On the price and related issues

Leah Epstein
University of Haifa, Haifa, Israel

Online: receive items one by one

Offline: receive all items together

- A set of items. Item \mathbf{i} has a size $s_{i} \in[0,1]$
- An unlimited supply of bins of capacity 1 - Pack into a minimum number of bins

Here, colors have no particular meaning

An input
0.1 0.2 0.5 0.2 0.4 0.6

A small example

	A possible
0.2	
0.2	
	0.1
0.5	0.4

bin 1

bin 3

An optimal solution

0.2	0.1	
0.2		0.5
0.6		
		0.4

bin 1 bin 2

0.1

0.2

First Fit (FF)

Process the
items as a
list.

0.6
0.5

Pack each
item into the minimum indexed bin where it can be packed
0.05
0.4

Some greedy algorithms..

 0.2
First Fit Decreasing (FFD)

0.6
0.5
0.4
0.2
0.2
0.1

Run FF on a sorted input

- Sorted by non-increasing sizes
- Not always optimal

0.4	0.1
	0.2
0.6	0.2
	0.5

bin 1 bin 2

bin 1 bin 2 bin 3

0.35
0.35
0.3
0.2

First Fit Increasing (FFI)

0.6
0.5
0.4
0.2
0.2
0.1

Run FF on a sorted input

- Sorted by non-decreasing sizes
- Not always optimal

bin 1

bin 2 bin 3

Has one active bin
Packs an item into the active bin If this is impossible, the active bin is closed and a new active bin is opened.

bin 1 bin 2 bin 3

By sorting the items, one can apply NFD or NFI

NFI is the same algorithm as FFI for this problem

Bin packing with types

Every item has two attributes
A size as always, and a type (also called color)

There are items
of six types in the example
(Fake) applications in cloud computing: The types are locations of data

Motivation: Cloud Computing

Clustered solutions

- These are solutions where each bin can contain only items of one type
- A cluster is the set of items of one type
- The packing problem is solved independently for every type/cluster
- Every cluster may be packed optimally or using any other algorithm
- In an optimal clustered solution every cluster is packed optimally
- Application-wise: every cluster is a set of items of a user, which are placed in one location

Globally optimal solutions

- These are solutions where the partition into clusters/types/colors is not taken into account
- Such a solution is just a solution for standard bin packing, where items have sizes
and this is the only attribute
- All items are in one location
- This solution may be much better than an optimal clustered solution

Assumptions on clusters

- It is assumed that for every cluster, an optimal solution requires at least a given number of bins k
- The parameter \mathbf{k} is small: 2 or 3
- Maybe 4..
- Why? Because otherwise it is possible that every item will be of a different type and items may be very small

ε	ε	ε	ε	ε
ε	ε	ε	ε	

Price of clustering

Introduced: [AESV'19]
Azar, Emek, van Stee, Vainstein, SPAA 2019 The price of clustering (PoC) is
the worst case ratio between
the optimal cost of a clustered solution and the optimal cost of a globally optimal solution

The PoC is defined as a function of \mathbf{k} $\mathbf{k}=$ the lower bound on the optimal cost (number of bins) of a single cluster As we saw, the PoC it is infinite if $k=1$

The approximation ratio

For minimization problems

- The strict measure
- Worst-case ratio between the cost of the algorithm and the cost of an optimal solution
- Here "the algorithm" can be a clustered solution, an optimal solution is an optimal global solution, and the approximation ratio is the PoC
- The asymptotic measure

Compare only for inputs with sufficiently large optimal costs
Optimal cost of at least N , let N grow to infinity
The results for the PoC will hold for both measures
Most other results are proved for the asymptotic measure
This is the standard measure for bin packing
Considered to be more meaningful for algorithms

Parametric bin packing

- In the standard bin packing problem, items can have any size in $(0,1]$
- In some applications, items sizes are relatively small or bounded
- The parametric variant with the parameter $b<1$ is defined such that all items have sizes in $(0, b]$
- In some cases, it is assumed that $\boldsymbol{b}=\frac{\mathbf{1}}{\boldsymbol{t}}$ for an integer $t>1$

Properties of parametric BP

For FF and NF and any output, it holds that every bin except for possibly the last one has a total size of items above 1-b

Thus, if b tends to zero, the asymptotic approximation ratio tends to 1
The absolute approximation ratio can be larger, for example

| 0.05×12 |
| :---: | :---: |
| 0.06×6 | | |
| :---: |
| 0.05×1 |

Where the optimal solution is

0.06×6	0.05×13
0.08×8	0.07×5 0.05

and such examples exist for smaller items as well

The case $\mathrm{k}=2$

- We will show why this case is not so interesting for classic bin packing,
not even for the parametric case
- As we will see, the case $\mathbf{k}=2$ is more interesting for other variants of bin packing
[AESV' 19] the PoC for $k=2$ is 2
Upper bound:
- It is possible to analyze a greedy algorithm instead of an optimal solution
- In this analysis, the number of bins for each cluster is not smaller compared to an optimal solution for the cluster, and it is at least k

Upper bound - using FF

Notation:

OPT the number of bins for a globally optimal solution
S the total size of items $\quad \boldsymbol{O P T} \geq \boldsymbol{S}$
$\boldsymbol{O P T}_{\boldsymbol{i}}$ the optimal number of bins for cluster i
$\boldsymbol{A}_{\boldsymbol{i}} \quad$ the number of bins used by FF for cluster i $\quad \boldsymbol{A}_{\boldsymbol{i}} \geq \boldsymbol{O P} \boldsymbol{T}_{\boldsymbol{i}}$

Bins of a given cluster i :
At least half full on average

at least two bins

Bins are at least half full:

because there are at least two bins
and no pair of bins can be combined

$$
\begin{gathered}
S \geq \frac{\sum A_{i}}{2} \geq \frac{\sum O P T_{i}}{2} \\
O P T \geq S \\
\sum O P T_{i} \leq 2 \cdot O P T
\end{gathered}
$$

This trivial bound cannot be tight, can it? or at least not tight for small items?
Can a cluster have items that do not fit into a bin, but they just barely do not fit, so the second bin is quite empty?

For a large positive integer N There are \mathbf{N} clusters, where every cluster has $(N+1)$ items, each of size $\frac{1}{N} \quad\left[\begin{array}{l}\frac{1}{N} \frac{1}{N} \\ \frac{1}{N} \\ \frac{1}{N} \frac{1}{N}\end{array} \begin{array}{l} \\ \frac{1}{N}\end{array}\right]$ and it requires two bins, for a total of 2 N bins in the clustered solution
A globally optimal solution:
$\mathrm{N}+1$ bins, every bin has N items

$$
\text { Ratio: } \quad \frac{2 N}{N+1} \rightarrow 2
$$

The tight ratio of 2
is valid also for any parametric case.
For any value of b,
choose a
sufficiently large \mathbf{N}

Larger values of k: lower bounds

The lower bound on the PoC for $k=3$ by [AESV' 19] is ~ 1.93344
The greedy sequence for bin packing is used:

$$
\frac{1}{2}+\varepsilon, \frac{1}{3}+\varepsilon, \frac{1}{7}+\varepsilon, \frac{1}{43}+\varepsilon, \frac{1}{1807}+\varepsilon, \ldots
$$

An optimal solution has one set of bins with these items and another set of the same cardinality N (a large positive integer) with pairs of items of the form $\frac{1}{2}+i \cdot \delta, \frac{1}{2}-i \cdot \delta$ Where δ is much smaller than ε

$\frac{1}{2}+\varepsilon$	$\frac{1}{2}+i \cdot \delta$	$\delta \cdot N<\varepsilon$
$\frac{1}{3}+\varepsilon$	$\frac{1}{2}-i \cdot \delta$	

N-1 clusters

 no two items fit together and therefore three bins are needed for each cluster

N/5 clusters

no three items fit together and therefore three bins are needed for each cluster

Improvements, generalizations..

E., 2019 a lower bound of 1.93558 for $\mathbf{k}=3$

One idea: the cluster
can be replaced with

$$
\begin{aligned}
& \frac{1}{2}+\delta \\
& \frac{1}{3}-\varepsilon \\
& \frac{1}{6}+\delta
\end{aligned}
$$

$N / 5$ bins
Using items slightly smaller than $1 / 6$ packed with some
items of size $\frac{1}{3}+\varepsilon$ allows a further improvement

What about larger values of k ?

Similar constructions

no three items fit together and therefore four bins are needed for each cluster
no seven items fit together and therefore four bins are needed for each cluster
no six items fit together and therefore four bins are needed for each cluster

Would this lead to the tight bound for k growing to infinity? Do we get the standard 1.69103? Yes, only the bins of OPT with

$$
\frac{1}{2}+\varepsilon, \frac{1}{3}+\varepsilon, \frac{1}{7}+\varepsilon, \frac{1}{43}+\varepsilon, \frac{1}{1807}+\varepsilon, \ldots \text { are needed }
$$

because the effect of one sparse bin per cluster becomes insignificant

Upper bounds

- The upper bound of [AESV'19] for $\mathbf{k}=3$ on the PoC is based on defining linear constraints on the solution, and solving it using a computer
- The resulting upper bound on the PoC is 1.951
- It should have been 1.95 , minor errors introduced due to the computer assisted proof and rounding
- This value was improved to
- 581/300~1.93667 E. 2019

For simplicity, we will show how to obtain 1.95 easily

- We use weight functions that connect a globally optimal solution to an optimal clustered solution
- The total weight of all items is fixed for a given input and we bound it using both solutions

An upper bound via a weight function

We use the next function: $\boldsymbol{w}:[\mathbf{0}, \mathbf{1}] \rightarrow[\mathbf{0}, \mathbf{1} .95]$
(for the improved upper bound, the weight function has five cases rather than two)
$w(x)=1.8 \cdot x+\left\{\begin{array}{cl}0.15 & \text { for } x>\frac{1}{2} \\ 0 & \text { otherwise }\end{array}\right.$
The main task is that of finding a good weight function, the rest is easier

Claim: For every bin (of a globally optimal solution), the total weight is at most 1.95
Proof: The first part of the weight function is multiplied by at most 1 for all items together, since their total size is at most 1 . There is at most of item of size above $1 / 2$ that might add 0.15 .

An analysis of one cluster

To complete the proof, we show that for every cluster, the total weight of its items is at least the number of bins for the cluster in an optimal solution for it

Instead of an optimal solution, we use FFD for the cluster - so the number of bins it still at least \mathbf{k}.
The number of bins could increase but this only means that we get a larger lower bound on the total weight

Analysis for a cluster

There are two main cases in the proof. We visualize several special cases of these cases, just to see the main idea.

1. Three bins, there are two items of sizes above $1 / 2$. Those two items are packed into the first two bins by FFD. Every two bins have total size above 1 , and therefore the total size for the three bins is above 1.5.
We have a total
weight of at least:
$1.8 \cdot 1.5+2 \cdot 0.15=3$

2. Three bins, there are no items of sizes above $1 / 2$. The first item of the last bin has size in $(1 / 3,1 / 2]$. The items of sizes in (1/3,1/2] are packed first, and therefore there are at least five such items. We have a total weight of at
least: $1.8 \cdot\left(\frac{5}{3}\right)=3$

3. Three bins, there are no items of sizes above $1 / 2$. The first item of the last bin has size in $(0,1 / 3]$. The other two bins have total sizes above $2 / 3$. Every pair of bins has total size above 1 together.
We have a total weight of at least: $1.8 \cdot\left(\frac{2}{3}+1\right)=3$

The modified weight function

$$
w(x)=\frac{21}{13} \cdot x+\left\{\begin{array}{ccr}
\frac{997}{3900} & \text { for } & x>\frac{1}{2} \\
\frac{256}{3900} & \text { for } & \frac{1}{3}<x \leq \frac{1}{2} \\
\frac{216}{3900} & \text { for } & \frac{1}{4}<x \leq \frac{1}{3} \\
\frac{40}{3900} & \text { for } \quad \frac{1}{6}<x \leq \frac{1}{4} \\
0 & \text { for } & x \leq \frac{1}{6}
\end{array}\right.
$$

Batched bin packing

For a parameter $q>1$, items are presented in q batches

- All items of a batch appear at once
- The items of a batch should be packed before another batch is presented
$(q+1)$ batches is never easier than q since batches could be empty
Two variants

1. Use the same bins for all batches

- Open new bins, if necessary, at any time
- This is an intermediate model between online and offline

2. Must use separate bins for different batches

- This variant can be seen as an offline problem
- It is related to clustered solutions and we will only discuss this second batched model

Does the separate bins model lead to an approximation ratio of q ?

- For the absolute approximation ratio YES, it does. An algorithm that packs each batch optimally separately has at most this ratio
Even by splitting an optimal solution into the separate batches, every bin is split into at most k bins
- If there are q items of sizes $1 / q$
- Each appears in its own batch
- An optimal solution for the entire input uses one bin, but any batched solution has q bins
- For the asymptotic approximation ratio?
- Not at all!

Simple bounds for two batches

What about the following simple approach, which has to be the best possible:

- Pack the first batch optimally
- Pack the second batch optimally into new bins

An example (lower bound) for an integer N :
Batch 1: $2 N+1$ items, each of size 0.4
Batch 2: $2 \mathrm{~N}+1$ items, each of size 0.6
OPT for the entire input: $2 \mathrm{~N}+1$ bins with $\{0.4,0.6\}$
An optimal solution for batch 1:
N times $\{0.4,0.4\}$, one $\{0.4\}$
An optimal solution for batch 2:
2N+1 times $\{0.6\}$
$(N+1)+(2 N+1)=3 N+2$ bins versus $2 N+1$ bins

Known upper bounds

- FFD has asymptotic approximation ratio for two batches 19/12~1.58333 [Dósa2017]
- Why is that?
- $\mathrm{q}=2$ is much harder than offline
- Since FFD is applied, the solutions
0.23
0.26
0.51

1
for the batches are not always optimal

- Split an example into two parts

First batch: 12N items of sizes 0.26 and 12 N items of sizes $\mathbf{0 . 2 3}$ (7 N bins)

0.26 0.26 0.26	0.23 0.23 0.23 0.23	0.92
0.78	0.51	

In a second batch, 12 N items of sizes 0.51
12N new bins
OPT=12N, ALG=19N
Our algorithm from the previous slide will create 18 N bins

0.23 0.26 0.23 0.26	
0.51	
0.98	0.51

The separate bins model does not lead to a high asymptotic approximation ratio

- The ratio is always (much) smaller than 2
- Even for large q, the value ~ 1.69103 is tight
- For two batches the ratio is 1.5
- $5 / 3$ for three batches
- Etc.
- For simplicity we will solve NP-hard problems to optimality
- Online algorithms are not limited to certain running times
- It is possible to obtain almost the same bound by using an asymptotic approximation scheme instead
- The additive constant may be larger

The optimal algorithm for two batches (E., 2016)

Our algorithm has an absolute approximation ratio of 2 and an asymptotic approximation ratio of $3 / 2$
In our example, we found a family of instances for all odd values of ALG where

$$
O P T=1.5 \cdot A L G+0.5
$$

Where ALG denotes the total cost for the algorithm, that is, for both batches together.
The example shows that this is the tight absolute/asymptotic approximation ratio of the algorithm for separate bins,
using ALG=1, ALG $\rightarrow \infty$

Analysis

- Consider an optimal solution for the entire input (both batches)
- with X bins
- We construct certain solutions for the two batches separately
- Not necessarily optimal ones
- We can consider their total cost
- The sum of costs of optimal solutions for the two batches is not larger

An optimal solution

Creating three bins out of two bins such that items of different batches are packed separately

Easy, but is this really helpful?

- Every two bins become three

Either all the items of these pair of bins for the first batch have total size at most 1 , or else all the items those of the second batch have total size of at most 1 (it is possible that both properties hold)

- If there is an odd number of bins in OPT, the last bin is converted into two bins
- We got at most $1.5 \cdot \mathrm{X}+0.5$ bins from X bins (we get just $1.5 \cdot \mathrm{X}$ bins if X is even)

But doesn't the ratio get much larger for large q,

 even if we pack each batch optimally?- For the general case, we define "megaitems" and define a solution for them - Packing each batch separately
- This is done offline, just for the proof - It is not an algorithm!
- A mega-item is a maximal subset of items packed into one bin of OPT and belonging to one batch
- We already defined this for $\mathrm{q}=2$
- every bin of OPT had at most two mega-items

How to pack mega-items?

- We can use FFI (First Fit Increasing)
- Why? It is equivalent to NFI
- NF: Use one active bin for packing
- Open a new active bin when cannot pack
- Never return to a bin that could not be used
- An example:
$0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.5,0.55$

0.3
0.25
0.2
0.15

0.4
0.35

But this is not optimal!

Analysis

- The packing is indeed not optimal, but in this way we can analyze all batches together rather than separately
- We can use a weight function
- [Baker, Coffman 1981]
- The function as used for NFI for actual items (not mega-items)
- Actually, it was used for NFD, but they have the same number of output bins for every input [Fisher'88]

But...

- There is an additive constant for every batch
- So we get that the cost is ~ 1.69103 times OPT plus O(q)

Recall that the value 1.69103 is a sum of a series $1+1 / 2+1 / 6+1 / 42+1 / 1806+\ldots$

- The ratio is smaller for fixed q
- The sum of the first q values
$-3 / 2$ for $q=2$
$-5 / 3$ for $q=3$

Still on drawbacks

- Can we avoid such a large additive constant? No
- because of the lower bound of q on the absolute approximation ratio with separate bins
- What about the case where bins are not separate for the separate batches?
- Harder to analyze
- The bas examples are the same
- Already for $q=3$ a purely online algorithm is better than the one we could analyze where bins are separate

Open end bin packing problems

 (OEBP)In such problems a bin can have items of total size above 1 but the total size after removing an item has to be strictly below 1
Max-OEBP: the total size has to be below 1 after excluding the largest item (or excluding any item)
Min-OEBP: the total size has to be below 1 after excluding the smallest item one item "sticks out"

Why study this?
Because it is similar to bin packing, yet it is quite different

Examples and differences

$\{0.3,0.4,0.5\}$ the total size is $\mathbf{1 . 2}$
but the bin is valid for both variants
Max-OEBP $\{0.3,0.4\} \quad 0.7$
Min-OEBP $\{0.4,0.5\} \quad 0.9$
$\{0.2,0.3,0.4,0.5\} \quad 1.4$
Max-OEBP $\{0.2,0.3,0.4\} \quad 0.9 \quad$ Valid
Min-OEBP $\{0.3,0.4,0.5\} \quad 1.2$ Not valid

Some known results for OEBP

For standard BP we will not discuss such results since some of us are familiar with them.
There are two other variants of OEBP, which we will not discuss either.
All variants of OEBP have asymptotic polynomial time approximation schemes
For the two problems studied here:
Leung, Dror, Young, 2001, Lin, Yang, Xu, 2006, 2010
Lin, Yang \& Xu also analyze greedy algorithms and online algorithms for min-OEBP, in particular for the parametric case where $1 / b$ is an integer
Other results for online algorithms are proved or can be deduced from Yang and Leung, 2003, E. \& Levin, 2020, Balogh, E., Levin, 2020.

Greedy algorithms for Max-OEBP

FF for this variant: add every new item to the bin of the smallest index that will remain valid after the addition. For example, $\{0.2,0.7,0.2\}$ is valid.
It is possible to add 0.4 but impossible to add 0.65 , since $0.8<1$ but $1.05>1$
A bin of total size below 1 can always receive another item, so every bin (except for the last one) will have total size of at least 1 .
This is not true to Min-OEBP, the bin $\{0.2,0.2\}$ with respect to an item of size 0.9 .
For Min-OEBP the property is nevertheless true for FFD because the every new item is the current smallest item.

The only greedy algorithm studied previously for Max-OEBP is FFD (Ongkunaruk,2005).
She showed that if all items have sizes in $[0,1)$, the asymptotic approximation ratio is 1.5 .
We can in fact show this even if there may be items of size 1 , though the proof requires a new ingredient. The reason for the slightly longer proof is that as long as only items of size 1 are packed (first), each one is packed into its own bin, and items of sizes close to 1 can be added later.

Here, we will discuss FF for Max-OEBP.

The general case is not very interesting: The upper bound is 2 since no bin can have a total size of 2 or more, and almost every bin of FF has a total size of 1 or more. The lower bound example is also simple (next slide).

OPT has M bins with $(N-1) \times \frac{1}{N}, 1$
If FF gets the small items first, they are packed into bins of the form $N \times \frac{1}{N}$ that cannot receive additional items.
Afterwards, it has M bins of the form $\{\mathbf{1}\}$
In total, $\boldsymbol{M} \cdot \frac{N-1}{N}+\boldsymbol{M}$ bins,

and the ratio tends to 2 for large N .
Can we avoid items of size 1?

- For b=0.999999 the asymptotic approximation ratio is 1.5
- The same ratio holds also in the case where $b=1$ but items of size 1 are impossible, because no bin of FF can have just one item.

An example for the parametric case

The asymptotic approximation ratio never exceeds $1+\mathrm{b}$, but in some cases it is smaller.
Consider the case $\mathrm{b}=0.4$

Bins of OPT:

N bins

N bins

FF

1. $7 N$ bins N bins

The resulting ratio is 1.35 and it is tight. The proof requires a new weight function and a long calculation. A class of weight functions is defined such that all values of b are covered by the proof

The weight function

For the case $b \in\left(\frac{1}{3}, \frac{1}{2}\right]$

$$
w(x)=\left\{\begin{array}{rll}
x & \text { for } & x<\frac{1}{3} \\
\frac{x+1}{4} & \text { for } & \frac{1}{3} \leq x \leq b
\end{array}\right.
$$

For the case $b \in\left(\frac{1}{4}, \frac{1}{3}\right]$

$$
w(x)=\left\{\begin{array}{ccl}
x & \text { for } & x<\frac{1}{4} \\
\frac{2 x+3}{3} & \text { for } & \frac{1}{4} \leq x<b
\end{array}\right.
$$

Etc.

Batched bin packing for Max-OEBP

Here, the asymptotic approximation ratio is 2 for any number of batches $q \geq 2$

The lower bound once again consists of items of size 1 and items of size $1 / \mathrm{N}$, such that by splitting them into two batches the result is similar to the output we saw for FF

The upper bound is also standard, since bins are half full on average. The additive constant depends on q and this cannot be avoided

The PoC for Max-OEBP

The value of the PoC is 3 if every cluster requires at least two bins ($k=2$).
In the lower bound example, there are items of sizes 1 and items of size ε
An optimal solution has \mathbf{N} bins with $\{\varepsilon, \varepsilon, \ldots, \varepsilon, 1\} \begin{aligned} & \begin{array}{l}\text { Total size below } 1 \\ \text { for the epsilons }\end{array}\end{aligned}$
There is a cluster with all items of size 1 , which requires N bins

Total size $1+2 \varepsilon$
Other clusters are of the form $\{\varepsilon, \varepsilon, \ldots, \varepsilon\}$, so every cluster requires two bins, which adds almost 2N bins.

The PoC for Min-OEBP with $\mathrm{k}=2$

The value of the PoC in the case $k=2$ is 4 (every cluster requires at least two bins)
In the lower bound example, there are items of sizes $1-\varepsilon$ and items of size ε

An optimal solution has N bins with $\{1-\varepsilon, 1-\varepsilon\}$ and one bin with $\{2 \varepsilon, 2 \varepsilon, \ldots, 2 \varepsilon\} \quad$ Total Clusters are of the form $\{1-\varepsilon, 2 \varepsilon, 2 \varepsilon\}$. In this variant, often it is the case that every bin of an optimal solution has identical or very similar items There are 2 N clusters. For every cluster, the sum without the smallest item the sum is $1+\varepsilon$, so every cluster requires two bins, and there are 4 N bins in total.

An example for the parametric case

Here, we unfortunately do not have tight bounds for all values of b. But we do have such bounds for some cases.
For example, in the case $b=0.8$, we can show tight bounds of 3
The upper bound requires yet another complicated weight function.
There are two different lower bound constructions because the situation is different in the two cases $[0.5,0.8],[0.8,1)$

Two lower bound constructions for $b=0.8$ and the PoC for Min-OEBP with $\mathrm{k}=2$

OPT

N bins one bin

Items are much smaller than 0.8

Every cluster

There are $1.5 \cdot N$ clusters, and each one requires two bins There are $3 \cdot \mathrm{~N}$ bins

Two lower bound constructions for b=0.8 and the PoC for Min-OEBP

Every cluster

There are $6 \cdot N$ clusters, and each one requires two bins There are $12 \cdot \mathrm{~N}$ bins

The weight function for $\mathrm{b}=0.8$

$$
w(x)= \begin{cases}\frac{5}{4} \cdot x & \text { for } x \leq \frac{1}{5} \\ \frac{1}{4} & \text { for } \\ \frac{1}{5} \leq x \leq \frac{1}{4} \\ x & \text { for } \\ \frac{1}{4} \leq x \leq \frac{3}{4} \\ \frac{3}{4} & \text { for } \frac{3}{4} \leq x \leq \frac{4}{5}\end{cases}
$$

The function w is continuous again.
The point $1 / 2$ is not a breakpoint of the weight function, but it does have a special role in the proof

Thank you!
 for commeching to Zoom cond for listeming

Questions?

Comments? Complaints?

Jokes?

New results?

