
Overview Scheduling Integer Programming Bin Packing Open Problems

1

New Algorithmic Results for Scheduling and Bin
Packing

Klaus Jansen 1

1University of Kiel

Joint Work with Lin Chen, Kim-Manuel Klein, Lars
Rohwedder, José Verschae and Gouchuan Zhang

Overview Scheduling Integer Programming Bin Packing Open Problems

Overview:

Main Topics

I Scheduling on Identical Machines
I Integer Programming
I Bin Packing
I Open Problems

Overview Scheduling Integer Programming Bin Packing Open Problems

Scheduling on Identical Machines P||Cmax :

I Given: n jobs with processing times pj
I and m machines
I Objective: Minimize makespan (maximum machine load)

Proc. time
Makespan

Jobs Machines

Overview Scheduling Integer Programming Bin Packing Open Problems

Literature:

Complexity

I Strongly NP-hard: If P 6= NP, then there is no FPTAS.

Known Algorithms
There is a PTAS with running time:

I nO(1
ε2) [Hochbaum & Shmoys ’87]

I nO(1
ε

log(1
ε

)) [Leung 97]
There is an EPTAS with running time:

I 22Õ(1
ε)

+ O(n log n) [Alon et al. ’98 & H. & S. ’96]

I 2Õ(1
ε2)

+ O(n log n) [Jansen ’10]

Overview Scheduling Integer Programming Bin Packing Open Problems

Closing the Gap:

Lower Bound [Chen, Jansen, Zhang ’13]

I If the Exponential Time Hypothesis holds, there is no
EPTAS with running time 2(1

ε
)1−δ

+ poly(n).

Our Main Result:

Theorem [Jansen, Klein, Verschae ’16]
Minimum makespan scheduling admits an EPTAS with running
time

2Õ(1
ε

) + O(n).

Overview Scheduling Integer Programming Bin Packing Open Problems

General Strategy:

General scheme for designing a PTAS:

1. Guess the makespan T of the optimal solution.
2. Round instance (1 + ε) multiplicative loss in objective.
3. Solve the rounded instance using an ILP formulation.

Overview Scheduling Integer Programming Bin Packing Open Problems

Rounding:

Lemma (Rounding and scaling)
T = 1/ε2 and jobs sizes belong to Π = {π1, . . . , πd}:
I Π ⊆ {1

ε ,
1
ε + 1, . . . , 1

ε2 } and, → integer numbers

I |Π| = O(1
ε log(1

ε)) = Õ(1
ε). → few sizes

1
ε2

1
ε

Overview Scheduling Integer Programming Bin Packing Open Problems

Configurations:

A configuration represents one possibility of assigning jobs
from Π to a single machine.

Example (The set of configurations)

K = , , , . . .

Overview Scheduling Integer Programming Bin Packing Open Problems

Configurations:

Knapsack polytope

P = {k ∈ R|Π|≥0 : k t · π ≤ T}

Polyhedral view

k1

k2 π

Overview Scheduling Integer Programming Bin Packing Open Problems

Configurations:

Set of configurations

K := P ∩ Z|Π|≥0

Observation 1

|K | ≤ (T + 1)|Π| == 2O(1
ε

log2(1
ε

)) = 2Õ(1
ε

).

Overview Scheduling Integer Programming Bin Packing Open Problems

Integer Programming Formulation

Observation 2:
The vector (xk)k∈K belongs to the system

∑
k∈K

xk = m∑
k∈K

kixk = ni for all πi ∈ Π

x ∈ ZK
≥0

of constraints = Õ(1

ε)

variables = 2Õ(1
ε

)

Overview Scheduling Integer Programming Bin Packing Open Problems

Solving the ILP, first Approach:
Method [Alon et al. ’98] and [Hochbaum & Shmoys ’97] uses

Theorem [Kannan ’87 / Lenstra ’83]
An integer program with N variables can be solved in time
2Õ(N) s (where s is the length of the input).

In our case N = |K | = 2Õ(1
ε

) and thus the running time is

2Õ(N) log(n) = 22Õ(1
ε)

log(n)← doubly exponential!

Main Idea: Try to reduce the number of variables.

Overview Scheduling Integer Programming Bin Packing Open Problems

Solving the ILP, second Approach:
Guess the support [Jansen ’10]

Theorem [Eisenbrand & Shmonin ’06]
There is an optimum sol. x∗ for {ctx : Ax = b, x ≥ 0, x integer}
s.t. |support(x∗)| ≤ O(M(log(M ·∆)) where
I M = number of constraints,
I ∆ = largest coefficient in A, c.

In our case:
I M = |Π| = Õ(1

ε), and ∆ = 1
ε

I |support(x∗)| ≤ Õ(1
ε)

Overview Scheduling Integer Programming Bin Packing Open Problems

Solving the ILP, second Approach:
Guess the support [Jansen ’10]

Algorithm:

1. Try each possible support: there are Õ(1
ε) ·

(|K |
Õ(1

ε
)

)
= 2Õ(1

ε2)

many.
2. Solve ILP restricted to guessed variables with Kannan’s

algorithm (running time 2Õ(1
ε

) log(n))

3. Total running time: 2Õ(1
ε2)

log(n).

Overview Scheduling Integer Programming Bin Packing Open Problems

Solving the ILP, third Approach:
Understanding the Optimum

Definition
A configuration k is complex if it contains more than log(T + 1)
different sizes; o.w. it is simple.

Example (log(T + 1) = 1)

k1

k2

simple

complex

Example (log(T + 1) = 3)

Simple Complex

Overview Scheduling Integer Programming Bin Packing Open Problems

Solving the ILP, third Approach:
Understanding the Optimum

A “subconfiguration” k ′ ≤ k of configuration k is called maximal
if it contains all possible jobs of each taken size.

Original
Configuration

Maximal
Subconfiguration

Non-Maximal
Subconfiguration

Overview Scheduling Integer Programming Bin Packing Open Problems

Lemma
Every complex conf. k ∈ K contains two maximal disjoint
subconfigurations k1, k2 s.t. the total size of k1 and k2 coincide.

Complex
Configuration k

Subconfiguration
k1

h

Subconfiguration
k2

h

Overview Scheduling Integer Programming Bin Packing Open Problems

Lemma
Every complex conf. k ∈ K contains two maximal disjoint
subconfigurations k1, k2 s.t. π · k1 = π · k2.

Proof.
I Let C > log(T + 1) be the number of sizes (colors) in k .
I Number of maximal subconfigurations = 2C > T + 1.
I Total size of each configuration is in {0,1,2, . . . ,T}.
I Pigeonhole principle⇒ there are two maximal

subconfigurations of same total size.

Overview Scheduling Integer Programming Bin Packing Open Problems

Solving the ILP, third Approach:

Lemma (Sparsification Lemma (informal))
If a complex configuration is taken twice in a solution, then we
can replace it by two other “less complex” configurations.

k2

k1

k2

k1

k1

k1

k2

k2

Overview Scheduling Integer Programming Bin Packing Open Problems

Solving the ILP, third Approach:
Theorem (Thin solutions)
If the ILP is feasible, then there is a solution x∗ such that:
I At most Õ(1

ε) machines get complex configurations.
I Each complex configuration is used at most once.
I |support(x∗)| ≤ O(|Π| log(|Π|T)) = Õ(1

ε).

simple
confs

complex
confs

Overview Scheduling Integer Programming Bin Packing Open Problems

Lemma
The number of simple configurations in K is 2O(log2(1

ε
)) = 2Õ(1).

Proof.
Let D = log(T + 1) and T = 1/ε2.

simple conf ≤
D∑

i=0

(
|Π|
i

)
× (T + 1)i

≤ (D + 1)|Π|D × (T + 1)D

≤ (
1
ε

log(
1
ε

))O(log(1
ε

))

≤ 2O(log2(1
ε

)) ≤ 2Õ(1).

Overview Scheduling Integer Programming Bin Packing Open Problems

Solving the ILP, third Approach:
Algorithm

Part 1: Complex Configurations.
1. Guess jobs assigned to complex configurations and

number of complex machines.
2. Solve that subinstance optimally with a dynamic program.

Overview Scheduling Integer Programming Bin Packing Open Problems

Solving the ILP: Third Approach
Algorithm

Part 2: Remaining Instance.
1. Guess the (simple!) configurations in support:

possibilities ≤
(

2Õ(1)

Õ(1
ε)

)
= 2Õ(1

ε
)

2. For each possibility solve the ILP restricted to those
variables with Kannan’s algorithm.

Total running time: 2Õ(1
ε

) log(n)

Overview Scheduling Integer Programming Bin Packing Open Problems

Main Result:
Algorithm

Theorem [Jansen, Klein, Verschae ’16]
The minimum makespan problem on identical machines admits
an EPTAS with running time

2O(1
ε

log4(1
ε

)) = 2Õ(1
ε

) + O(n).

Overview Scheduling Integer Programming Bin Packing Open Problems

Integer Linear Programming

max ctx
Ax = b

x ∈ Zn
≥0

where A ∈ ZM×N , b ∈ ZM , c ∈ ZN .

Considered case
M (#constraints) is a constant, entries of A are small (≤ ∆).

Overview Scheduling Integer Programming Bin Packing Open Problems

Pseudo-polynomial Algorithms

Known Algorithms
There is an algorithm with running time:
I (M(∆ + ‖b‖∞))O(M2) [Papadimitrou ’81]
I N ·O(M∆)2M · ‖b‖2∞. [Eisenbrand & Weismantel ’18]

Theorem [Jansen & Rohwedder ’19]
IP can be solved in time O(M∆)2M · log(‖b‖∞) + O(NM).
Moreover, improving the exponent to 2M − δ is equivalent to
finding a truly subquadratic algorithm for (min, +)-convolution.

Overview Scheduling Integer Programming Bin Packing Open Problems

Feasibility problem

Theorem [Jansen & Rohwedder ’19]
Algorithm with running time:
O(M∆)M · log(∆) · log(∆ + ‖b‖∞) + O(NM). Improving
exponent to M − δ would contradict the Strong Exponential
Time Hypothesis (SETH).

Previous best result
N ·O(M∆)M · ‖b‖∞. [Eisenbrand & Weismantel ’18]

Overview Scheduling Integer Programming Bin Packing Open Problems

Application P||Cmax

Configuration IP ∑
k∈K xk = m∑
k∈K kixk = ni ∀πi ∈ Π

xk ∈ Z≥0 ∀k ∈ K

has M + 1 = O(1
ε log(1

ε)) constraints and N = |K | = 2O(1
ε

) many
variables. The value ∆ = maxk ,i ki ≤ 1

ε and ‖b‖∞ ≤ n.

New result: Including preprocessing O(n + 1
ε log(1

ε)), we get:

O(M∆)M · log(∆) · log(∆ + ‖b‖∞) + O(NM) + O(n + 1
ε log(1

ε))

≤ 2O(1
ε

log2(1
ε

)) log(n) + O(n) ≤ 2O(1
ε

log2(1
ε

)) + O(n).

Overview Scheduling Integer Programming Bin Packing Open Problems

Steinitz Lemma

Let ‖·‖ be a norm in RM and v (1), . . . , v (t) ∈ RM with ‖v (i)‖ ≤ 1
∀i and v (1) + · · ·+ v (t) = 0. Then there is a permutation π ∈ St
with ‖

∑j
i=1 v (π(i))‖ ≤ M for all j = 1, . . . , t .

0 00

Overview Scheduling Integer Programming Bin Packing Open Problems

Consider an optimal solution x∗ of (IP)
and the sequence of column vectors

A1, . . . ,A1︸ ︷︷ ︸
x∗

1 times

,A2, . . . ,A2︸ ︷︷ ︸
x∗

2 times

, . . .

Recall that ‖Ai‖∞ ≤ ∆.

max ctx
Ax = b (IP)

x ∈ ZN
≥0

b

0

b

0

Overview Scheduling Integer Programming Bin Packing Open Problems

Steinitz for IP (formally)

Corollary
Let v (1), . . . , v (t) denote columns of A with

∑t
i=1 v (i) = b. Then

there exists a permutation π ∈ St such that for all j ∈ {1, . . . , t}∥∥∥∥∥∥
j∑

i=1

v (π(i)) − j · b/t

∥∥∥∥∥∥
∞

≤ 2M∆.

This follows easily from the Steinitz Lemma: Insert vectors
v (i)−b/t

∆ in the Steinitz Lemma. Notice ‖v (i)−b/t
∆ ‖∞ ≤ 2.

Overview Scheduling Integer Programming Bin Packing Open Problems

Eisenbrand & Weismantel

b

0

u v

if v − u = Ai is column;
weight ci

I Every 0− b path gives
a feasible solution

I Longest path is optimal
I O(M∆)M · ‖b‖∞

vertices
I N ·O(M∆)M · ‖b‖∞

edges
I Running time:

N ·O(M∆)2M · ‖b‖2∞

Observation: There is an optimal solution of bounded norm,
i.e., ‖x‖1 ≤ O(M∆)M · ‖b‖∞.

Overview Scheduling Integer Programming Bin Packing Open Problems

Our Approach

b

0

1
2b

b′ = v (1) + . . .+ v (t/2)

Let v (1) + . . .+ v (t) = b be
columns corresponding to an
optimal solution of (IP).

Equivalent:
v (1) + . . .+ v (t/2) is optimal for

{max ctx ,Ax = b′, x ∈ ZN
≥0}

and v (t/2+1) + . . .+ v (t) is for

{max ctx ,Ax = b−b′, x ∈ ZN
≥0}.

If ordered via Steinitz Lemma, b′ and b−b′ are not far from 1
2b.

Overview Scheduling Integer Programming Bin Packing Open Problems

Assume w.l.o.g. there is an optimal solution x with ‖x‖1 = 2K ,
where K ∈ log(O(M∆)M · ‖b‖∞) = O(M log(M∆) + log(‖b‖∞))

Solve for every i = K ,K − 1, . . . ,0 and every b′ with∥∥∥∥b′ − 1
2i b
∥∥∥∥
∞
≤ 4M∆

the problem

max ctx
Ax = b′

‖x‖1 = 2K−i

x ∈ ZN
≥0.

Original problem for i = 0 and b′ = b.

b

0

Overview Scheduling Integer Programming Bin Packing Open Problems

Consider iteration i < K and b′ with ‖b′ − 1/2i · b‖∞ ≤ 4M∆.

Let v (1), . . . , v (2K−i) be a solution of
max{ctx ,Ax = b′, ‖x‖1 = 2K−i , x ∈ ZN

≥0} ordered via Steinitz.
Set b′′ := v (1) + . . .+ v (2K−i−1). Then we obtain∥∥∥∥b′′ − 1

2i+1 b
∥∥∥∥
∞
≤
∥∥∥∥b′′ − 1

2
b′
∥∥∥∥
∞︸ ︷︷ ︸

≤2m∆

+

∥∥∥∥1
2

b′ − 1
2i+1 b

∥∥∥∥
∞︸ ︷︷ ︸

≤1/2·4M∆

≤ 4M∆

Similarly,
∥∥(b′ − b′′)− 1

2i+1 b
∥∥
∞ ≤ 4M∆.

Our algorithm: Guess b′′ (O(M∆)M candidates), look up
solutions for (i + 1,b′′) and (i + 1,b′ − b′′), and take the best.

Overview Scheduling Integer Programming Bin Packing Open Problems

Merging solutions

(MAX, +)-CONVOLUTION

Input: r1, . . . , rn ∈ R,
s1, . . . , sn ∈ R

Output: t1, . . . , tn ∈ R with
ti = maxj [rj + si−j]

r1, . . . ,r i
2−1, r i

2
, r i

2 +1,. . . , ri−1

s1, . . . ,s i
2−1, s i

2
, s i

2 +1,. . . , si−1

ti
T (n) time algorithm for (min, +)-convolution⇒
T (O(M∆)M) ·O(M log(M∆) + log(‖b‖∞)) + O(NM) for IP.

With T (n) = O(n2/ log(n)): O(M∆)2M · log(‖b‖∞) + O(NM).

Overview Scheduling Integer Programming Bin Packing Open Problems

Feasibility of IP
BOOLEAN-CONVOLUTION

Input: r1, . . . , rn ∈ {0,1},
s1, . . . , sn ∈ {0,1}

Output: t1, . . . , tn ∈ {0,1} s.t.
ti =

∨
j [rj ∧ si−j]

r1, . . . ,r i
2−1, r i

2
, r i

2 +1,. . . , ri−1

s1, . . . ,s i
2−1, s i

2
, s i

2 +1,. . . , si−1

ti
Boolean Convolution can be computed in T (n) = O(n log n).

⇒ Feasibility of IP in time

T (O(M∆)M) · (M log(M∆) + log(‖b‖∞)) + O(NM)
= O(M∆)M · log(∆) · log(∆ + ‖b‖∞) + O(NM).

Overview Scheduling Integer Programming Bin Packing Open Problems

Bin Packing:

Problem Definition
I d item sizes
I si : size of item
I bi : multiplicity of item size si

I Objective: Find a packing into a minimum number of unit
bins.

Overview Scheduling Integer Programming Bin Packing Open Problems

Cone:
Given a set of points P ⊂ Zd then

Cone(P) = {
∑
p∈P

λpp | λ ∈ RP
≥0}

p1

p2

Overview Scheduling Integer Programming Bin Packing Open Problems

Integer Cone:
Given a set of points P ⊂ Zd then

int .cone(P) = {
∑
p∈P

λpp | λ ∈ ZP
≥0}

p1

p2p3

Overview Scheduling Integer Programming Bin Packing Open Problems

Integer Cones of Polytopes:
Given Polytope P = {x ∈ Rd | Ax ≤ c} for some matrix
A ∈ Zm×d and a vector c ∈ Zd .

Knapsack polytope P = {x ∈ Rd | s1x1 + . . . sdxd ≤ 1, x ≥ 0}
for sizes s1, . . . , sd .

x1

x2

P

We consider int .cone(P ∩ Zd).

Overview Scheduling Integer Programming Bin Packing Open Problems

The Bin Packing Problem:
Given: a set of item sizes s1, . . . , sd ∈ (0,1] and multiplicities
b1, . . . ,bd of the corresponding item sizes.
Objective: Find a packing into a minimum number of unit bins.

Example:
Item sizes: s1 = 1

5 , s2 = 1
3 with multiplicities: b1 = 5,b2 = 5

p1 p2 p2

Overview Scheduling Integer Programming Bin Packing Open Problems

The Bin Packing Problem:
Each vector λ ∈ ZP∩Zd

≥0 with∑
p∈P∩Zd λpp = b ∈ int .cone(P ∩ Zd) represents a possible

solution of the bin packing problem.

p1 p2 p2 p1

p2

b

Overview Scheduling Integer Programming Bin Packing Open Problems

Structural Properties:

Arguments about the set of possible solutions λ ∈ ZP∩Zd

≥0 .

b

Overview Scheduling Integer Programming Bin Packing Open Problems

The Structure of the Integer Cone:

Theorem [Eisenbrand, Shmonin ’06]
For any integral point b ∈ int .cone(P ∩ Zd), there exists an
integral vector λ ∈ ZP∩Zd

≥0 such that b =
∑

p∈P∩Zd λpp and
|supp(λ)| ≤ 2d .

Overview Scheduling Integer Programming Bin Packing Open Problems

The Structure of the Integer Cone:
Theorem [Goemans & Rothvoß’14]
There exists a set X ⊆ P ∩ Zd with |X | ≤ mddO(d)(log ∆)d such
that for any point b ∈ int .cone(P ∩ Zd), there exists an integral
vector λ ∈ ZP∩Zd

≥0 such that b =
∑

p∈P∩Zd λpp and

1. λp ≤ 1 ∀p ∈ (P ∩ Zd) \ X
2. |supp(λ) ∩ X | ≤ 22d

3. |supp(λ) \ X | ≤ 22d

Theorem [Goemans & Rothvoß’14]
Bin packing with d different item sizes can be solved in time
(log ∆)2O(d)

, where ∆ is the maximum over all multiplicities b
and denominators in s.

Overview Scheduling Integer Programming Bin Packing Open Problems

Vertices of the Integer Polytope:
Integer Polytope PI = Conv(P ∩ Zd)

x1

x2

PI

s1 = 3
14

s2 = 2
7

Theorem [Cook et al. ’92]
For a polytope P = {x ∈ Rd | Ax ≤ c} the integer polytope PI
has at most md ·O((log ∆)d) vertices.

Overview Scheduling Integer Programming Bin Packing Open Problems

Our Structure Theorem:
Theorem [Jansen & Klein ’17]
Let VI ⊆ P ∩ Zd be the set of vertices of the integer polytope
PI . Then for any vector b ∈ int .cone(P ∩ Zd), there exists an
integral vector λ ∈ ZP∩Zd

≥0 such that b =
∑

p∈P∩Zd λpp and

1. λp ≤ 22O(d) ∀p ∈ (P ∩ Zd) \ VI

2. |supp(λ) ∩ VI | ≤ d · 2d

3. |supp(λ) \ VI | ≤ 22d

Theorem [Jansen & Klein ’17]
The bin packing problem can be solved in time
|VI |2

O(d) · (log ∆)O(1) and hence in FPT-time, parameterized by
the number of vertices VI .

Overview Scheduling Integer Programming Bin Packing Open Problems

Main Open Questions:

I Is there an EPTAS for scheduling on identical machines
with running time 2O(1/ε) + O(n)?

I Is there an FPT-algorithm for bin packing parameterized by
the number d of different sizes?

Overview Scheduling Integer Programming Bin Packing Open Problems

Thanks for your attention!

	Overview
	Scheduling
	Integer Programming
	Bin Packing
	Open Problems

