New Algorithmic Results for Scheduling and Bin Packing

Klaus Jansen ${ }^{1}$

${ }^{1}$ University of Kiel

Joint Work with Lin Chen, Kim-Manuel Klein, Lars
Rohwedder, José Verschae and Gouchuan Zhang

Overview:

Main Topics

- Scheduling on Identical Machines
- Integer Programming
- Bin Packing
- Open Problems

Scheduling on Identical Machines $P \| C_{\text {max }}$:

- Given: n jobs with processing times p_{j}
- and m machines
- Objective: Minimize makespan (maximum machine load)

Literature:

Complexity

- Strongly NP-hard: If $P \neq N P$, then there is no FPTAS.

Known Algorithms
There is a PTAS with running time:

- $n^{O\left(\frac{1}{\varepsilon^{2}}\right)}$

[Hochbaum \& Shmoys '87]

- $n^{O\left(\frac{1}{\varepsilon} \log \left(\frac{1}{\varepsilon}\right)\right)}$
[Leung 97]
There is an EPTAS with running time:
- $2^{2^{\tilde{O}\left(\frac{1}{\varepsilon}\right)}}+O(n \log n)$
[Alon et al. '98 \& H. \& S. '96]
- $2^{\tilde{O}\left(\frac{1}{\varepsilon^{2}}\right)}+O(n \log n)$
[Jansen '10]

Closing the Gap:

Lower Bound [Chen, Jansen, Zhang '13]

- If the Exponential Time Hypothesis holds, there is no EPTAS with running time $2^{\left(\frac{1}{\varepsilon}\right)^{1-\delta}}+\operatorname{poly}(n)$.

Our Main Result:
Theorem [Jansen, Klein, Verschae '16]
Minimum makespan scheduling admits an EPTAS with running time

$$
2^{\tilde{O}\left(\frac{1}{\varepsilon}\right)}+O(n) .
$$

General Strategy:

General scheme for designing a PTAS:

1. Guess the makespan T of the optimal solution.
2. Round instance $\rightsquigarrow(1+\varepsilon)$ multiplicative loss in objective.
3. Solve the rounded instance using an ILP formulation.

Rounding:

Lemma (Rounding and scaling)
$T=1 / \varepsilon^{2}$ and jobs sizes belong to $\Pi=\left\{\pi_{1}, \ldots, \pi_{d}\right\}$:

- $\Pi \subseteq\left\{\frac{1}{\varepsilon}, \frac{1}{\varepsilon}+1, \ldots, \frac{1}{\varepsilon^{2}}\right\}$ and, \rightarrow integer numbers
- $|\Pi|=O\left(\frac{1}{\varepsilon} \log \left(\frac{1}{\varepsilon}\right)\right)=\widetilde{O}\left(\frac{1}{\varepsilon}\right)$.
\rightarrow few sizes

Configurations:

A configuration represents one possibility of assigning jobs from Π to a single machine.

Example (The set of configurations)

$$
{ }^{4}\| \|
$$

Configurations:

Knapsack polytope

$$
P=\left\{k \in \mathbb{R}_{\geq 0}^{|\Pi| \mid}: k^{t} \cdot \pi \leq T\right\}
$$

Polyhedral view

Configurations:

Set of configurations

$$
K:=P \cap \mathbb{Z}_{\geq 0}^{|\Pi|}
$$

Observation 1

$$
|K| \leq(T+1)^{|\Pi|}==2^{O\left(\frac{1}{\varepsilon} \log ^{2}\left(\frac{1}{\varepsilon}\right)\right)}=2^{\tilde{O}\left(\frac{1}{\varepsilon}\right)} .
$$

Integer Programming Formulation

Observation 2:
The vector $\left(x_{k}\right)_{k \in K}$ belongs to the system

$$
\left.\begin{array}{rl}
\sum_{k \in K} x_{k} & =m \\
\sum_{k \in K} k_{i} x_{k} & =n_{i} \quad \text { for all } \pi_{i} \in \Pi \\
x & \in \mathbb{Z}_{\geq 0}^{K}
\end{array}\right\} \begin{aligned}
& \begin{array}{l}
\text { \# of constraints }=\widetilde{O}\left(\frac{1}{\varepsilon}\right) \\
\text { \# variables }=2^{\tilde{O}\left(\frac{1}{\varepsilon}\right)}
\end{array} \\
&
\end{aligned}
$$

Solving the ILP, first Approach:

Method [Alon et al. '98] and [Hochbaum \& Shmoys '97] uses

Theorem [Kannan '87 / Lenstra '83]

An integer program with N variables can be solved in time $2^{\tilde{O}(N)} s$ (where s is the length of the input). In our case $N=|K|=2^{\tilde{O}\left(\frac{1}{\varepsilon}\right)}$ and thus the running time is

$$
2^{\tilde{O}(N)} \log (n)=2^{2^{\tilde{O}\left(\frac{1}{\varepsilon}\right)}} \log (n) \leftarrow \text { doubly exponential! }
$$

Main Idea: Try to reduce the number of variables.

Solving the ILP, second Approach:

Guess the support [Jansen '10]
Theorem [Eisenbrand \& Shmonin '06]
There is an optimum sol. x^{*} for $\left\{c^{t} x: A x=b, x \geq 0, x\right.$ integer $\}$ s.t. \mid support $\left(x^{*}\right) \mid \leq O(M(\log (M \cdot \Delta))$ where

- $M=$ number of constraints,
- $\Delta=$ largest coefficient in A, c.

In our case:

- $M=|\Pi|=\widetilde{O}\left(\frac{1}{\varepsilon}\right)$, and $\Delta=\frac{1}{\varepsilon}$
- $\left|\operatorname{support}\left(x^{*}\right)\right| \leq \widetilde{O}\left(\frac{1}{\varepsilon}\right)$

Solving the ILP, second Approach:

Guess the support [Jansen '10]

Algorithm:

1. Try each possible support: there are $\widetilde{O}\left(\frac{1}{\varepsilon}\right) \cdot\binom{|K|}{\tilde{O}\left(\frac{1}{\varepsilon}\right)}=2^{\widetilde{O}\left(\frac{1}{\varepsilon^{2}}\right)}$ many.
2. Solve ILP restricted to guessed variables with Kannan's algorithm (running time $2^{\widetilde{O}\left(\frac{1}{\varepsilon}\right)} \log (n)$)
3. Total running time: $2^{\tilde{O}\left(\frac{1}{\varepsilon^{2}}\right)} \log (n)$.

Solving the ILP, third Approach:

Understanding the Optimum
Definition
A configuration k is complex if it contains more than $\log (T+1)$ different sizes; o.w. it is simple.

Example $(\log (T+1)=1)$
Example $(\log (T+1)=3)$

Simple

Complex

Solving the ILP, third Approach:

Understanding the Optimum
A "subconfiguration" k ' k of configuration k is called maximal if it contains all possible jobs of each taken size.

Original
Configuration

Maximal
Subconfiguration

Non-Maximal
Subconfiguration

Lemma

Every complex conf. $k \in K$ contains two maximal disjoint subconfigurations k_{1}, k_{2} s.t. the total size of k_{1} and k_{2} coincide.

Subconfiguration
k_{1}

Subconfiguration
k_{2}

Lemma

Every complex conf. $k \in K$ contains two maximal disjoint subconfigurations k_{1}, k_{2} s.t. $\pi \cdot k_{1}=\pi \cdot k_{2}$.

Proof.

- Let $C>\log (T+1)$ be the number of sizes (colors) in k.
- Number of maximal subconfigurations $=2^{C}>T+1$.
- Total size of each configuration is in $\{0,1,2, \ldots, T\}$.
- Pigeonhole principle \Rightarrow there are two maximal subconfigurations of same total size.

Solving the ILP, third Approach:

Lemma (Sparsification Lemma (informal))

If a complex configuration is taken twice in a solution, then we can replace it by two other "less complex" configurations.

Solving the ILP, third Approach:

Theorem (Thin solutions)
If the ILP is feasible, then there is a solution x^{*} such that:

- At most $\tilde{O}\left(\frac{1}{\varepsilon}\right)$ machines get complex configurations.
- Each complex configuration is used at most once.
- \mid support $\left(x^{*}\right) \left\lvert\, \leq O(|\Pi| \log (|\Pi| T))=\widetilde{O}\left(\frac{1}{\varepsilon}\right)\right.$.

Lemma

The number of simple configurations in K is $2^{O\left(\log ^{2}\left(\frac{1}{\varepsilon}\right)\right)}=2^{\tilde{O}(1)}$.

Proof.

Let $D=\log (T+1)$ and $T=1 / \varepsilon^{2}$.

$$
\begin{aligned}
\text { \# simple conf } & \leq \sum_{i=0}^{D}\binom{|\Pi|}{i} \times(T+1)^{i} \\
& \leq(D+1)|\Pi|^{D} \times(T+1)^{D} \\
& \leq\left(\frac{1}{\varepsilon} \log \left(\frac{1}{\varepsilon}\right)\right)^{O\left(\log \left(\frac{1}{\varepsilon}\right)\right)} \\
& \leq 2^{O\left(\log ^{2}\left(\frac{1}{\varepsilon}\right)\right)} \leq 2^{\tilde{O}(1)} .
\end{aligned}
$$

Solving the ILP, third Approach:

Algorithm

Part 1: Complex Configurations.

1. Guess jobs assigned to complex configurations and number of complex machines.
2. Solve that subinstance optimally with a dynamic program.

Solving the ILP: Third Approach

Algorithm

Part 2: Remaining Instance.

1. Guess the (simple!) configurations in support:
\# possibilities $\leq\binom{ 2^{\tilde{O}(1)}}{\widetilde{O}\left(\frac{1}{\varepsilon}\right)}=2^{\tilde{O}\left(\frac{1}{\varepsilon}\right)}$
2. For each possibility solve the ILP restricted to those variables with Kannan's algorithm.

Total running time: $2^{\tilde{0}\left(\frac{1}{\varepsilon}\right)} \log (n)$

Main Result:

Algorithm

Theorem [Jansen, Klein, Verschae '16]

The minimum makespan problem on identical machines admits an EPTAS with running time

$$
2^{O\left(\frac{1}{\varepsilon} \log ^{4}\left(\frac{1}{\varepsilon}\right)\right)}=2^{\tilde{O}\left(\frac{1}{\varepsilon}\right)}+O(n) .
$$

Integer Linear Programming

$$
\begin{aligned}
& \max c^{t} x \\
& A x=b \\
& \quad x \in \mathbb{Z}_{\geq 0}^{n}
\end{aligned}
$$

where $A \in \mathbb{Z}^{M \times N}, b \in \mathbb{Z}^{M}, c \in \mathbb{Z}^{N}$.
Considered case
M (\#constraints) is a constant, entries of A are small ($\leq \Delta$).

Pseudo-polynomial Algorithms

Known Algorithms
There is an algorithm with running time:

- $\left(M\left(\Delta+\|b\|_{\infty}\right)\right)^{O\left(M^{2}\right)}$
[Papadimitrou '81]
- $N \cdot O(M \Delta)^{2 M} \cdot\|b\|_{\infty}^{2}$.
[Eisenbrand \& Weismantel '18]

Theorem [Jansen \& Rohwedder '19]

IP can be solved in time $O(M \Delta)^{2 M} \cdot \log \left(\|b\|_{\infty}\right)+O(N M)$.
Moreover, improving the exponent to $2 M-\delta$ is equivalent to finding a truly subquadratic algorithm for (min, +)-convolution.

Feasibility problem

Theorem [Jansen \& Rohwedder '19]
Algorithm with running time:
$O(M \Delta)^{M} \cdot \log (\Delta) \cdot \log \left(\Delta+\|b\|_{\infty}\right)+O(N M)$. Improving exponent to $M-\delta$ would contradict the Strong Exponential Time Hypothesis (SETH).

Previous best result
$N \cdot O(M \Delta)^{M} \cdot\|b\|_{\infty}$.
[Eisenbrand \& Weismantel '18]

Application $P \| C_{\max }$

Configuration IP

$$
\begin{array}{ll}
\sum_{k \in K} x_{k}=m & \\
\sum_{k \in K} k_{i} x_{k}=n_{i} & \forall \pi_{i} \in \Pi \\
x_{k} \in \mathbb{Z}_{\geq 0} & \forall k \in K
\end{array}
$$

has $M+1=O\left(\frac{1}{\epsilon} \log \left(\frac{1}{\epsilon}\right)\right)$ constraints and $N=|K|=2^{O\left(\frac{1}{\epsilon}\right)}$ many variables. The value $\Delta=\max _{k, i} k_{i} \leq \frac{1}{\epsilon}$ and $\|b\|_{\infty} \leq n$.
New result: Including preprocessing $O\left(n+\frac{1}{\epsilon} \log \left(\frac{1}{\epsilon}\right)\right)$, we get:

$$
\begin{aligned}
& O(M \Delta)^{M} \cdot \log (\Delta) \cdot \log \left(\Delta+\|b\|_{\infty}\right)+O(N M)+O\left(n+\frac{1}{\epsilon} \log \left(\frac{1}{\epsilon}\right)\right) \\
& \leq 2^{O\left(\frac{1}{\epsilon} \log ^{2}\left(\frac{1}{\epsilon}\right)\right)} \log (n)+O(n) \leq 2^{O\left(\frac{1}{\epsilon} \log ^{2}\left(\frac{1}{\epsilon}\right)\right)}+O(n) .
\end{aligned}
$$

Steinitz Lemma

Let $\|\cdot\|$ be a norm in \mathbb{R}^{M} and $v^{(1)}, \ldots, v^{(t)} \in \mathbb{R}^{M}$ with $\left\|v^{(i)}\right\| \leq 1$ $\forall i$ and $v^{(1)}+\cdots+v^{(t)}=0$. Then there is a permutation $\pi \in S_{t}$ with $\left.\| \sum_{i=1}^{j} v^{(\pi(i)}\right) \| \leq M$ for all $j=1, \ldots, t$.

Consider an optimal solution x^{*} of (IP) and the sequence of column vectors

$$
\underbrace{A_{1}, \ldots, A_{1}}_{x_{1}^{*} \text { times }}, \underbrace{A_{2}, \ldots, A_{2}}_{x_{2}^{*} \text { times }}, \ldots \quad \begin{align*}
& \max c^{t} x \tag{IP}\\
& A x=b \\
& x \in \mathbb{Z}_{\geq 0}^{N}
\end{align*}
$$

Recall that $\left\|A_{i}\right\|_{\infty} \leq \Delta$.

Steinitz for IP (formally)

Corollary

Let $v^{(1)}, \ldots, v^{(t)}$ denote columns of A with $\sum_{i=1}^{t} v^{(i)}=b$. Then there exists a permutation $\pi \in S_{t}$ such that for all $j \in\{1, \ldots, t\}$

$$
\left\|\sum_{i=1}^{j} v^{(\pi(i))}-j \cdot b / t\right\|_{\infty} \leq 2 M \Delta .
$$

This follows easily from the Steinitz Lemma: Insert vectors $\frac{v^{(i)}-b / t}{\Delta}$ in the Steinitz Lemma. Notice $\left\|\frac{v^{(i)}-b / t}{\Delta}\right\|_{\infty} \leq 2$.

Eisenbrand \& Weismantel

- Every 0 - b path gives a feasible solution
- Longest path is optimal
- $O(M \Delta)^{M} \cdot\|b\|_{\infty}$ vertices
- $N \cdot O(M \Delta)^{M} \cdot\|b\|_{\infty}$ edges
- Running time:

$$
N \cdot O(M \Delta)^{2 M} \cdot\|b\|_{\infty}^{2}
$$

Observation: There is an optimal solution of bounded norm, i.e., $\|x\|_{1} \leq O(M \Delta)^{M} \cdot\|b\|_{\infty}$.

Our Approach

Let $v^{(1)}+\ldots+v^{(t)}=b$ be columns corresponding to an optimal solution of (IP).
Equivalent:
$v^{(1)}+\ldots+v^{(t / 2)}$ is optimal for
$\left\{\max c^{t} x, A x=b^{\prime}, x \in \mathbb{Z}_{\geq 0}^{N}\right\}$
and $v^{(t / 2+1)}+\ldots+v^{(t)}$ is for
$\left\{\max c^{t} x, A x=b-b^{\prime}, x \in \mathbb{Z}_{\geq 0}^{N}\right\}$.

If ordered via Steinitz Lemma, b^{\prime} and $b-b^{\prime}$ are not far from $\frac{1}{2} b$.

Assume w.l.o.g. there is an optimal solution x with $\|x\|_{1}=2^{K}$, where $K \in \log \left(O(M \Delta)^{M} \cdot\|b\|_{\infty}\right)=O\left(M \log (M \Delta)+\log \left(\|b\|_{\infty}\right)\right)$

Solve for every $i=K, K-1, \ldots, 0$ and every b^{\prime} with

$$
\left\|b^{\prime}-\frac{1}{2^{i}} b\right\|_{\infty} \leq 4 M \Delta
$$

the problem

$$
\begin{aligned}
\max & c^{t} x \\
A x & =b^{\prime} \\
\|x\|_{1} & =2^{K-i} \\
x & \in \mathbb{Z}_{\geq 0}^{N}
\end{aligned}
$$

Original problem for $i=0$ and $b^{\prime}=b$.

Consider iteration $i<K$ and b^{\prime} with $\left\|b^{\prime}-1 / 2^{i} \cdot b\right\|_{\infty} \leq 4 M \Delta$.
Let $v^{(1)}, \ldots, v^{\left(2^{K-i}\right)}$ be a solution of $\max \left\{c^{t} x, A x=b^{\prime},\|x\|_{1}=2^{K-i}, x \in \mathbb{Z}_{\geq 0}^{N}\right\}$ ordered via Steinitz. Set $b^{\prime \prime}:=v^{(1)}+\ldots+v^{\left(2^{K-i-1}\right)}$. Then we obtain

$$
\left\|b^{\prime \prime}-\frac{1}{2^{i+1}} b\right\|_{\infty} \leq \underbrace{\left\|b^{\prime \prime}-\frac{1}{2} b^{\prime}\right\|_{\infty}}_{\leq 2 m \Delta}+\underbrace{\left\|\frac{1}{2} b^{\prime}-\frac{1}{2^{i+1}} b\right\|_{\infty}}_{\leq 1 / 2 \cdot 4 M \Delta} \leq 4 M \Delta
$$

Similarly, $\left\|\left(b^{\prime}-b^{\prime \prime}\right)-\frac{1}{2^{i+1}} b\right\|_{\infty} \leq 4 M \Delta$.
Our algorithm: Guess $b^{\prime \prime}\left(O(M \Delta)^{M}\right.$ candidates), look up solutions for $\left(i+1, b^{\prime \prime}\right)$ and $\left(i+1, b^{\prime}-b^{\prime \prime}\right)$, and take the best.

Merging solutions

(mAX, +)-CONVOLUTION
Input: $r_{1}, \ldots, r_{n} \in \mathbb{R}$,

$$
s_{1}, \ldots, s_{n} \in \mathbb{R}
$$

Output: $t_{1}, \ldots, t_{n} \in \mathbb{R}$ with

$$
t_{i}=\max _{j}\left[r_{j}+s_{i-j}\right]
$$

$T(n)$ time algorithm for (min, +)-convolution \Rightarrow $T\left(O(M \Delta)^{M}\right) \cdot O\left(M \log (M \Delta)+\log \left(\|b\|_{\infty}\right)\right)+O(N M)$ for IP.

With $T(n)=O\left(n^{2} / \log (n)\right): O(M \Delta)^{2 M} \cdot \log \left(\|b\|_{\infty}\right)+O(N M)$.

Feasibility of IP

BOOLEAN-CONVOLUTION

Input: $r_{1}, \ldots, r_{n} \in\{0,1\}$,

$$
s_{1}, \ldots, s_{n} \in\{0,1\}
$$

Output: $t_{1}, \ldots, t_{n} \in\{0,1\}$ s.t.

$$
t_{i}=\bigvee_{j}\left[r_{j} \wedge s_{i-j}\right]
$$

Boolean Convolution can be computed in $T(n)=O(n \log n)$.
\Rightarrow Feasibility of IP in time

$$
\begin{aligned}
& T\left(O(M \Delta)^{M}\right) \cdot\left(M \log (M \Delta)+\log \left(\|b\|_{\infty}\right)\right)+O(N M) \\
& =O(M \Delta)^{M} \cdot \log (\Delta) \cdot \log \left(\Delta+\|b\|_{\infty}\right)+O(N M) .
\end{aligned}
$$

Bin Packing:

Problem Definition

- d item sizes
- s_{i} : size of item
- b_{i} : multiplicity of item size s_{i}
- Objective: Find a packing into a minimum number of unit bins.

Cone:

Given a set of points $P \subset \mathbb{Z}^{d}$ then

$$
\operatorname{Cone}(P)=\left\{\sum_{p \in P} \lambda_{p} p \mid \lambda \in \mathbb{R}_{\geq 0}^{P}\right\}
$$

Integer Cone:

Given a set of points $P \subset \mathbb{Z}^{d}$ then

$$
\text { int.cone }(P)=\left\{\sum_{p \in P} \lambda_{p} p \mid \lambda \in \mathbb{Z}_{\geq 0}^{P}\right\}
$$

Integer Cones of Polytopes:

Given Polytope $\mathcal{P}=\left\{x \in \mathbb{R}^{d} \mid A x \leq c\right\}$ for some matrix $A \in \mathbb{Z}^{m \times d}$ and a vector $c \in \mathbb{Z}^{d}$.

Knapsack polytope $\mathcal{P}=\left\{x \in \mathbb{R}^{d} \mid s_{1} x_{1}+\ldots s_{d} x_{d} \leq 1, x \geq 0\right\}$ for sizes s_{1}, \ldots, s_{d}.

We consider int.cone $\left(\mathcal{P} \cap \mathbb{Z}^{d}\right)$.

The Bin Packing Problem:

Given: a set of item sizes $s_{1}, \ldots, s_{d} \in(0,1]$ and multiplicities b_{1}, \ldots, b_{d} of the corresponding item sizes.
Objective: Find a packing into a minimum number of unit bins.
Example:
Item sizes: $s_{1}=\frac{1}{5}, s_{2}=\frac{1}{3}$ with multiplicities: $b_{1}=5, b_{2}=5$

The Bin Packing Problem:

Each vector $\lambda \in \mathbb{Z}_{>0}^{\mathcal{P} \cap \mathbb{Z}^{d}}$ with
$\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} \lambda_{p} p=b \in \operatorname{int} . c o n e\left(\mathcal{P} \cap \mathbb{Z}^{d}\right)$ represents a possible solution of the bin packing problem.

Structural Properties:

Arguments about the set of possible solutions $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^{d}}$.

The Structure of the Integer Cone:

Theorem [Eisenbrand, Shmonin '06]
For any integral point $b \in \operatorname{int} . c o n e\left(\mathcal{P} \cap \mathbb{Z}^{d}\right)$, there exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^{d}}$ such that $b=\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} \lambda_{p} p$ and $|\operatorname{supp}(\lambda)| \leq 2^{d}$.

The Structure of the Integer Cone:

Theorem [Goemans \& Rothvoß'14]
There exists a set $X \subseteq \mathcal{P} \cap \mathbb{Z}^{d}$ with $|X| \leq m^{d} d^{O(d)}(\log \Delta)^{d}$ such that for any point $b \in \operatorname{int}$.cone $\left(\mathcal{P} \cap \mathbb{Z}^{d}\right)$, there exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \mathbb{Z}^{d}}$ such that $b=\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} \lambda_{p} p$ and

1. $\lambda_{p} \leq 1 \quad \forall p \in\left(\mathcal{P} \cap \mathbb{Z}^{d}\right) \backslash X$
2. \mid supp $(\lambda) \cap X \mid \leq 2^{2 d}$
3. $|\operatorname{supp}(\lambda) \backslash X| \leq 2^{2 d}$

Theorem [Goemans \& Rothvoß'14]

Bin packing with d different item sizes can be solved in time $(\log \Delta)^{2^{O(d)}}$, where Δ is the maximum over all multiplicities b and denominators in s.

Vertices of the Integer Polytope:

Integer Polytope $\mathcal{P}_{I}=\operatorname{Conv}\left(\mathcal{P} \cap \mathbb{Z}^{d}\right)$

$$
\begin{gathered}
s_{1}=\frac{3}{14} \\
s_{2}=\frac{2}{7}
\end{gathered}
$$

Theorem [Cook et al. '92]
For a polytope $\mathcal{P}=\left\{x \in \mathbb{R}^{d} \mid A x \leq c\right\}$ the integer polytope \mathcal{P}_{I} has at most $m^{d} \cdot O\left((\log \Delta)^{d}\right)$ vertices.

Our Structure Theorem:

Theorem [Jansen \& Klein '17]

Let $V_{l} \subseteq \mathcal{P} \cap \mathbb{Z}^{d}$ be the set of vertices of the integer polytope \mathcal{P}_{1}. Then for any vector $b \in \operatorname{int} . c o n e\left(\mathcal{P} \cap \mathbb{Z}^{d}\right)$, there exists an integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{\mathcal{P} \cap \mathbb{Z}^{d}}$ such that $b=\sum_{p \in \mathcal{P} \cap \mathbb{Z}^{d}} \lambda_{p} p$ and

$$
\text { 1. } \lambda_{p} \leq 2^{2^{O(d)}} \quad \forall p \in\left(\mathcal{P} \cap \mathbb{Z}^{d}\right) \backslash V_{l}
$$

2. $\left|\operatorname{supp}(\lambda) \cap V_{V}\right| \leq d \cdot 2^{d}$
3. $\left|\operatorname{supp}(\lambda) \backslash V_{l}\right| \leq 2^{2 d}$

Theorem [Jansen \& Klein '17]

The bin packing problem can be solved in time $\left|V_{l}\right|^{2^{(d)}} \cdot(\log \Delta)^{O(1)}$ and hence in FPT-time, parameterized by the number of vertices V_{l}.

Main Open Questions:

- Is there an EPTAS for scheduling on identical machines with running time $2^{O(1 / \epsilon)}+O(n)$?
- Is there an FPT-algorithm for bin packing parameterized by the number d of different sizes?

Thanks for your attention!

