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Classic Bin Packing (BP)

• A set of items. Item i has a size si(0,1]
• An unlimited supply of bins of capacity 1

• Pack into a minimum number of bins
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First Fit (FF)
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First Fit Decreasing (FFD)

Run FF on a sorted input

– Sorted by non-increasing sizes

– Not always optimal
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First Fit Increasing (FFI)

Run FF on a sorted input

– Sorted by non-decreasing sizes

– Not always optimal
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Next Fit Has one active bin

Packs an item into the active bin

If this is impossible, the active bin 

is closed and a new active bin is 

opened.
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Bin packing with types

Every item has two attributes

A size as always, and a type (also called color)
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Motivation: Cloud Computing
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Clustered solutions
• These are solutions where each bin can 

contain only items of one type

• A cluster is the set of items of one type

• The packing problem is solved 

independently for every type/cluster

• Every cluster may be packed optimally or 

using any other algorithm

• In an optimal clustered solution every 

cluster is packed optimally

• Application-wise: every cluster is a set of items 

of a user, which are placed in one location
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Globally optimal solutions

• These are solutions where the 

partition into clusters/types/colors 

is not taken into account

• Such a solution is just a solution for 

standard bin packing, where items 

have sizes 

and this is the only attribute

• All items are in one location

• This solution may be much better 

than an optimal clustered solution
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Assumptions on clusters

• It is assumed that for every cluster, an 

optimal solution requires at least a given 

number of bins k

• The parameter k is small: 2 or 3

– Maybe 4..

• Why? Because otherwise it is possible 

that every item will be of a different 

type and items may be very small
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Price of clustering
Introduced: [AESV’19]

Azar, Emek, van Stee, Vainstein, SPAA 2019

The price of clustering (PoC) is

the worst case ratio between 

the optimal cost of a clustered solution and 

the optimal cost of a globally optimal solution

The PoC is defined as a function of k 

k = the lower bound on the optimal cost 

(number of bins) of a single cluster

As we saw, the PoC it is infinite if k=1
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The  approximation ratio
For minimization problems

• The strict measure

– Worst-case ratio between the cost of the algorithm and 

the cost of an optimal solution

– Here “the algorithm” can be a clustered solution, an 

optimal solution is an optimal global solution, 

and the approximation ratio is the PoC

• The asymptotic measure

Compare only for inputs with sufficiently large optimal costs 

Optimal cost of at least N, let N grow to infinity

The results for the PoC will hold for both measures

Most other results are proved for the asymptotic measure

This is the standard measure for bin packing

Considered to be more meaningful for algorithms
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Parametric bin packing

• In the standard bin packing problem, 

items can have any size in (0,1]

• In some applications, items sizes are 

relatively small or bounded

• The parametric variant with the 

parameter b<1 is defined such that all 

items have sizes in (0,b]

• In some cases, it is assumed that 𝒃 =
𝟏

𝒕

for an integer t>1
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Properties of parametric BP

For FF and NF and any output, it holds that 

every bin except for possibly the last one 

has a total size of items above 1-b

Thus, if b tends to zero, the asymptotic 

approximation ratio tends to 1

The absolute approximation ratio can be 

larger, for example

Where the optimal solution is

and such examples exist for smaller items as well 
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The case k=2
• We will show why this case is not so interesting for 

classic bin packing, 

not even for the parametric case

• As we will see, the case k=2 is more interesting 

for other variants of bin packing

[AESV’19] the PoC for k=2 is 2

Upper bound: 

• It is possible to analyze a greedy algorithm 

instead of an optimal solution 

• In this analysis, the number of bins for each 

cluster is not smaller compared to an optimal 

solution for the cluster, and it is at least k
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Upper bound – using FF
Notation: 

𝑶𝑷𝑻 the number of bins for a globally 

optimal solution

𝑺 the total size of items     𝑶𝑷𝑻 ≥ 𝑺

𝑶𝑷𝑻𝒊 the optimal number of bins for 

cluster i

𝑨𝒊 the number of bins used by FF for 

cluster i 𝑨𝒊≥ 𝑶𝑷𝑻𝒊

Bins of a given cluster i :

At least half full on average
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Bins are at least half full: 

because there are at least two bins 

and no pair of bins can be combined

𝑺 ≥
∑𝑨𝒊

𝟐
≥
∑𝑶𝑷𝑻𝒊

𝟐

𝑂𝑃𝑇 ≥ 𝑆

∑𝑶𝑷𝑻𝒊 ≤ 𝟐 ⋅ 𝑶𝑷𝑻

This  trivial bound cannot be tight, can it? 

or at least not tight for small items?
Can a cluster have items that do not fit into a bin, but they 
just barely do not fit, so the second bin is quite empty?
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Tightness
For a large positive integer N

There are N clusters, where every cluster has 

(𝑵 + 𝟏) items, each of size 
𝟏

𝑵

and it requires two bins, for a total of 2N 

bins in the clustered solution

A globally optimal solution:

N+1 bins, every bin has N items 

Ratio:
𝟐𝑵

𝑵+𝟏
→ 𝟐
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Larger values of k: lower bounds

The lower bound on the PoC for k=3

by [AESV’19] is ~1.93344

The greedy sequence for bin packing is used: 

𝟏

𝟐
+ 𝜺,

𝟏

𝟑
+ 𝜺,

𝟏

𝟕
+ 𝜺,

𝟏

𝟒𝟑
+ 𝜺,

𝟏

𝟏𝟖𝟎𝟕
+ 𝜺,…

An optimal solution has one set of bins 

with these items and another set of the 

same cardinality N (a large positive integer) with 

pairs of items of the form   
𝟏

𝟐
+ 𝒊 ⋅ 𝜹,

𝟏

𝟐
− 𝒊 ⋅ 𝜹

Where 𝜹 is much smaller than 𝜺
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𝟏

𝟐
+ 𝜺

𝟏

𝟑
+ 𝜺

𝟏

𝟕
+ 𝜺

𝟏

𝟒𝟑
+ 𝜺

but 

finite

𝟏

𝟐
+ 𝒊 ⋅ 𝜹

𝟏

𝟐
− 𝒊 ⋅ 𝜹

𝒊 = 𝟏, 𝟐, … ,𝑵

𝑵 bins 𝑵 bins

The clusters:

A globally optimal solution 

OPT with 2N bins

𝟏

𝟐
+ (𝒊 + 𝟏) ⋅ 𝜹

𝟏

𝟐
+ 𝜺

𝟏

𝟐
− 𝒊 ⋅ 𝜹

𝜹 ⋅ 𝑵 < 𝜺

N-1 clusters 

no two items fit together and therefore 

three bins are needed for each cluster

𝟏

𝟑
+ 𝜺

N/5 clusters 

no three items fit together and therefore 

three bins are needed for each cluster

Two 

additional 

items are 

added 

arbitrarily 

to some 

cluster

Five times

𝟏

𝟕
+ 𝜺

N/13 clusters N/85 clusters 

13 times

𝟏

𝟒𝟑
+ 𝜺

85 times
𝟑 𝑵 +

𝑵
𝟓
+

𝑵
𝟏𝟑

+
𝑵
𝟖𝟓

+⋯

𝟐𝑵
~𝟏. 𝟗𝟑𝟑𝟒𝟒



Improvements, generalizations..

E., 2019  a lower bound of 1.93558 for k=3

One idea: the cluster

can be replaced with  
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Five times
𝟏

𝟑
+ 𝜺

Four times 

and one

𝟏

𝟑
+ 𝜺

𝟏

𝟑
− 𝜺

Still N/5 such clusters, still no three items fit 

together and therefore three bins are needed for 

each cluster

𝟏

𝟐
+ 𝜹

𝟏

𝟑
− 𝜺

𝟏

𝟔
+ 𝜹

𝑵/𝟓 bins

11 times

𝟏

𝟔
+ 𝜺

Using items slightly smaller than 1/6 packed with some 

items of size 
𝟏

𝟑
+ 𝛆 allows  a further improvement

But some of the bins of OPT with such items can 

be different and there will be clusters with



What about larger values of k?
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𝟏

𝟑
+ 𝜺

no three items fit together and therefore 

four bins are needed for each cluster
Seven times

𝟏

𝟕
+ 𝜺

19 times

16 times

𝟏

𝟔
+ 𝜺

no seven items fit together and therefore 

four bins are needed for each cluster

no six items fit together and therefore 

four bins are needed for each cluster

Similar constructions

Would this lead to the tight bound for k growing to infinity?  Do we get the 

standard 1.69103?   Yes, only the bins of OPT with

𝟏

𝟐
+ 𝜺,

𝟏

𝟑
+ 𝜺,

𝟏

𝟕
+ 𝜺,

𝟏

𝟒𝟑
+ 𝜺,

𝟏

𝟏𝟖𝟎𝟕
+ 𝜺,… are needed, 

because the effect of one sparse bin per cluster becomes insignificant

for 

example, 

k=4



Upper bounds
• The upper bound of [AESV’19] for k=3 on the PoC is 

based on defining linear constraints on the solution, 

and solving it using a computer 

• The resulting upper bound on the PoC  is 1.951

• It should have been 1.95, minor errors introduced due 

to the computer assisted proof and rounding

• This value was improved to 

• 581/300~1.93667 E. 2019

For simplicity, we will show how to obtain 1.95 easily

• We use weight functions that connect a globally 

optimal solution to an optimal clustered solution

• The total weight of all items is fixed for a given input 

and we bound it using both solutions
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An upper bound via a weight function

We use the next function: 𝒘: 𝟎, 𝟏 → [𝟎, 𝟏. 𝟗𝟓]
(for the improved upper bound, the weight function has five 

cases rather than two)

𝒘 𝒙 = 𝟏. 𝟖 ⋅ 𝒙 + ቐ𝟎. 𝟏𝟓 𝒇𝒐𝒓 𝒙 >
𝟏

𝟐
𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Claim: For every bin (of a globally optimal 

solution), the total weight is at most 1.95

Proof: The first part of the weight function is 

multiplied by at most 1 for all items together, 

since their total size is at most 1. There is at 

most of item of size above ½ that might add 0.15.
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The main task is that 

of finding a good 

weight function, the 

rest is easier



An analysis of one cluster

To complete the proof, we show that for 

every cluster, the total weight of its 

items is at least the number of bins for 

the cluster in an optimal solution for it

Instead of an optimal solution, we use 

FFD for the cluster – so the number of 

bins it still at least k.

The number of bins could increase but 

this only means that we get a larger 

lower bound on the total weight
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Analysis for a cluster

There are two main cases in the proof. 

We visualize several special cases of these 

cases, just to see the main idea.

1. Three bins, there are two items of sizes above 

½. Those two items are packed into the 

first two bins by FFD. Every two bins have 

total size above 1, and therefore the total 

size for the three bins is above 1.5. 

We have a total 

weight of at least: 

𝟏. 𝟖 ⋅ 𝟏. 𝟓 + 𝟐 ⋅ 𝟎. 𝟏𝟓 = 𝟑
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2. Three bins, there are no items of sizes above 

½. The first item of the last bin has size in 

(1/3,1/2]. The items of sizes in (1/3,1/2] are 

packed first, and therefore there are at least 

five such items. We have a total weight of at 

least: 𝟏. 𝟖 ⋅
𝟓

𝟑
= 𝟑

3. Three bins, there are no items of sizes above ½. 

The first item of the last bin has size in (0,1/3]. The 

other two bins have total sizes above 2/3. Every 

pair of bins has total size above 1 together.

We have a total weight of at least: 𝟏. 𝟖 ⋅
𝟐

𝟑
+ 𝟏 = 𝟑
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The modified weight function

𝒘 𝒙 =
𝟐𝟏

𝟏𝟑
⋅ 𝒙 +

𝟗𝟗𝟕

𝟑𝟗𝟎𝟎
𝒇𝒐𝒓 𝒙 >

𝟏

𝟐
𝟐𝟓𝟔

𝟑𝟗𝟎𝟎
𝒇𝒐𝒓

𝟏

𝟑
< 𝒙 ≤

𝟏

𝟐
𝟐𝟏𝟔

𝟑𝟗𝟎𝟎
𝒇𝒐𝒓

𝟏

𝟒
< 𝒙 ≤

𝟏

𝟑
𝟒𝟎

𝟑𝟗𝟎𝟎
𝒇𝒐𝒓

𝟏

𝟔
< 𝒙 ≤

𝟏

𝟒

𝟎 𝒇𝒐𝒓 𝒙 ≤
𝟏

𝟔
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Batched bin packing
For a parameter q>1, items are presented in q batches

– All items of a batch appear at once

– The items of a batch should be packed before 

another batch is presented

(q+1) batches is never easier than q since batches could be empty

Two variants

1. Use the same bins for all batches

– Open new bins, if necessary, at any time

– This is an intermediate model between online and offline

2. Must use separate bins for different batches 

– This variant can be seen as an offline problem

– It is related to clustered solutions 

and we will only discuss this second batched model
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Does the separate bins model lead 

to an approximation ratio of q?

• For the absolute approximation ratio

YES, it does.

An algorithm that packs each batch optimally 

separately has at most this ratio

Even by splitting an optimal solution into the separate 

batches, every bin is split into at most k bins

• If there are q items of sizes 1/q

– Each appears in its own batch

– An optimal solution for the entire input uses 

one bin, but any batched solution has q bins

• For the asymptotic approximation ratio? 

– Not at all!
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Simple bounds for two batches

What about the following simple approach, which has 

to be the best possible:

– Pack the first batch optimally 

– Pack the second batch optimally into new bins

An example (lower bound) for an integer N: 

Batch 1: 2N+1 items, each of size 0.4 

Batch 2: 2N+1 items, each of size 0.6 

OPT for the entire input: 2N+1 bins with {0.4,0.6}

An optimal solution for batch 1: 

N times {0.4, 0.4}, one {0.4}

An optimal solution for batch 2: 

2N+1 times {0.6}

(N+1)+(2N+1)=3N+2 bins versus 2N+1 bins
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Known upper bounds
• FFD has asymptotic approximation ratio for two batches 

19/12~1.58333 [Dósa2017] 

• Why is that? 

– q=2 is much harder than offline

– Since FFD is applied, the solutions 

for the batches are not always optimal

– Split an example into two parts

First batch: 12N items of sizes 0.26

and 12N items of sizes 0.23 (7N bins)

In a second batch, 12N items of sizes 0.51

12N new bins

OPT=12N, ALG=19N
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• The ratio  is always (much) smaller than 2

• Even for large q, the value ~1.69103 is tight 

• For two batches the ratio is 1.5

– 5/3 for three batches

– Etc. 

• For simplicity we will solve NP-hard problems to 

optimality

– Online algorithms are not limited to certain running times

– It is possible to obtain almost the same bound by using 

an asymptotic approximation scheme instead 

• The additive constant may be larger 
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The separate bins model does not lead to a 

high asymptotic approximation ratio



The optimal algorithm for two batches  (E., 2016)

Our algorithm has an absolute approximation ratio 

of 2 and an asymptotic approximation ratio of 3/2

In our example, we found a family of 

instances for all odd values of ALG where

𝑶𝑷𝑻 = 𝟏. 𝟓 ⋅ 𝑨𝑳𝑮 + 𝟎. 𝟓

Where ALG denotes the total cost for the 

algorithm, that is, for both batches together.

The example shows that this is the tight 

absolute/asymptotic approximation ratio of 

the algorithm for separate bins,

using ALG=1, ALG→ ∞
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Analysis

• Consider an optimal solution for the entire 

input (both batches) 

– with X bins

• We construct certain solutions for the two 

batches separately

– Not necessarily optimal ones 

– We can consider their total cost

– The sum of costs of optimal solutions 

for the two batches is not larger
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An optimal solution

1

2
1 2

Creating three bins out of two bins such that

items of different batches are packed separately



Easy, but is this really helpful?

• Every two bins become three

Either all the items of these pair of bins for 

the first batch have total size at most 1, or 

else all the items those of the second batch 

have total size of at most 1 (it is possible that 

both properties hold)

• If there is an odd number of bins in OPT, 

the last bin is converted into two bins

• We got at most 1.5∙X+0.5 bins from X bins 

(we get just 1.5∙X bins if X is even)
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But doesn’t the ratio get much larger for large q,

even if we pack each batch optimally?

• For the general case, we define “mega-

items” and define a solution for them

– Packing each batch separately

• This is done offline, just for the proof

– It is not an algorithm!

• A mega-item is a maximal subset of items 

packed into one bin of OPT and belonging to 

one batch

• We already defined this for q=2 

– every bin of OPT had at most two mega-items
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How to pack mega-items?

• We can use FFI (First Fit Increasing)

• Why? It is equivalent to NFI
– NF: Use one active bin for packing

– Open a new active bin when cannot pack

– Never return to a bin that could not be used

• An example: 
0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.5,0.55
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Analysis

• The packing is indeed not optimal, but in 

this way we can analyze all batches 

together rather than separately

• We can use a weight function

– [Baker, Coffman 1981]

• The function as used for NFI for actual 

items (not mega-items)

– Actually, it was used for NFD, but 

they have the same number of output 

bins for every input [Fisher’88]
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But…

• There is an additive constant for every 

batch

• So we get that the cost is ~1.69103 

times OPT plus O(q)

Recall that the value 1.69103  is a sum of a 

series 1+1/2+1/6+1/42+1/1806+…

• The ratio is smaller for fixed q

– The sum of the first q values

– 3/2 for q=2

– 5/3 for q=3
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Still on drawbacks

• Can we avoid such a large additive constant?  No

• because of the lower bound of q on the 

absolute approximation ratio with 

separate bins

• What about the case where bins are not 

separate for the separate batches?

– Harder to analyze

– The bas examples are the same

– Already for q=3 a purely online algorithm 

is better than the one we could analyze

where bins are separate
43



Open end bin packing problems 

(OEBP)

In such problems a bin can have items of total size 

above 1      but the total size after removing 

an item has to be strictly below 1

Max-OEBP: the total size has to be below 1 after 

excluding the largest item (or excluding any item)

Min-OEBP: the total size has to be below 1 after 

excluding the smallest item

one item “sticks out”

Why study this? 

Because it is similar to bin packing, 

yet it is quite different

44
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Examples and differences

{0.3,0.4,0.5}   the total size is 1.2

but the bin is valid for both variants

Max-OEBP {0.3,0.4}   0.7

Min-OEBP {0.4,0.5}   0.9

{0.2,0.3,0.4,0.5}  1.4

Max-OEBP {0.2,0.3,0.4}   0.9

Min-OEBP {0.3,0.4,0.5}   1.2
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Some known results for OEBP

For standard BP we will not discuss such results since 

some of us are familiar with them. 

There are two other variants of OEBP, which we will not 

discuss either.

All variants of OEBP have asymptotic polynomial time 

approximation schemes

For the two problems studied here:

Leung, Dror, Young, 2001, Lin, Yang, Xu, 2006, 2010

Lin, Yang & Xu also analyze greedy algorithms and 

online algorithms for min-OEBP, in particular for the 

parametric case where 1/b is an integer 

Other results for online algorithms are proved or can be 

deduced from Yang and Leung, 2003, E. & Levin, 2020, 

Balogh, E., Levin, 2020.
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Greedy algorithms for Max-OEBP

FF for this variant: add every new item to the bin of 

the smallest index that will remain valid after the 

addition. For example, {0.2,0.7,0.2} is valid.

It is possible to add 0.4 but impossible to add 0.65,  

since 0.8<1 but 1.05>1

A bin of total size below 1 can always receive another 

item, so every bin (except for the last one) will have 

total size of at least 1.

This is not true to Min-OEBP, the bin {0.2,0.2} with 

respect to an item of size 0.9. 

For Min-OEBP the property is nevertheless true for 

FFD because the every new item is the current 

smallest item.
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The only greedy algorithm studied previously 

for Max-OEBP is FFD (Ongkunaruk,2005).

She showed that if all items have sizes in [0,1), the 

asymptotic approximation ratio is 1.5. 

We can in fact show this even if there may be items 

of size 1, though the proof requires a new ingredient. 

The reason for the slightly longer proof is that as long 

as only items of size 1 are packed (first), each one is 

packed into its own bin, and items of sizes close to 1 

can be added later.

Here, we will discuss FF for Max-OEBP. 

The general case is not very interesting: The upper bound 

is 2 since no bin can have a total size of 2 or more, and 

almost every bin of FF has a total size of 1 or more. The 

lower bound example is also simple (next slide).
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OPT has M bins with 𝑵− 𝟏 ×
𝟏

𝑵
, 𝟏

If FF gets the small items first, they are packed 

into bins of the form 𝑵 ×
𝟏

𝑵
that cannot receive 

additional items.

Afterwards, it has M bins of the form {1}

In total, 𝑴 ⋅
𝑵−𝟏

𝑵
+𝑴 bins, 

and the ratio tends to 2 for large N.

Can we avoid items of size 1? 

• For b=0.999999 the asymptotic 

approximation ratio is 1.5 

• The same ratio holds also in the case where 

b=1 but items of size 1 are impossible, 

because no bin of FF can have just one item. 
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An example for the parametric case

The asymptotic approximation ratio never exceeds 

1+b, but in some cases it is smaller.

Consider the case b=0.4

Bins of OPT:

50

𝑵 bins 𝑵 bins

0.3

0.40.4

FF

0.4

0.4

0.3

𝟏. 𝟕𝑵 bins 𝑵 bins

The resulting ratio 

is 1.35 and it is 

tight. The proof 

requires a new 

weight function and 

a long calculation. 

A class of weight 

functions is defined 

such that all values 

of b are covered by 

the proof



The weight function

For the case 𝑏 ∈ (
1

3
,
1

2
]

𝒘 𝒙 =

𝒙 𝒇𝒐𝒓 𝒙 <
𝟏

𝟑
𝒙 + 𝟏

𝟒
𝒇𝒐𝒓

𝟏

𝟑
≤ 𝒙 ≤ 𝒃

For the case 𝑏 ∈ (
1

4
,
1

3
]

𝒘 𝒙 =

𝒙 𝒇𝒐𝒓 𝒙 <
𝟏

𝟒
𝟐𝒙 + 𝟑

𝟑
𝒇𝒐𝒓

𝟏

𝟒
≤ 𝒙 < 𝒃
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Batched bin packing for Max-OEBP
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Here, the asymptotic approximation ratio is 

2 for any number of batches q2

The lower bound once again consists of 

items of size 1 and items of size 1/N, such 

that by splitting them into two batches the 

result is similar to the output we saw for FF

The upper bound is also standard, since 

bins are half full on average. The additive 

constant depends on q and this cannot be 

avoided



The PoC for Max-OEBP
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The value of the PoC is 3 if every cluster 

requires at least two bins (k=2).

In the lower bound example, there are items  

of sizes 𝟏 and items of size 𝜺

An optimal solution has N bins with

{𝜺, 𝜺,…, 𝜺, 𝟏}

There is a cluster with all items of size 1, 

which requires N bins

Other clusters are of the form {𝜺, 𝜺, . . , 𝜺}, so 

every cluster requires two bins, which adds 

almost 2N bins.

Total size below 1 

for the epsilons

Total size 1 + 2𝜀



The PoC for Min-OEBP with k=2
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The value of the PoC in the case k=2 is 4  (every 

cluster requires at least two bins) 

In the lower bound example, there are items  of 

sizes 𝟏 − 𝜺 and items of size 𝜺

An optimal solution has N bins with

{𝟏 − 𝜺 , 𝟏 − 𝜺 } and one bin with {𝟐𝜺, 𝟐𝜺,…, 𝟐𝜺}

Clusters are of the form {𝟏 − 𝜺, 𝟐𝜺, 𝟐𝜺}.
In this variant, often it is the case that every bin of an 

optimal solution has identical or very similar items

There are 2N clusters. For every cluster, the sum 

without the smallest item the sum is 𝟏 + 𝜺 , so 

every cluster requires two bins, and there are 4N 

bins in total.

Total 

size of 1



An example for the parametric case

Here, we unfortunately do not have tight 

bounds for all values of b. But we do have 

such bounds for some cases.

For example, in the case b=0.8, we can 

show tight bounds of 3

The upper bound requires yet another 

complicated weight function.

There are two different lower bound 

constructions because the situation is 

different in the two cases [0.5,0.8], [0.8,1)
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Two lower bound constructions for b=0.8 

and the PoC for Min-OEBP with k=2
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OPT

𝑵 bins one bin

𝟎. 𝟓 − 𝜺

Every 

cluster

𝟎. 𝟓 − 𝜺

𝟎. 𝟓 − 𝜺

𝟎. 𝟓 − 𝜺

𝟎. 𝟓 − 𝜺

There are 𝟏. 𝟓 ⋅ 𝑵 clusters, and 

each one requires two bins

There are 3 ⋅ N bins

Each item
has size

𝟑𝜺

Items are much 

smaller than 0.8



Two lower bound constructions for 

b=0.8 and the PoC for Min-OEBP
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OPT

𝟑𝑵 bins

0.8

0.8

𝟎. 𝟐 − 𝜹
𝟎. 𝟐 − 𝜹

𝟎. 𝟐 − 𝜹

𝟎. 𝟐 − 𝜹
𝟎. 𝟐 − 𝜹

𝟎. 𝟐 − 𝜹

𝑵 bins one bin

Every 

cluster

There are 𝟔 ⋅ 𝑵 clusters, and 

each one requires two bins

There are 12 ⋅ N bins

0.8

𝟎. 𝟐 − 𝜹

Each item
has size

𝟐𝜹



The weight function for b=0.8

𝒘 𝒙 =

𝟓

𝟒
⋅ 𝒙 𝒇𝒐𝒓 𝒙 ≤

𝟏

𝟓
𝟏

𝟒
𝒇𝒐𝒓

𝟏

𝟓
≤ 𝒙 ≤

𝟏

𝟒

𝒙 𝒇𝒐𝒓
𝟏

𝟒
≤ 𝒙 ≤

𝟑

𝟒
𝟑

𝟒
𝒇𝒐𝒓

𝟑

𝟒
≤ 𝒙 ≤

𝟒

𝟓

The function w is continuous again.

The point ½ is not a breakpoint of the weight 

function, but it does have a special role in the proof
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