

Vertices of the Integer Polytope:
Integer Polytope P; = Conv(P NZ9)

X2

Theorem [Cook et al. '92]

For a polytope P = {x € RY | Ax < c} the integer polytope P,
has at most m? - O((log A)?) vertices.

Bin Packing
00000000000

Our Structure Theorem:

Theorem [Jansen & Klein '17]

Let V, C P N Z9 be the set of vertices of the integer polytope
P,. Then for any vector b € int.cone(P N Z9), there exists an
integral vector A € ZP”Z such that b= 3" pzqs App and

1. A <227 ype (Pnzd)\V,
2. |supp(\) NV <d-29
3. [supp(N) \ V)| < 22

Theorem [Jansen & Klein "17]

The bin packing problem can be solved in time

IV,12% . (log A)O() and hence in FPT-time, parameterized by
the number of vertices V.

Open Problems
[Je]

Main Open Questions:

» Is there an EPTAS for scheduling on identical machines
with running time 20(1/<) - O(n)?

» Is there an FPT-algorithm for bin packing parameterized by
the number d of different sizes?

Open Problems
oe

Thanks for your attention!

	Overview
	Scheduling
	Integer Programming
	Bin Packing
	Open Problems

