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Semi-online Scheduling

Online Bin Stretching

on m machines

with m bins

with known optimal makespan.

and known optimum.

Online Bin Stretching

Input: A sequence of items, each with size in [0, 1];
A number m – how many bins we can use.

Guarantee: There exists an offline algorithm that can pack the
sequence into m bins of capacity 1.

Goal: Pack all items into m bins of capacity c , with the
stretching factor c being as small as possible.
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State of the art

Recall:
• Goal: Pack all items into m bins of capacity c , with the

stretching factor c being as small as possible.

Algorithms:
• [Azar, Regev ’98]:

• stretching factor 1.625.

• Currently best: [B., Sgall, van Stee, Veselý ’14]
• stretching factor 1.5.

Lower Bounds:
• [Azar, Regev ’98]:

• Stretching factor must be at least 4/3. (We’ve just seen it!)



Restricted setting

Normal setting:

• Algorithm learns m at the start.

• One algorithm must be competitive for any m.

Restricted setting:

• OPT always uses exactly k bins.

• Easier to design algorithms.

• Much easier to create lower bounds.
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• Goal: Pack all items into m bins of capacity c , with the

stretching factor c being as small as possible.

Three bins:

• [Azar, Regev ’98]: Algorithm with stretching factor 1.4.

• [B., Sgall, van Stee, Veselý ’14]: S. f. 11/8 = 1.375.

LBs for 3 ≤ m ≤ 8:
• [Gabay, Brauner, Kotov ’14]:

• A computer-found lower bound for three bins: 19/14 ≈ 1.357.

• [B. ’16]: Improved to 45/33 ≈ 1.36.

• [B. ’18, thesis]: Improved to 112/82 ≈ 1.365.

• [B. ’18, thesis]: Lower bound 19/14 for 4 ≤ m ≤ 8.
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Online problems are games

Setting: m bins, capacity (guarantee): g , stretched bin (target): t.

• Adversary presents input;

• Algorithm packs the items.

Victory conditions:

• Adversary wins when one bin is loaded to ≥ t/g ;

• Algorithm wins if all bins < t/g and no more input.

• Winning strategy for Adversary ↔ lower bound of t/g .

• Winning strategy for Algorithm ↔ s. factor < t/g .

To make the tree finite:

• Adversary can only send 1, 2, . . . , g .

Caveat: Adversary must at all times honor the guarantee:
Items can be packed into m bins of capacity g .
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Lower bounds using the computer

• [Gabay, Brauner, Kotov ’14]: lower bound
t/g = 19/14 ≈ 1.357 for three bins via computer.

Core idea:

1. Use the Minimax algorithm to evaluate the game tree.

2. Cache vertices to speed up computation.

3. Make sure that Adversary honors the guarantee at all steps:
Items can be packed into m bins of capacity g .

• Written in Python.

• Uses CSP for the guarantee checking in every step of
Adversary.

• Never empties cache, runs out of memory for g = 20.

• Authors believed that much larger instances cannot be
tackled.
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Improvements

1. Written in Python. Written in C++.

2. Never empties cache. Fix maximum cache size.

3. Fast verification of the guarantee.

4. Prune tree with good situations.

5. Iterate over monotonicity.

6. Parallelization.
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Improvements: Guarantee checking

Guarantee:

Make sure that Adversary honors the guarantee at all steps:
Items can be packed into m bins of capacity g .

• Constraint satisfaction: Does the next item i satisfy all the
constraints?

• ILP: Does the next item i satisfy all the linear integer
constraints?
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Fastest algorithm I know: Sparse Dynprog

Guarantee:

Make sure that Adversary honors the guarantee at all steps:
Items can be packed into m bins of capacity g .

Example for 3 bins, g = 14:

Item list: 1,2,1,11

Old queue:

New queue:

Largest item that can be sent next: 14.

• Use hashing to find duplicities.

• Experiments: The length of queues stays in 1000s ⇒ try to
keep hash table in CPU cache.
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Improvements

1. Written in C++.

2. Fix maximum cache size.

3. Fast verification of the guarantee.

4. Prune tree with good situations.

5. Iterate over monotonicity.

6. Parallelization.



Improvements: Good situations

Good Situation: A partial packing which an algorithm can easily
finalize with a good stretching factor (say 1 + α).

Assume 3 bins:

Good Situation 1: Two bins (A and B),
size(A) + size(B) ≥ 2− α. Last bin (C ) arbitrary.

Algorithm: Simply pack remaining items into the last bin.

Proof: Remaining load is ≤ 3− (2− α) = 1 + α: everything fits
into bin C . X
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Good Situation 2

Good Situation 2: One bin with size(A) ∈ [1− 2α, α], other two
bins can be arbitrary.
Algorithm: Pack items into some other bin, then into A.
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Good Situation 2

Good Situation 2: One bin with size(A) ∈ [1− 2α, α], other two
bins can be arbitrary.
Algorithm: Pack items into some other bin, then into A.

Packed load ≥ 1 +α+ (1− 2α) = 2−α. Use Good Situation 1. X



Improvements: Good situations

Recall:

Good Situation: A partial packing which the algorithm can easily
finalize with the correct stretching factor.

Good situation with factor t−1
g ⇒ winning position for

Algorithm ⇒ pruning.

16 core server, CPU AMD Opteron 6134, 32GB RAM.
Lower bound for 3 bins, 45/33, no good situations: 294s.
Lower bound for 3 bins, 45/33, good situations active: 7s.

Lower bound for 7 bins, 19/14, no good situations: 91s.
Lower bound for 7 bins, 19/14, GS active: 57s.
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5. Iterate over monotonicity.

6. Parallelization.



Improvements: Monotonicity
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Figure: One branch from the lower bound of 19/14 for 4 bins.

• The branch is not non-decreasing . . . but only barely.

• Define monotonicity k : after item of size s, you can send
only item of size s − k or higher.

• Monotonicity 0 → non-decreasing;

• Monotonicity g − 1 → full generality.
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Improvements: Monotonicity

Bins Lower bound Monotonicity required

3 45/33 1
3 86/63 6
3 112/82 8

4-7 19/14 0*
8 19/14 1*

*: The first item (size 5) does not count.

16 core server, CPU AMD Opteron 6134, 32GB RAM.
Lower bound for 7 bins, 19/14, full monotonicity: 1.53h.
Lower bound for 7 bins, 19/14, monotonicity 0: 57s.
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Improvements: Parallelization

Idea: Cut the tree in some depth, send tasks to remote workers.

Implementation:

• Just cutting by depth→ some tasks very easy, some very hard.
• Workers on the same machine can share cache?

• If so: need to implement proper locking.

• OpenMPI for cluster-level parallelization, each machine:
several Posix threads.
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Summary of results

• [Gabay, Brauner, Kotov ’14]:
• lower bound t/g = 19/14 ≈ 1.357 for three bins via computer.
• No results for more than three bins.

Without parallelization:

• [B. ’16]: Improved to 45/33 ≈ 1.36 for three bins.

• [B. ’16]: Lower bound of 19/14 ≈ 1.357 for 4, 5 bins.

With parallelization:

• [B. ’18, thesis]: For m = 3, improved to 112/82 ≈ 1.365.

• [B. ’18, thesis]: For 3 ≤ m ≤ 8, the lower bound of 19/14
holds.



Verification via
the Coq Proof Assistant.



Coq Proof Assistant

Proof assistant / interactive theorem prover

• It verifies the theorem for us, has a large collection of valid
theorems built-in;

• We have to provide most of the proof ourselves.



Previous verification

• [B. ’18, thesis]: A small C++ verification program, 1046 lines
of code.

To get the result previously, the authors needed to:

1. Compute the lower bounds.

2. Write the verification program, debug it and trust it.

And a reviewer had to:

1. Understand the problem, definitions and the claims.

2. Check the trees manually/separately or

3. Go through the verification program code and check it.



Previous verification

• [B. ’18, thesis]: A small C++ verification program, 1046 lines
of code.

To get the result previously, the authors needed to:

1. Compute the lower bounds.

2. Write the verification program, debug it and trust it.

And a reviewer had to:

1. Understand the problem, definitions and the claims.

2. Check the trees manually/separately or

3. Go through the verification program code and check it.



Previous verification

• [B. ’18, thesis]: A small C++ verification program, 1046 lines
of code.

To get the result previously, the authors needed to:

1. Compute the lower bounds.

2. Write the verification program, debug it and trust it.

And a reviewer had to:

1. Understand the problem, definitions and the claims.

2. Check the trees manually/separately or

3. Go through the verification program code and check it.



Verification with Coq

• [B., Simon ’20]: Formal proof of all the lower bounds.

To get the result now, the authors have to:

1. Compute the lower bounds.

2. Write the definitions of what a lower bound is in Coq.

3. Convert the lower bounds into Coq structures (proof advice).

And the reviewer has to:

1. Understand the problem, definitions and the claims.

That’s it! The Coq system makes sure the trees are a valid proof
for the given claims.
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Code examples 1
The reviewer has to:

1. Understand the problem, definitions and the claims.

Two data structures: list of bins viewed as loads or as items
packed in them:

Definition BinLoads := list nat .
Definition BinExtended := list nat .
Definition BinsExtended := list BinExtended .

Simple recursive properties:

Fixpoint BinSum (B: BinExtended ) := match B with

| nil ⇒ 0
| x :: s ⇒ x + BinSum s

end .

Fixpoint MaxBinSum (P: BinsExtended ) := match P with

| nil ⇒ 0
| x :: s ⇒ max (BinSum x) (MaxBinSum s)
end .

Fixpoint MaxBinValue (St: BinLoads ) := match St with

| nil ⇒ 0
| x :: s ⇒ max x (MaxBinValue s)
end .
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Code examples 2

• AddToBin – adding an item to the bins represented as loads.

Fixpoint AddToBin (St: BinLoads ) (e: nat) (b: nat) := match St, b with

| nil , b ⇒ [e]
| x :: s, 0 ⇒ (x+e) ::s
| x :: s, (S k) ⇒ x :: (AddToBin s e k)
end .

• CompletePacking – predicate is true when all items in `
appear in the bin configuration P.

Definition CompletePacking (` : list nat) (P: BinsExtended ) := forall e,
count_occ Nat . eq_dec ` e <= count_occ Nat . eq_dec (concat P) e.

• SolutionPacking – all items in ` appear and the bin
configuration packs all items into m bins of capacity g .

Definition SolutionPacking (` : list nat) (P: BinsExtended ) :=
CompletePacking ` P ∧ length P = m ∧ MaxBinSum P <= g.
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Code examples 3

• OnlineInfeasible – the main predicate for a lower bound.
• Parameters:

• X ∈ N – a technical parameter for Coq induction.

• list ` – list of items
• St – list of loads of bins corresponding to the items.

Inductive OnlineInfeasible : nat → list nat → BinLoads → Prop :=
| Overflow X ` St: t <= MaxBinValue St → (exists P, SolutionPacking ` P)

→ OnlineInfeasible X ` St

| Deadend X ` St: length St <= m

→ (exists e, forall b, (b < m)
→ OnlineInfeasible X ( (e) :: `) (AddToBin St e b) )

→ OnlineInfeasible (X+1) ` St

.

Theorem (Only theorem needed to prove)

For any `,St,X , the proposition OnlineInfeasible X ` St

implies a lower bound for Online Bin Stretching for a bin
configuration with ` items and loads of bins equal to St.
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Technical challenges

In principle, this would be enough . . .

but verification failed due to
memory as well as time.
1. DAG encoding.

• Functional programming base ⇒ Coq embeds trees easily,
DAGs not as easily.

• Trees were too big for Coq prover to read and validate
(duplicate objects).

• We needed to encode DAGs as DAGs.
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Technical challenges 2
2. Last layer compression.

• The full DAGs were still beyond the memory limit of our
verifier PCs (32 GB of RAM).

0 0 0 0 33 0 0 03 3 3 0 0 3 3 3 3 0

2 5 3 3 0 5 5 5 3 3 6 9 5 5 3 h:14,14

Figure: One branch from the lower bound of 19/14 for 4 bins.

• Solution: Encode the last (two) item heuristic into Coq,
saving space.

3. Binary integers.

• Coq naturally works with Peano arithmetic – easy to
axiomatize + already verified statements in the core.

• But we needed to squeeze a bit more performance + memory
savings.

• We spent some effort to move to binary representation.
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Graph size and results

Value of m 3 4 5 6 7 8

Lower bound 112/82 19/14 19/14 19/14 19/14 19/14
Tree nodes 186k 433 3908 3.8M 231M 2.5G
DAG nodes 103k 236 1271 38k 186k 1.6M
cDAG nodes 37k 102 408 7k 61k 598k

Time 38s 1s 2s 12s 4m30 2h

Size of the uncompressed and compressed DAGs and (approximate) time needed to load the trees and certify each

lower bound. The running times were computed on a machine with the Intel Core i5-6600 CPU and 32 GB of RAM.



Meditations & research
directions



Meditations: Adaptive lower bounds

• Lower bound construction for online (scheduling, packing)
problems tend to have a lower amount of adaptivity.

• Adaptivity often represented as uncertainty when sequence
ends or several very different optimal solutions.

• Possible reason: Case analysis still feels inelegant to
researchers.

• Bin Stretching a sweet spot: no non-trivial lower bound
for the general case despite effort.

• Philosophical question: Can we expect more adaptive (and
harder to comprehend) lower bounds as we near optimality for
other, major problems?
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Meditations: Limits of Minimax

Why a Minimax approach works for Bin Stretching:

1. Finite number of bins ⇒ limited configuration space.

2. Sending a large item restricts the optimum substantially.

3. Strategies with exponentially increasing items not applicable.

• Research direction: Apply the same approach for closely
related problems (small m and known sum of processing
times, small m and related machines).

• Philosophical question: Is computer-aided search doomed for
other problems where these advantages are not present?
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Research directions: Technical challenges

Solving a feasibility of the packing: Can the items on input fit into
m bins of capacity g?

• Previous approach: CSP solver.

• Our approach: Sparse dynamic program.

• Question: What is the (in practice) fastest way of solving this
problem?

• Caveat: Interesting on its own, but unclear how much it helps
here (due to caching).

The Coq verification takes up more resources (memory, time) than
the original C++ verifier.

• Question: Is there a still simple enough, yet much faster,
solution within Coq?

• Engineering challenge: Find bottlenecks, possibly “give back”
code to Coq itself.
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Research directions: Larger computer

Cluster: heterogenous, 109 computation threads running.
Runtime: hours/single days.

Bigger computer/Longer computation:
Optimistic guess: find a lower bound of 19/14 for m ≤ 10 bins.
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Research directions: Closing the gap for m = 3

Current gap: [1.365, 1.375].

• Educated guess: Right number might be 41/30 = 1.36.

Needs algorithmic improvements or stronger good situations.
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Research directions: The curious case of m = 4

For 3 bins:

Potential ratio t/g Lower bound found

19/14 Yes.
34/25 Yes.
45/33 Yes.

For 4 bins:

Potential ratio t/g Lower bound found

19/14 Yes.
34/25 No.
45/33 No.

Conjecture: The optimal stretching factor for 4 bins is strictly
smaller than the optimal factor for 3.
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Meditations: Further progress via ML?

• Using a Minimax approach to solve the Bin Stretching
Game is reminiscent of Chess approaches of 15 years ago or
more.

• AlphaGo: combination of Monte Carlo Tree Search with ML
evaluation of Chess configurations when the depth is exceeded.

• AlphaGo does not solve Chess, but it moved the technology
forward. Of course, massive computational power required.

• Possible research direction: Can we make use of that
technology here? Can we teach computer to play as
Algorithm better to get faster pruning?
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Research directions: Summary

github.com/bohm/binstretch | github.com/bs24/LB BinStretching

1. Stretching factor 19/14 for m ≤ 10 bins: Bigger computer
might suffice.

2. Three bins: close the gap on stretching factor: [1.365, 1.375]
(algorithmic).
• Educated guess: Right number might be 41/30 = 1.36.

3. Four bins: Show that tight bound is less than for three bins.

4. Big open problem: A better general lower bound.
4/3 is easy, nothing else is known (for more than 8 bins).

Thank you!

https://github.com/bohm/binstretch/
https://github.com/bs24/LB_BinStretching
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