
2021

1

Classic Bin Packing (BP)

• A set of items. Item i has a size si(0,1]
• An unlimited supply of bins of capacity 1

• Pack into a minimum number of bins

2

0.5

0.4

0.1

0.6

0.2

0.2

bin 1

0.6

0.2
0.1

bin 2

0.5
0.4

bin 1

0.6

0.2

0.1

bin 2

0.5

0.4

bin 3

OR
0.2 0.2

A small exampleAn input

A possible solution
An optimal solution

Online: receive

items one by one

Offline: receive all

items together

Here, colors have no

particular meaning

First Fit (FF)

bin 1

0.5

0.4

0.1

0.6

0.2

bin 2 bin 30.2

0.1

0.2

0.6

0.5

0.4

0.2

3

Some greedy algorithms..

0.05

0.05

Process the

items as a

list.

Pack each

item into the

minimum

indexed bin

where it can

be packed

First Fit Decreasing (FFD)

Run FF on a sorted input

– Sorted by non-increasing sizes

– Not always optimal

bin 1

0.5

0.4

0.1

0.6

0.2

bin 2

0.2

0.1

0.2

0.6
0.5

0.4

0.2

4

0.35

0.35

0.2

0.6

0.2

0.3

bin 1

0.6

0.35

bin 3

0.35

bin 2

0.3

0.2

0.2

First Fit Increasing (FFI)

Run FF on a sorted input

– Sorted by non-decreasing sizes

– Not always optimal

bin 1

0.5

0.4

0.1

0.6

0.2

bin 3

0.2 0.6

0.4

5

0.1

0.2 0.5

0.2

bin 2

Next Fit Has one active bin

Packs an item into the active bin

If this is impossible, the active bin

is closed and a new active bin is

opened.

6

0.5

0.4

0.1

0.6

0.2

0.1

0.05

bin 1 bin 2 bin 3

0.1

0.2

0.6

0.5

0.4

0.1

0.05

By sorting the

items, one can

apply NFD or NFI

NFI is the same

algorithm as FFI

for this problem

Bin packing with types

Every item has two attributes

A size as always, and a type (also called color)

7

0.5

0.4

0.1

0.6

0.2

0.2

0.4 0.4

0.5

0.4

0.2
0.3

0.5
0.2

0.15

There are items

of six types in the

example

(Fake)

applications in

cloud computing:

The types are

locations of data

An example

Motivation: Cloud Computing

8

Clustered solutions
• These are solutions where each bin can

contain only items of one type

• A cluster is the set of items of one type

• The packing problem is solved

independently for every type/cluster

• Every cluster may be packed optimally or

using any other algorithm

• In an optimal clustered solution every

cluster is packed optimally

• Application-wise: every cluster is a set of items

of a user, which are placed in one location

9

Globally optimal solutions

• These are solutions where the

partition into clusters/types/colors

is not taken into account

• Such a solution is just a solution for

standard bin packing, where items

have sizes

and this is the only attribute

• All items are in one location

• This solution may be much better

than an optimal clustered solution

10

Assumptions on clusters

• It is assumed that for every cluster, an

optimal solution requires at least a given

number of bins k

• The parameter k is small: 2 or 3

– Maybe 4..

• Why? Because otherwise it is possible

that every item will be of a different

type and items may be very small

11

ε ε ε ε ε ε
ε ε ε ε ε ε

ε ε ε ε

Price of clustering
Introduced: [AESV’19]

Azar, Emek, van Stee, Vainstein, SPAA 2019

The price of clustering (PoC) is

the worst case ratio between

the optimal cost of a clustered solution and

the optimal cost of a globally optimal solution

The PoC is defined as a function of k

k = the lower bound on the optimal cost

(number of bins) of a single cluster

As we saw, the PoC it is infinite if k=1

12

The approximation ratio
For minimization problems

• The strict measure

– Worst-case ratio between the cost of the algorithm and

the cost of an optimal solution

– Here “the algorithm” can be a clustered solution, an

optimal solution is an optimal global solution,

and the approximation ratio is the PoC

• The asymptotic measure

Compare only for inputs with sufficiently large optimal costs

Optimal cost of at least N, let N grow to infinity

The results for the PoC will hold for both measures

Most other results are proved for the asymptotic measure

This is the standard measure for bin packing

Considered to be more meaningful for algorithms

13

Parametric bin packing

• In the standard bin packing problem,

items can have any size in (0,1]

• In some applications, items sizes are

relatively small or bounded

• The parametric variant with the

parameter b<1 is defined such that all

items have sizes in (0,b]

• In some cases, it is assumed that 𝒃 =
𝟏

𝒕

for an integer t>1

14

Properties of parametric BP

For FF and NF and any output, it holds that

every bin except for possibly the last one

has a total size of items above 1-b

Thus, if b tends to zero, the asymptotic

approximation ratio tends to 1

The absolute approximation ratio can be

larger, for example

Where the optimal solution is

and such examples exist for smaller items as well

15

0.07 × 5
0.08 × 8

0.05 × 12
0.06 × 6 0.05 × 1

0.06 × 6
0.08 × 8

0.05 × 13
0.07 × 5

The case k=2
• We will show why this case is not so interesting for

classic bin packing,

not even for the parametric case

• As we will see, the case k=2 is more interesting

for other variants of bin packing

[AESV’19] the PoC for k=2 is 2

Upper bound:

• It is possible to analyze a greedy algorithm

instead of an optimal solution

• In this analysis, the number of bins for each

cluster is not smaller compared to an optimal

solution for the cluster, and it is at least k

16

Upper bound – using FF
Notation:

𝑶𝑷𝑻 the number of bins for a globally

optimal solution

𝑺 the total size of items 𝑶𝑷𝑻 ≥ 𝑺

𝑶𝑷𝑻𝒊 the optimal number of bins for

cluster i

𝑨𝒊 the number of bins used by FF for

cluster i 𝑨𝒊≥ 𝑶𝑷𝑻𝒊

Bins of a given cluster i :

At least half full on average

17

at least two bins

Bins are at least half full:

because there are at least two bins

and no pair of bins can be combined

𝑺 ≥
∑𝑨𝒊

𝟐
≥
∑𝑶𝑷𝑻𝒊

𝟐

𝑂𝑃𝑇 ≥ 𝑆

∑𝑶𝑷𝑻𝒊 ≤ 𝟐 ⋅ 𝑶𝑷𝑻

This trivial bound cannot be tight, can it?

or at least not tight for small items?
Can a cluster have items that do not fit into a bin, but they
just barely do not fit, so the second bin is quite empty?

18

Almost

trivial

Tightness
For a large positive integer N

There are N clusters, where every cluster has

(𝑵 + 𝟏) items, each of size
𝟏

𝑵

and it requires two bins, for a total of 2N

bins in the clustered solution

A globally optimal solution:

N+1 bins, every bin has N items

Ratio:
𝟐𝑵

𝑵+𝟏
→ 𝟐

19

The tight ratio of 2

is valid also for any

parametric case.

For any value of b,

choose a

sufficiently large N

𝟏

𝑵

𝟏

𝑵

𝟏

𝑵

𝟏

𝑵

𝟏

𝑵

Larger values of k: lower bounds

The lower bound on the PoC for k=3

by [AESV’19] is ~1.93344

The greedy sequence for bin packing is used:

𝟏

𝟐
+ 𝜺,

𝟏

𝟑
+ 𝜺,

𝟏

𝟕
+ 𝜺,

𝟏

𝟒𝟑
+ 𝜺,

𝟏

𝟏𝟖𝟎𝟕
+ 𝜺,…

An optimal solution has one set of bins

with these items and another set of the

same cardinality N (a large positive integer) with

pairs of items of the form
𝟏

𝟐
+ 𝒊 ⋅ 𝜹,

𝟏

𝟐
− 𝒊 ⋅ 𝜹

Where 𝜹 is much smaller than 𝜺

20

21

𝟏

𝟐
+ 𝜺

𝟏

𝟑
+ 𝜺

𝟏

𝟕
+ 𝜺

𝟏

𝟒𝟑
+ 𝜺

but

finite

𝟏

𝟐
+ 𝒊 ⋅ 𝜹

𝟏

𝟐
− 𝒊 ⋅ 𝜹

𝒊 = 𝟏, 𝟐, … ,𝑵

𝑵 bins 𝑵 bins

The clusters:

A globally optimal solution

OPT with 2N bins

𝟏

𝟐
+ (𝒊 + 𝟏) ⋅ 𝜹

𝟏

𝟐
+ 𝜺

𝟏

𝟐
− 𝒊 ⋅ 𝜹

𝜹 ⋅ 𝑵 < 𝜺

N-1 clusters

no two items fit together and therefore

three bins are needed for each cluster

𝟏

𝟑
+ 𝜺

N/5 clusters

no three items fit together and therefore

three bins are needed for each cluster

Two

additional

items are

added

arbitrarily

to some

cluster

Five times

𝟏

𝟕
+ 𝜺

N/13 clusters N/85 clusters

13 times

𝟏

𝟒𝟑
+ 𝜺

85 times
𝟑 𝑵 +

𝑵
𝟓
+

𝑵
𝟏𝟑

+
𝑵
𝟖𝟓

+⋯

𝟐𝑵
~𝟏. 𝟗𝟑𝟑𝟒𝟒

Improvements, generalizations..

E., 2019 a lower bound of 1.93558 for k=3

One idea: the cluster

can be replaced with

22

Five times
𝟏

𝟑
+ 𝜺

Four times

and one

𝟏

𝟑
+ 𝜺

𝟏

𝟑
− 𝜺

Still N/5 such clusters, still no three items fit

together and therefore three bins are needed for

each cluster

𝟏

𝟐
+ 𝜹

𝟏

𝟑
− 𝜺

𝟏

𝟔
+ 𝜹

𝑵/𝟓 bins

11 times

𝟏

𝟔
+ 𝜺

Using items slightly smaller than 1/6 packed with some

items of size
𝟏

𝟑
+ 𝛆 allows a further improvement

But some of the bins of OPT with such items can

be different and there will be clusters with

What about larger values of k?

23

𝟏

𝟑
+ 𝜺

no three items fit together and therefore

four bins are needed for each cluster
Seven times

𝟏

𝟕
+ 𝜺

19 times

16 times

𝟏

𝟔
+ 𝜺

no seven items fit together and therefore

four bins are needed for each cluster

no six items fit together and therefore

four bins are needed for each cluster

Similar constructions

Would this lead to the tight bound for k growing to infinity? Do we get the

standard 1.69103? Yes, only the bins of OPT with

𝟏

𝟐
+ 𝜺,

𝟏

𝟑
+ 𝜺,

𝟏

𝟕
+ 𝜺,

𝟏

𝟒𝟑
+ 𝜺,

𝟏

𝟏𝟖𝟎𝟕
+ 𝜺,… are needed,

because the effect of one sparse bin per cluster becomes insignificant

for

example,

k=4

Upper bounds
• The upper bound of [AESV’19] for k=3 on the PoC is

based on defining linear constraints on the solution,

and solving it using a computer

• The resulting upper bound on the PoC is 1.951

• It should have been 1.95, minor errors introduced due

to the computer assisted proof and rounding

• This value was improved to

• 581/300~1.93667 E. 2019

For simplicity, we will show how to obtain 1.95 easily

• We use weight functions that connect a globally

optimal solution to an optimal clustered solution

• The total weight of all items is fixed for a given input

and we bound it using both solutions

24

An upper bound via a weight function

We use the next function: 𝒘: 𝟎, 𝟏 → [𝟎, 𝟏. 𝟗𝟓]
(for the improved upper bound, the weight function has five

cases rather than two)

𝒘 𝒙 = 𝟏. 𝟖 ⋅ 𝒙 + ቐ𝟎. 𝟏𝟓 𝒇𝒐𝒓 𝒙 >
𝟏

𝟐
𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Claim: For every bin (of a globally optimal

solution), the total weight is at most 1.95

Proof: The first part of the weight function is

multiplied by at most 1 for all items together,

since their total size is at most 1. There is at

most of item of size above ½ that might add 0.15.

25

The main task is that

of finding a good

weight function, the

rest is easier

An analysis of one cluster

To complete the proof, we show that for

every cluster, the total weight of its

items is at least the number of bins for

the cluster in an optimal solution for it

Instead of an optimal solution, we use

FFD for the cluster – so the number of

bins it still at least k.

The number of bins could increase but

this only means that we get a larger

lower bound on the total weight

26

Analysis for a cluster

There are two main cases in the proof.

We visualize several special cases of these

cases, just to see the main idea.

1. Three bins, there are two items of sizes above

½. Those two items are packed into the

first two bins by FFD. Every two bins have

total size above 1, and therefore the total

size for the three bins is above 1.5.

We have a total

weight of at least:

𝟏. 𝟖 ⋅ 𝟏. 𝟓 + 𝟐 ⋅ 𝟎. 𝟏𝟓 = 𝟑

27

2. Three bins, there are no items of sizes above

½. The first item of the last bin has size in

(1/3,1/2]. The items of sizes in (1/3,1/2] are

packed first, and therefore there are at least

five such items. We have a total weight of at

least: 𝟏. 𝟖 ⋅
𝟓

𝟑
= 𝟑

3. Three bins, there are no items of sizes above ½.

The first item of the last bin has size in (0,1/3]. The

other two bins have total sizes above 2/3. Every

pair of bins has total size above 1 together.

We have a total weight of at least: 𝟏. 𝟖 ⋅
𝟐

𝟑
+ 𝟏 = 𝟑

28

The modified weight function

𝒘 𝒙 =
𝟐𝟏

𝟏𝟑
⋅ 𝒙 +

𝟗𝟗𝟕

𝟑𝟗𝟎𝟎
𝒇𝒐𝒓 𝒙 >

𝟏

𝟐
𝟐𝟓𝟔

𝟑𝟗𝟎𝟎
𝒇𝒐𝒓

𝟏

𝟑
< 𝒙 ≤

𝟏

𝟐
𝟐𝟏𝟔

𝟑𝟗𝟎𝟎
𝒇𝒐𝒓

𝟏

𝟒
< 𝒙 ≤

𝟏

𝟑
𝟒𝟎

𝟑𝟗𝟎𝟎
𝒇𝒐𝒓

𝟏

𝟔
< 𝒙 ≤

𝟏

𝟒

𝟎 𝒇𝒐𝒓 𝒙 ≤
𝟏

𝟔

29

Batched bin packing
For a parameter q>1, items are presented in q batches

– All items of a batch appear at once

– The items of a batch should be packed before

another batch is presented

(q+1) batches is never easier than q since batches could be empty

Two variants

1. Use the same bins for all batches

– Open new bins, if necessary, at any time

– This is an intermediate model between online and offline

2. Must use separate bins for different batches

– This variant can be seen as an offline problem

– It is related to clustered solutions

and we will only discuss this second batched model

30

Does the separate bins model lead

to an approximation ratio of q?

• For the absolute approximation ratio

YES, it does.

An algorithm that packs each batch optimally

separately has at most this ratio

Even by splitting an optimal solution into the separate

batches, every bin is split into at most k bins

• If there are q items of sizes 1/q

– Each appears in its own batch

– An optimal solution for the entire input uses

one bin, but any batched solution has q bins

• For the asymptotic approximation ratio?

– Not at all!
31

Simple bounds for two batches

What about the following simple approach, which has

to be the best possible:

– Pack the first batch optimally

– Pack the second batch optimally into new bins

An example (lower bound) for an integer N:

Batch 1: 2N+1 items, each of size 0.4

Batch 2: 2N+1 items, each of size 0.6

OPT for the entire input: 2N+1 bins with {0.4,0.6}

An optimal solution for batch 1:

N times {0.4, 0.4}, one {0.4}

An optimal solution for batch 2:

2N+1 times {0.6}

(N+1)+(2N+1)=3N+2 bins versus 2N+1 bins

32

Known upper bounds
• FFD has asymptotic approximation ratio for two batches

19/12~1.58333 [Dósa2017]

• Why is that?

– q=2 is much harder than offline

– Since FFD is applied, the solutions

for the batches are not always optimal

– Split an example into two parts

First batch: 12N items of sizes 0.26

and 12N items of sizes 0.23 (7N bins)

In a second batch, 12N items of sizes 0.51

12N new bins

OPT=12N, ALG=19N

33

0.26

0.26

0.26

0.78

0.23

0.23

0.23

0.23
0.92

Our algorithm from

the previous slide

will create 18N bins

0.23

0.26

0.51

1

0.23

0.26

0.23

0.26

0.98 0.51

0.51

0.51

0.51

• The ratio is always (much) smaller than 2

• Even for large q, the value ~1.69103 is tight

• For two batches the ratio is 1.5

– 5/3 for three batches

– Etc.

• For simplicity we will solve NP-hard problems to

optimality

– Online algorithms are not limited to certain running times

– It is possible to obtain almost the same bound by using

an asymptotic approximation scheme instead

• The additive constant may be larger

34

The separate bins model does not lead to a

high asymptotic approximation ratio

The optimal algorithm for two batches (E., 2016)

Our algorithm has an absolute approximation ratio

of 2 and an asymptotic approximation ratio of 3/2

In our example, we found a family of

instances for all odd values of ALG where

𝑶𝑷𝑻 = 𝟏. 𝟓 ⋅ 𝑨𝑳𝑮 + 𝟎. 𝟓

Where ALG denotes the total cost for the

algorithm, that is, for both batches together.

The example shows that this is the tight

absolute/asymptotic approximation ratio of

the algorithm for separate bins,

using ALG=1, ALG→ ∞

35

Analysis

• Consider an optimal solution for the entire

input (both batches)

– with X bins

• We construct certain solutions for the two

batches separately

– Not necessarily optimal ones

– We can consider their total cost

– The sum of costs of optimal solutions

for the two batches is not larger

36

37

An optimal solution

1

2
1 2

Creating three bins out of two bins such that

items of different batches are packed separately

Easy, but is this really helpful?

• Every two bins become three

Either all the items of these pair of bins for

the first batch have total size at most 1, or

else all the items those of the second batch

have total size of at most 1 (it is possible that

both properties hold)

• If there is an odd number of bins in OPT,

the last bin is converted into two bins

• We got at most 1.5∙X+0.5 bins from X bins

(we get just 1.5∙X bins if X is even)

38

But doesn’t the ratio get much larger for large q,

even if we pack each batch optimally?

• For the general case, we define “mega-

items” and define a solution for them

– Packing each batch separately

• This is done offline, just for the proof

– It is not an algorithm!

• A mega-item is a maximal subset of items

packed into one bin of OPT and belonging to

one batch

• We already defined this for q=2

– every bin of OPT had at most two mega-items

39

How to pack mega-items?

• We can use FFI (First Fit Increasing)

• Why? It is equivalent to NFI
– NF: Use one active bin for packing

– Open a new active bin when cannot pack

– Never return to a bin that could not be used

• An example:
0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.5,0.55

40

0.3

0.25

0.2

0.15

0.4

0.35

0.5

0.45 0.5

But this is

not optimal!
0.55

Analysis

• The packing is indeed not optimal, but in

this way we can analyze all batches

together rather than separately

• We can use a weight function

– [Baker, Coffman 1981]

• The function as used for NFI for actual

items (not mega-items)

– Actually, it was used for NFD, but

they have the same number of output

bins for every input [Fisher’88]

41

But…

• There is an additive constant for every

batch

• So we get that the cost is ~1.69103

times OPT plus O(q)

Recall that the value 1.69103 is a sum of a

series 1+1/2+1/6+1/42+1/1806+…

• The ratio is smaller for fixed q

– The sum of the first q values

– 3/2 for q=2

– 5/3 for q=3

42

Still on drawbacks

• Can we avoid such a large additive constant? No

• because of the lower bound of q on the

absolute approximation ratio with

separate bins

• What about the case where bins are not

separate for the separate batches?

– Harder to analyze

– The bas examples are the same

– Already for q=3 a purely online algorithm

is better than the one we could analyze

where bins are separate
43

Open end bin packing problems

(OEBP)

In such problems a bin can have items of total size

above 1 but the total size after removing

an item has to be strictly below 1

Max-OEBP: the total size has to be below 1 after

excluding the largest item (or excluding any item)

Min-OEBP: the total size has to be below 1 after

excluding the smallest item

one item “sticks out”

Why study this?

Because it is similar to bin packing,

yet it is quite different

44

new

Examples and differences

{0.3,0.4,0.5} the total size is 1.2

but the bin is valid for both variants

Max-OEBP {0.3,0.4} 0.7

Min-OEBP {0.4,0.5} 0.9

{0.2,0.3,0.4,0.5} 1.4

Max-OEBP {0.2,0.3,0.4} 0.9

Min-OEBP {0.3,0.4,0.5} 1.2

45

Valid

Not valid

Some known results for OEBP

For standard BP we will not discuss such results since

some of us are familiar with them.

There are two other variants of OEBP, which we will not

discuss either.

All variants of OEBP have asymptotic polynomial time

approximation schemes

For the two problems studied here:

Leung, Dror, Young, 2001, Lin, Yang, Xu, 2006, 2010

Lin, Yang & Xu also analyze greedy algorithms and

online algorithms for min-OEBP, in particular for the

parametric case where 1/b is an integer

Other results for online algorithms are proved or can be

deduced from Yang and Leung, 2003, E. & Levin, 2020,

Balogh, E., Levin, 2020.

46

Greedy algorithms for Max-OEBP

FF for this variant: add every new item to the bin of

the smallest index that will remain valid after the

addition. For example, {0.2,0.7,0.2} is valid.

It is possible to add 0.4 but impossible to add 0.65,

since 0.8<1 but 1.05>1

A bin of total size below 1 can always receive another

item, so every bin (except for the last one) will have

total size of at least 1.

This is not true to Min-OEBP, the bin {0.2,0.2} with

respect to an item of size 0.9.

For Min-OEBP the property is nevertheless true for

FFD because the every new item is the current

smallest item.

47

The only greedy algorithm studied previously

for Max-OEBP is FFD (Ongkunaruk,2005).

She showed that if all items have sizes in [0,1), the

asymptotic approximation ratio is 1.5.

We can in fact show this even if there may be items

of size 1, though the proof requires a new ingredient.

The reason for the slightly longer proof is that as long

as only items of size 1 are packed (first), each one is

packed into its own bin, and items of sizes close to 1

can be added later.

Here, we will discuss FF for Max-OEBP.

The general case is not very interesting: The upper bound

is 2 since no bin can have a total size of 2 or more, and

almost every bin of FF has a total size of 1 or more. The

lower bound example is also simple (next slide).

48

OPT has M bins with 𝑵− 𝟏 ×
𝟏

𝑵
, 𝟏

If FF gets the small items first, they are packed

into bins of the form 𝑵 ×
𝟏

𝑵
that cannot receive

additional items.

Afterwards, it has M bins of the form {1}

In total, 𝑴 ⋅
𝑵−𝟏

𝑵
+𝑴 bins,

and the ratio tends to 2 for large N.

Can we avoid items of size 1?

• For b=0.999999 the asymptotic

approximation ratio is 1.5

• The same ratio holds also in the case where

b=1 but items of size 1 are impossible,

because no bin of FF can have just one item.

49

1

An example for the parametric case

The asymptotic approximation ratio never exceeds

1+b, but in some cases it is smaller.

Consider the case b=0.4

Bins of OPT:

50

𝑵 bins 𝑵 bins

0.3

0.40.4

FF

0.4

0.4

0.3

𝟏. 𝟕𝑵 bins 𝑵 bins

The resulting ratio

is 1.35 and it is

tight. The proof

requires a new

weight function and

a long calculation.

A class of weight

functions is defined

such that all values

of b are covered by

the proof

The weight function

For the case 𝑏 ∈ (
1

3
,
1

2
]

𝒘 𝒙 =

𝒙 𝒇𝒐𝒓 𝒙 <
𝟏

𝟑
𝒙 + 𝟏

𝟒
𝒇𝒐𝒓

𝟏

𝟑
≤ 𝒙 ≤ 𝒃

For the case 𝑏 ∈ (
1

4
,
1

3
]

𝒘 𝒙 =

𝒙 𝒇𝒐𝒓 𝒙 <
𝟏

𝟒
𝟐𝒙 + 𝟑

𝟑
𝒇𝒐𝒓

𝟏

𝟒
≤ 𝒙 < 𝒃

51

Etc.

Batched bin packing for Max-OEBP

52

Here, the asymptotic approximation ratio is

2 for any number of batches q2

The lower bound once again consists of

items of size 1 and items of size 1/N, such

that by splitting them into two batches the

result is similar to the output we saw for FF

The upper bound is also standard, since

bins are half full on average. The additive

constant depends on q and this cannot be

avoided

The PoC for Max-OEBP

53

The value of the PoC is 3 if every cluster

requires at least two bins (k=2).

In the lower bound example, there are items

of sizes 𝟏 and items of size 𝜺

An optimal solution has N bins with

{𝜺, 𝜺,…, 𝜺, 𝟏}

There is a cluster with all items of size 1,

which requires N bins

Other clusters are of the form {𝜺, 𝜺, . . , 𝜺}, so

every cluster requires two bins, which adds

almost 2N bins.

Total size below 1

for the epsilons

Total size 1 + 2𝜀

The PoC for Min-OEBP with k=2

54

The value of the PoC in the case k=2 is 4 (every

cluster requires at least two bins)

In the lower bound example, there are items of

sizes 𝟏 − 𝜺 and items of size 𝜺

An optimal solution has N bins with

{𝟏 − 𝜺 , 𝟏 − 𝜺 } and one bin with {𝟐𝜺, 𝟐𝜺,…, 𝟐𝜺}

Clusters are of the form {𝟏 − 𝜺, 𝟐𝜺, 𝟐𝜺}.
In this variant, often it is the case that every bin of an

optimal solution has identical or very similar items

There are 2N clusters. For every cluster, the sum

without the smallest item the sum is 𝟏 + 𝜺 , so

every cluster requires two bins, and there are 4N

bins in total.

Total

size of 1

An example for the parametric case

Here, we unfortunately do not have tight

bounds for all values of b. But we do have

such bounds for some cases.

For example, in the case b=0.8, we can

show tight bounds of 3

The upper bound requires yet another

complicated weight function.

There are two different lower bound

constructions because the situation is

different in the two cases [0.5,0.8], [0.8,1)
55

Two lower bound constructions for b=0.8

and the PoC for Min-OEBP with k=2

56

OPT

𝑵 bins one bin

𝟎. 𝟓 − 𝜺

Every

cluster

𝟎. 𝟓 − 𝜺

𝟎. 𝟓 − 𝜺

𝟎. 𝟓 − 𝜺

𝟎. 𝟓 − 𝜺

There are 𝟏. 𝟓 ⋅ 𝑵 clusters, and

each one requires two bins

There are 3 ⋅ N bins

Each item
has size

𝟑𝜺

Items are much

smaller than 0.8

Two lower bound constructions for

b=0.8 and the PoC for Min-OEBP

57

OPT

𝟑𝑵 bins

0.8

0.8

𝟎. 𝟐 − 𝜹
𝟎. 𝟐 − 𝜹

𝟎. 𝟐 − 𝜹

𝟎. 𝟐 − 𝜹
𝟎. 𝟐 − 𝜹

𝟎. 𝟐 − 𝜹

𝑵 bins one bin

Every

cluster

There are 𝟔 ⋅ 𝑵 clusters, and

each one requires two bins

There are 12 ⋅ N bins

0.8

𝟎. 𝟐 − 𝜹

Each item
has size

𝟐𝜹

The weight function for b=0.8

𝒘 𝒙 =

𝟓

𝟒
⋅ 𝒙 𝒇𝒐𝒓 𝒙 ≤

𝟏

𝟓
𝟏

𝟒
𝒇𝒐𝒓

𝟏

𝟓
≤ 𝒙 ≤

𝟏

𝟒

𝒙 𝒇𝒐𝒓
𝟏

𝟒
≤ 𝒙 ≤

𝟑

𝟒
𝟑

𝟒
𝒇𝒐𝒓

𝟑

𝟒
≤ 𝒙 ≤

𝟒

𝟓

The function w is continuous again.

The point ½ is not a breakpoint of the weight

function, but it does have a special role in the proof

58

59

