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The problem

» (Outcome) size observed before packing

» In many applications this is unrealistic

“The global cloud computing market size is expected to grow from USD
371.4 billion in 2020 to USD 832.1 billion by 2025 ... Digital business
transformation has entered a more challenging and urgency-driven

phase due to the COVID-19 pandemic.”

Research and Markets, report 5136796
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Extensible models

» Generalized extensible bin packing problem [Levin '19]
» Stochastic extensible bin packing [Sagnol, Schmidt & Tesch 18]

» Online bin packing with overload cost [Luo '21]



Adaptive models

» Adaptive knapsack [Derman, Lieberman & Ross '78][Dean, Goemans &
Vondrak '08]

» GAP [Alaei et al '13]
» Bipartite matching [Mehta et al '14][Goyal & Udwani '19]

» Probing submodularity [Gupta, Nagarajan & Singla][Adamczyk &
Sviridenko]
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Why OPT is a sequential policy?

» Cannot compare against optimal offline that knows all outcomes:

P {l/n wp. 1—1/C

1 w.p. 1/C

— Optimal offline cost is < n/C + 1

— Any sequential policy incurs in cost > n.

new bin old bin

+1 CP(X;+5>1)>1
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Result 1 (ONline)

There is an algorithm ALG such that cost(ALG) < 8 - cost(OPT') when
Xi,..., X, are i.id.

Idea:

» cost(P) = E[Np| + C - E[Op]

» Phase 1:

— Notion of risk of bin — E[Op]| = sum of risks of bins

— cost(ALG) < 2E[Na1c]
» Phase 2:

— Only bounded-risk policies are interesting: cost(Pnew) < 4 - cost(Poiq)
» Phase 3:

= E[Narcl = ggjgdedE[NP]

risk
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X, = 0 wp. 1-1/C
1 w.p. 1/C

— Optimal policy incurs in a cost <n/C +1

Bins 1st item 2nd item 3rd item 4th item

B, (0] 0 (0] 1
Bo (0] 0 1
B, 0 0

— Cost of greedy > n/2

000---0100---01
—— ——

Bin breaks: — =& 2C items per bin
%Geom(é) %Geom(%)

cost > C (%) =n/2
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The risk

» Control number of times bins is pushed to limit

risk(B) = P(X;, overflows B) + P(X;, overflows B) + - - -

— Greedy tries &~ 1 times to break bin

> E[Op] = ¥, Blrisk(B,)]
— cost(P) = E[Np| + CE[Op]
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The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin
» Initialize risk at 0 for each bin

— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C

— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: Xl,XQ,X3, .

.. ~ Bern (%)
Can show cost <2& +1
risk & 0 o0
usage 1 0 0
bins B1 Bs Bs
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The Budgeted Greedy Algorithm

» Put a “risk” budget of 1/C' for each bin
» Initialize risk at 0 for each bin

— Item 7 to bin j pack if risk(B;) + P(X; overflow j) < 1/C
— risk(Bj) < risk(B;) + P(X; overflow j)

Proposition
For bins in Budgeted Greedy, risk(B;) < &. Therefore,

cost(ALG) = E[Narc] + C - E[OaLc]
= E[Narg] + C - Y Efrisk(B;)]

J

< 2E[Narc]-
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Where we are ...

» cost(P) = E[Np| + C - E[Op]
> Phaset: v

— Notion of risk of bin — E[Op] = sum of risks of bins
= COSt(ALG) < QE[NALG]

» Phase 2:
— Only bounded-risk policies are interesting: cost(Pnew) < 4 - cost(Poiq)
» Phase 3:
- E[N, = i E[N
[Narel = min, [NP]

ris|
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risk; =P(X;, >1) < &
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Q=
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Proof
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Where we are ...

» cost(P) = E[Np| + C - E[Op]
> Phaset: v

— Notion of risk of bin — E[Op] = sum of risks of bins
= COSt(ALG) < QE[NALG]

» Phase 2: /
— Only bounded-risk policies are interesting: cost(Pnew) < 4 - cost(Poiq)
» Phase 3:
- E[N, = i E[N
[Narcl = min, [NP]

ris|
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Then

» cost(P) = E[Np| + C - E[Op]
> Phase1: v/

— Notion of risk of bin — E[Op]| = sum of risks of bins
= COSt(ALG) < QE[NAL(;,]

> Phase2:
— Only bounded-risk policies are interesting: cost(Pnew) < 4 - cost(Pod)
» Phase3: v/
- E[N, = i E[N
[Narel = i [NP]

ris|
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Then

» cost(P) = E[Np| + C - E[Op]
> Phase1: v/

— Notion of risk of bin — E[Op]| = sum of risks of bins
= COSt(ALG) < QE[NAL(;,]

> Phase2:
— Only bounded-risk policies are interesting: cost(Pnew) < 4 - cost(Pod)
» Phase3: v/
- E[N, = i E[N
[Narel = Q&Eded [NP]
ris|

cost(ALG) < 2E[Narc] < 2E[Np,..,] < 2cost(Prew) < 8cost(Poid)
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Some comments

» Careful analysis gives us the factor 3 + 21/2 ~ 5.828

» Budgeted Greedy also exhibits O(log C') factor against arbitrary
exponential distributions

» There are non-identical distributions in which Budgeted Greedy fails:
— cost(ALG) = n/2 but cost(OPT) < n/C
» Still open for arbitrary distributions

20



Summary

» New packing model for items with random sizes

— Outcomes are observed right after packing item
— Overflowing bins incur in penalty

Model | Positive results(?) Hardness(?)
Online | 3 + 2v/2 factor for i.i.d. input
O(log C) factor for exponential Q(v/log C) factor for exp.

O(1) factor for exponential distribu-
tions if rates are larger than 2log C'

Offline | PTAS with extra capacity #P-hard
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» Preprint: https://arxiv.org/abs/2007.11532v2

» My site: https://sites.google.com/view/sebastianps
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