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Packing Problems

® Input: n items with sizes aj, ap,...,a, € [0,1].

® Goal: Pack the items into bins efficiently.
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Packing Problems

® Input: n items with sizes aj, ap,...,a, € [0,1].

® Goal: Pack the items into bins efficiently.

® Bin Packing: Each bin has capacity 1, Minimize the number of bins.
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—
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® Multiprocessor Scheduling: Fixed number of bins, Minimize the maximum load.
® Bin Covering: Maximize the number of bins, each bin should get at least 1 load.
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Approximation Algorithms

® The problems are NP-Hard.
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Approximation Algorithms

® The problems are NP-Hard.

e Approximation algorithms: Our goal is to output a solution with cost at most « times the
optimal value.

® All of them have a : (1 + ¢)-factor
approximation algorithm running in time poly(n, %)

® Asymptotic approximation for Bin Packing: We study the setting when the optimal value
is large enough.
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Multidimensional Packing Problems

* Multidimensional problems: each job is a vector in [0, 1]9-Vector Bin Packing, Vector
Scheduling, Vector Bin Covering.
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Multidimensional Packing Problems

* Multidimensional problems: each job is a vector in [0, 1]9-Vector Bin Packing, Vector
Scheduling, Vector Bin Covering.
® Motivation:

1. Fundamental problems in theory, well studied in the approximation algorithms community.
2. Most of the scheduling problems in practice are multidimensional.
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Vector Bin Packing

Vector Bin Packing

* Input: n d-dimensional vectors vi, v, ..., Vv, € [0,1]¢.

® Assign the jobs to minimum number of machines such that in each machine, the sum is
at most 1 in every coordinate.

(0.3,0.6)

e

(0.7,0.4)

(0.5,0.3)

/

(0.6,0.6)
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Vector Bin Packing

® d =1: Bin Packing.
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Vector Bin Packing

® d =1: Bin Packing.
d =2: No PTAS (Woeginger, IPL 1997; Ray, 2021)
O(d)-factor approximation algorithm. (De La Vega, Lueker, Combinatorica 1981)

When d is part of the input, essentially tight : Q(d'~¢) NP-hardness (Chekuri, Khanna,
SICOMP 2004)
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Vector Bin Packing: Fixed dimension

® When d is fixed, the algorithms can now run in nf(d) time, for some function f.
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Vector Bin Packing: Fixed dimension

When d is fixed, the algorithms can now run in nf(d) time, for some function f.
O(Ind) factor algorithm (Chekuri, Khanna, SICOMP 2004)

Improved to Ind + O(1) by (Bansal, Caprara, Sviridenko, SICOMP 2009) and (Bansal,
Elidg, Khan, SODA 2016)

Best Hardness: No PTAS for d = 2.

Question: Is there a constant factor approximation for Vector Bin Packing when the
dimension is fixed?
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Vector Scheduling

Vector Scheduling

* Input is vi, v, ..., v, € [0,1]7 and number of machines m.

® Find f:[n] - [m]. Load vector on a machine j € [m] : ¥ic[n}:f(i)=j Vi-

¢ Objective: Minimize the maximum /o, norm of the load vectors.

(0.3,0.6)
(0.7,0.4)

(0.5,0.3)

(0.6,0.6)

(1,1

(1.1,0.9)
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Vector Scheduling

® d =1: Multiprocessor Scheduling.
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Vector Scheduling

® d =1: Multiprocessor Scheduling.
e PTAS for fixed d. (Chekuri, Khanna, SICOMP 2004)

® When d is part of the input, O(Iolgolgogd)—factor algorithms. (Harris, Srinivasan, JACM

2019) and (Im, Kell, Kulkarni, Panigrahi, SICOMP 2019).
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Vector Scheduling

d =1: Multiprocessor Scheduling.
PTAS for fixed d. (Chekuri, Khanna, SICOMP 2004)

When d is part of the input, O ( =26 )-factor algorithms. (Harris, Srinivasan, JACM
loglog d

2019) and (Im, Kell, Kulkarni, Panigrahi, SICOMP 2019).

Hardness: No constant factor approximation algorithm. (Chekuri, Khanna, SICOMP
2004)
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Vector Bin Covering

Vector Bin Covering

* Input: n d-dimensional vectors vy, v, ..., v, € [0,1]7.

® Objective: Partition the vectors into the maximum number of parts such that in each
part, the sum of the vectors is at least 1 in every coordinate.
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Vector Bin Covering

* Input: n d-dimensional vectors vy, v, ..., v, € [0,1]7.
® Objective: Partition the vectors into the maximum number of parts such that in each
part, the sum of the vectors is at least 1 in every coordinate.

® d=1: Bin Covering.
® General d: O(logd) factor approximation algorithm by (Alon et al., Algorithmica 1998).
* Hardness: APX-Hard when d =2. (Ray, 2021)
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Our results

Vector Bin Packing

Assuming P + NP, when d is fixed, Vector Bin Packing is hard to approximate within Q(log d)
factor.
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Our results

Vector Bin Packing

Assuming P + NP, when d is fixed, Vector Bin Packing is hard to approximate within Q(log d)
factor.

| \

Vector Scheduling

Assuming NP has no quasipolynomial time algorithms, Vector Scheduling has no
Q((log d)'=€) factor polynomial time algorithms for all ¢ > 0.

| A

Vector Bin Covering

Assuming P # NP, Vector Bin Packing has no polynomial time algorithm with approximation

log d
factor 2 (W)
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Our results

Problem Subcase  Best Algorithm Best Hardness
d=1 PTAS NP-Hard
VBP Fixed d Ind + O(1) Q(log d)
Arbitrary d  1+ed+O(Inl) dt-
d=1 PTAS NP-Hard
Fixed d PTAS NP-Hard
VS 1-€
. log d Q (Iog d)
Arbitrary d 0] (Iogolﬁ) ( )

(NP ¢ ZPTIME (n(osm ™))

d=1 FPTAS NP-Hard

Arbitrary d O(logd) Q ( |o§igd)

VBC
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3. Vector Bin Packing
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Our results

Vector Bin Packing

Assuming P + NP, when d is fixed, Vector Bin Packing is hard to approximate within Q(log d)
factor.
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Vector Bin Packing

® Recall the problem statement: Input is v, va,..., v, € [0, l]d. Objective: Partition them
into minimum number of parts such that in each part, the sum of the vectors is at most 1
in every coordinate.
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® Recall the problem statement: Input is v, va,..., v, € [0, l]d. Objective: Partition them
into minimum number of parts such that in each part, the sum of the vectors is at most 1

in every coordinate.
* Configuration: A subset {i1,f2,...,ix} € [n] is called a configuration if

||V,'1+V,'2+...+V,'kHooS].

* Objective is to use the minimum number of configurations to cover [n].
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Vector Bin Packing

® Recall the problem statement: Input is v, va,..., v, € [0, l]d. Objective: Partition them
into minimum number of parts such that in each part, the sum of the vectors is at most 1
in every coordinate.

* Configuration: A subset {i1,f2,...,ix} € [n] is called a configuration if
”V,'1 + Vi, +"'+kaHoo <1

* Objective is to use the minimum number of configurations to cover [n].

e Using the minimum number of sets from a given family to cover all the elements: Set
Cover Problem.

[Vector Bin Packing] [Set Cover]
\_/7
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Reversing the Reduction

?
e
[Vector Bin Packing] [Set Cover]
\/

18/51



Reversing the Reduction

?
e
[Vector Bin Packing] [Set Cover]
\/

Reversing the Reduction

Which Set Cover instances can be formulated as d-dimensional Vector Bin Packing instances?

18/51



Reversing the Reduction

?
e
[Vector Bin Packing] [Set Cover]
\/

Reversing the Reduction

Which Set Cover instances can be formulated as d-dimensional Vector Bin Packing instances?

* Given a set family F ¢ 2[7] goal is to find vectors vy, vo, ..., v, € [0,1]9 such that for
every set S ¢ [n], S e F if and only if

<1

Sl <

ieS

[ee)
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Packing Dimension

e Packing Dimension of F c 2["] pdim(F) is the smallest positive integer d such that there
exist vectors vy, va, ..., v, € [0,1]9 with

<lifandonlyif SeF

o0

2 vi

ieS

® If no such d exists, pdim(F) = oo.
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Packing Dimension

e Packing Dimension of F c 2["] pdim(F) is the smallest positive integer d such that there

exist vectors vy, va, ..., v, € [0,1]9 with
Zv,- <lifandonlyif SeF
ieS 00
® If no such d exists, pdim(F) = oo. vi = (0.6) vs = (0.6)
® pdim(F) being finite requires two simple ) )
conditions:
e T is downward-closed i.e., if S € F, then vy = (0_4) °

TeF forall TcS.
® No isolated elements: For every i € [n],
there exists Se F:i€S.

® These two conditions are sufficient. F={¢,{1},{2},{3},{1,2},{2,3}}
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Hardness of VBP

® Observation: If pdim(F) < d, the Set Cover problem on F is a d-dimensional Vector Bin
Packing problem.
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Hardness of VBP

® Observation: If pdim(F) < d, the Set Cover problem on F is a d-dimensional Vector Bin
Packing problem.

{Packing Dimension of F is at most d} [Set Cover is Hard to approximate within f(d) on .7-"}

[VBP is Hard to approximate within f(d)

20/51



Choosing the Set Family

e Set Cover: Q(Inn) hardness. (Feige, JACM 1998)
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Choosing the Set Family

Set Cover: Q(Inn) hardness. (Feige, JACM 1998)

Packing Dimension of these hard instances grows with n ®

® Question: Are there structured set families that have small Packing Dimension but the
Set Cover problem is hard on them?

° Simple Bounded Set Families. ©®

21/51



Simple Bounded Set Families

e Simple: Any two sets intersect in at most one element.
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Simple Bounded Set Families

e Simple: Any two sets intersect in at most one element.

® (k,A)-Bounded: Each set has cardinality at most k, and each element appears in at
most A sets.

Set Cover on Simple Bounded Set Families

Set Cover is hard to approximate within Q(In k) factor on simple (k, A)-bounded set families
with A = k9 when k is a large constant.

® Proof: Essentially (Anil Kumar, Arya, Ramesh, ICALP 2000), start with a modified Label
Cover instance.
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Packing Dimension of Simple Bounded set families

e What's left: Proving that Simple Bounded set families have small Packing Dimension.
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Packing Dimension of Simple Bounded set families

e What's left: Proving that Simple Bounded set families have small Packing Dimension.

* Small caveat: It's actually the downward-closure F* of Simple Bounded set family F that
has a small Packing Dimension.

F'={T:3Se¢F, TcS}
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Packing Dimension of Simple Bounded set families

e What's left: Proving that Simple Bounded set families have small Packing Dimension.

* Small caveat: It's actually the downward-closure F* of Simple Bounded set family F that
has a small Packing Dimension.

F'={T:3Se¢F, TcS}

Packing Dimension of Simple Bounded Set Families

Suppose that F is a simple (k, A)-bounded set family with no isolated elements. Then,

pdim(F) < (kA)OD
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A property of Packing Dimension

Sub-additivity of Packing Dimension
pdim(F1 n Fy) is at most pdim(Fy) + pdim(F2).
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> A

ieS

<1

oo

Similarly, £ : [n] - [0,1]%.
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A property of Packing Dimension

Sub-additivity of Packing Dimension
pdim(F1 n Fy) is at most pdim(Fy) + pdim(F2).

* Proof: f;:[n] = [0,1]% such that for every S c [n], S € F; if and only if

<1

ieS

Similarly, £ : [n] - [0,1]%.
e Define f: [n] - [0,1]%+% as (f.(i), f>(i)). For every S ¢ [n],

<1

ieS

if and only if S€ F; and S € F».
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Sunflower Bouquets

® Writing a simple bounded set family as an intersection of small number of structured set
families with small Packing Dimension?
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Sunflower Bouquets

® Writing a simple bounded set family as an intersection of small number of structured set
families with small Packing Dimension?

® Yes, using Sunflower-Bouquets.

(k, A)-Sunflower Bouquet with core U .

1. Every set S € F intersects with U exactly

once. ° . . °
2. Intersection of any two sets is either (o (o
empty or is in U. . . . .

3. Each set has cardinality at most k, each
element appears in at most A sets.
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Embedding of Sunflower Bouquets

Embedding of Sunflower Bouquets (Main Technical Lemma)

Suppose that F ¢ 2["] is a (k, A)-Sunflower with core U. Then, there exists an embedding
f:[n] - [0,1]? with d = poly(k, A) such that

1. Foreveryset Se€F, |Yies F(1)] < 1.
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Embedding of Sunflower Bouquets

Embedding of Sunflower Bouquets (Main Technical Lemma)

Suppose that F ¢ 2["] is a (k, A)-Sunflower with core U. Then, there exists an embedding
f:[n] - [0,1]? with d = poly(k, A) such that

1. Foreveryset Se€F, |Yies F(1)] < 1.
2. For every set S ¢ F* with SN U # ¢, |Zics F(i)]o > 1.
3. For every set S with SN U # ¢ and |S| <k, |[Yies F(1)],, <1

® High level idea: many embeddings, each satisfying 1. and 3.
1. Eliminating “inter-sunflower” sets.
2. Pinning the “intra-sunflower” sets.

26 /51



Inter-Sunflower sets

[ ] [ ]
(0.3)0.2)

: (oi.o.s)

(0.4)0.1)

[ J ()
% 0.9)
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Inter-Sunflower sets

(0.3,0.2) ¢ (0.4,0.1)
[ J [ J

: (Of. 0.8)
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Intra-Sunflower sets

* For every minimal set S ¢ F* with Sn U # ¢, we create a coordinate such that the sum is
greater than 1.

* There are only O((kA)?) such minimal sets in a sunflower.
29 /51



Packing Dimension of Simple Bounded Set Families

o Fc2ln: Simple (k,A)-Bounded set family.
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Packing Dimension of Simple Bounded Set Families

o Fc2ln: Simple (k,A)-Bounded set family.
e Color [n] with L colors such that
1. All the elements in an edge are assigned distinct colors.
2. If two edges intersect, all their elements are assigned distinct colors.

® Note: L=0 ((kA)2) suffices.
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Packing Dimension of Simple Bounded Set Families

o Fc2ln: Simple (k,A)-Bounded set family.
e Color [n] with L colors such that
1. All the elements in an edge are assigned distinct colors.
2. If two edges intersect, all their elements are assigned distinct colors.
® Note: L=0 ((kA)z) suffices.
o F; c F: all the sets that hit the ith color. F; is a Sunflower-Bouquet!

([ ] [ ] O o
([ ] ([ ] [ ] @
(] o
[ ] ® @ (
(] ©
( [ (@) O
([ ] O
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Packing Dimension of Simple Bounded Set Families

* Use the Embedding of Sunflower-Bouquets for every F;, f; : [n] = [0,1]¢ with
d = poly(k,A) such that
1. Foreveryset SeFj, |[Yies F(i)]l., < 1.
2. For every set S ¢ F} with SN U; # ¢, [Ties F(i)] o > 1.
3. For every set S with SN U; # ¢ and |S| <k, |[Xjes F(1)], <1
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Packing Dimension of Simple Bounded Set Families

* Use the Embedding of Sunflower-Bouquets for every F;, f; : [n] = [0,1]¢ with
d = poly(k,A) such that
1. Foreveryset SeFj, |[Yies F(i)]l., < 1.
2. For every set S ¢ F} with SN U; # ¢, [Ties F(i)] o > 1.
3. For every set S with SN U; # ¢ and |S| <k, |[Xjes F(1)], <1
® Final embedding f = (f,f,..., 1)
1. Foreveryset SeF, |[Xies F(1)], < 1.
2. Forevery set S¢ F!, | Sies F(1)]. > 1.

® Completes the proof that pdim(F) is at most poly(k, A).
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Hardness of Vector Bin Packing

® The Packing Dimension of Simple (k, A)-Bounded set families is at most poly(k, A).

e Set Cover on Simple (k, A)-Bounded set families is hard to approximate within Q(log k)
when A = k91 and k is a large constant.
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Hardness of Vector Bin Packing

® The Packing Dimension of Simple (k, A)-Bounded set families is at most poly(k, A).

e Set Cover on Simple (k, A)-Bounded set families is hard to approximate within Q(log k)
when A = k91 and k is a large constant.

® Both together prove that d-dimensional Vector Bin Packing is hard to approximate within
Q(log d) factor when d is a large constant.
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4. Summary
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® Hardness of Multidimensional Packing Problems: Vector Bin Packing, Vector Scheduling,
Vector Bin Covering.

® Vector Bin Packing: Packing Dimension.

® Open Problems: Other applications of Packing Dimension? Hardness of Geometric Bin
Packing? Better hardness for 2-dimensional Bin Packing?

Thanks!
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5. Vector Scheduling
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Our results

Vector Scheduling

Assuming NP has no quasipolynomial time algorithms, Vector Scheduling has no
Q((log d)'=€) factor polynomial time algorithms for all ¢ > 0.
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Vector Scheduling

* Input: vi,va,...,Vv,€[0,1]9, and m, the number of machines.
® Find f:[n] - [m]. Load vector on a machine j € [m]: ¥jc[n):f(i)=j Vi-

® Objective: Minimize the maximum £, norm of the load vectors.
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Monochromatic Clique

® Monochromatic Clique(k, B): Given a graph G = ([n], E), and parameters
k:= k(n), B := B(n), the goal is to distinguish between
1. G is k-colorable.
2. In any assignment of k-colors to the vertices of G, there is a monochromatic clique of size B.
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Monochromatic Clique

® Monochromatic Clique(k, B): Given a graph G = ([n], E), and parameters
k:= k(n), B := B(n), the goal is to distinguish between
1. G is k-colorable.
2. In any assignment of k-colors to the vertices of G, there is a monochromatic clique of size B.

B =2: Standard k-coloring of graphs.

Problem gets easier as B increases.

When B = /n, the problem can be solved in polynomial time.
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Hardness of Vector Scheduling from Monochromatic Clique

® Suppose that Monochromatic Clique(k, B) is hard.
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Hardness of Vector Scheduling from Monochromatic Clique

® Suppose that Monochromatic Clique(k, B) is hard.

* Given a graph G = ([n], E), order all the cliques of size at most B of G as T3, T,..., T4
with d < nB.
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Hardness of Vector Scheduling from Monochromatic Clique

® Suppose that Monochromatic Clique(k, B) is hard.

® Given a graph G = ([n], E), order all the cliques of size at most B of G as Ty, T»,...

with d < nB.
* Define V={vi,va,...,v,} €{0,1}9 as

1 ifieT,
(v,-)j={ p

0 otherwise.

The number of machines is equal to k.

Ty
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Hardness of Vector Scheduling from Monochromatic Clique

Suppose that Monochromatic Clique(k, B) is hard.

Given a graph G = ([n], E), order all the cliques of size at most B of G as Ty, T»,...

with d < nB.
Define V = {vi, v, ...,v,} € {0,1}9 as
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Hardness of Vector Scheduling from Monochromatic Clique

® Suppose that Monochromatic Clique(k, B) is hard.

* Given a graph G = ([n], E), order all the cliques of size at most B of G as T3, T,..., T4
with d < nB.

* Define V={vi,va,...,v,} €{0,1}9 as

1 ifieT;
vi): =
(vi); {0 otherwise.
The number of machines is equal to k.

e Completeness: If G is k-colorable, there is an assignment with maximum /., value 1.

e Soundness: If in any assignment of k-colors to the vertices of G there exists a clique of
size B, the load is at least B in any scheduling.
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Hardness of Monochromatic Clique

® For every constant B, there exists k := k(n) such that Monochromatic Clique(k, B) is
NP-Hard. (Chekuri, Khanna, SICOMP 2004)
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Hardness of Monochromatic Clique

® For every constant B, there exists k := k(n) such that Monochromatic Clique(k, B) is
NP-Hard. (Chekuri, Khanna, SICOMP 2004)

® Question: Can we prove improved hardness of Monochromatic Clique (k, B) when B is
larger?

° Yes, using Lexicographic graph product based amplification.

40/51



Hardness of Vector Scheduling

[Graph Coloring Hardness of Approximation (Khot, FOCS 2001)}

Elementary Ramsey Theoretic Argument

(Strong Monochromatic Clique Hardness}

Amplification using Lexicographic Product

[Monochromatic Clique Hardness}

Above reduction

[Vector Scheduling Hardness of Approximation}
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Strong Monochromatic Clique

e Strong Monochromatic Clique(k, B, C): A generalization of Monochromatic Clique:
Given a graph G = ([n], E), parameters k := k(n), B := B(n), C, the goal is to distinguish
between

1. G is k-colorable.
2. In any k€-coloring of G, there is a monochromatic clique of size B.

e C =1: Monochromatic Clique(k, B).
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Strong Monochromatic Clique

e Strong Monochromatic Clique(k, B, C): A generalization of Monochromatic Clique:
Given a graph G = ([n], E), parameters k := k(n), B := B(n), C, the goal is to distinguish
between

1. G is k-colorable.
2. In any k€-coloring of G, there is a monochromatic clique of size B.

e C =1: Monochromatic Clique(k, B).

Hardness of Strong Monochromatic Clique

Assuming NP has no quasipolynomial time algorithm, there exist constant v > 0 and k := k(n)
such that Strong Monochromatic Clique (k, (logn)?”, C) has no quasipolynomial time
algorithm for all integers C > 1.
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Hardness Amplication using Lexicographic Product

® Reduction from Strong Monochromatic Clique (k, B, C) to Monochromatic Clique
(k€,BS).
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Hardness Amplication using Lexicographic Product

® Reduction from Strong Monochromatic Clique (k, B, C) to Monochromatic Clique
(k€,BS).

Let GZ=G x G.

Completeness: If x(G) < k, then x(G?) < k2. If c: V(G) — [k] is a proper k-coloring of
G, simply assign (c(u1),c(u2)) to (uy, u).

Soundness: Suppose that in any assignment of k2 colors to V(G), there is a
monochromatic clique of size B.

Consider an assignment c: V(G?) - [k?].

® For every ue V(G), there is a clique of size B (u,v1), (u,v2),...,(u,vg) in G? that are all
assigned the same color ¢’(u).
® ¢’ itself is a coloring of V(G), there is a clique of size B, uy, up, ..., ug that have the same
!
¢’ value.
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Hardness Amplification Using Lexicographic Product

° Let G'=GC.
1. Completeness: If x(G) < k, then x(G’) < k€.
2. Soundness: If in any assignment of k¢ colors to V(G), there is a monochromatic clique of
size B, then in any assignment of k¢ colors to V/(G’), there is a monochromatic clique of

size BC.
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Hardness Amplification Using Lexicographic Product

° Let G'=GC.

1. Completeness: If x(G) < k, then x(G’) < k€.

2. Soundness: If in any assignment of k€ colors to V(G), there is a monochromatic clique of
size B, then in any assignment of k¢ colors to V/(G’), there is a monochromatic clique of
size BC.

® Polynomial time reduction from Strong Monochromatic Clique (k, B, C) to
Monochromatic Clique (k¢, B€).

Hardness of Monochromatic Clique

Assuming NP has no quasipolynomial time algorithm, for every C, there exists k := k(n) such
that Monochromatic Clique (k, (logn)¢) has no quasipolynomial time algorithm.

Hardness of Vector Scheduling

Assuming NP has no quasipolynomial time algorithm, Vector Scheduling has no polynomial
time algorithm with approximation ratio Q((log d)17¢) for all € > 0.
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Our results

Vector Bin Covering

Assuming P # NP, Vector Bin Packing has no polynomial time algorithm with approximation

log d
factor Q (W)
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6. Vector Bin Covering
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Vector Bin Covering

® Input: n vectors vy, va,..., v, € [0, l]d. Objective: Partition them into the maximum
number of parts such that in each part, the sum is at least 1 in every coordinate.
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Vector Bin Covering

® Input: n vectors vy, va,..., v, € [0, l]d. Objective: Partition them into the maximum
number of parts such that in each part, the sum is at least 1 in every coordinate.

* Hard instances: {0,1}¢.

® View each vector as a vertex of a hypergraph and each coordinate as an edge of the
hypergraph.

® Given a hypergraph, objective is to partition the vertex set into maximum number of
parts such that every part hits each edge.

® Such a coloring of hypergraphs: Rainbow Coloring.
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Hypergraph Rainbow Coloring

® Hypergraph H=(V,E), find c: V - [k] such that

Uclv)=[k] VecE

vee
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Hypergraph Rainbow Coloring

® Hypergraph H=(V,E), find c: V - [k] such that

Uec(v)=[k] VeeE

vee

® When k =2, same as 2-coloring of hypergraphs. NP-Hard.

Approximate Rainbow Coloring Hardness

Given a hypergraph H with m edges, it is NP-Hard to distinguish between
1. H is 2-colorable.
2. H cannot be rainbow colored with Q( Lo

—=—— ) colors.
loglog m
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Hardness of approximate Rainbow Coloring

Label Cover

In the Label Cover problem, the input is a
bipartite graph U u V/, E with projection
constraints g : ¥ — X on each edge.
® The objective is to assign labels from X to
the vertices to satisfy as many constraints
as possible.
® Very hard to approximate: NP-Hard to
find a labeling satisfying € fraction of the
constraints on fully satisfiable instances.

® “Mother of most optimal
inapproximability results”.
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Approximate Rainbow Coloring Hardness

® Gadget reduction based on Label Cover-Long Code framework.
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Approximate Rainbow Coloring Hardness

® Gadget reduction based on Label Cover-Long Code framework.
e Difference from the previous results: we now use very weak Label Cover hardness.
® We just use NP-Hardness of Label Cover, so alphabet size is O(1).
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