Adaptive Bin Packing with Overflow

Sebastian Perez-Salazar
Mohit Singh
Alejandro Toriello

Georgia Tech

Bin Packing Seminar 2021

Motivation

Motivation

adws

Motivation

Motivation

I1BM Cloud

Motivation

I1BM Cloud

Servers

contro '
®

Motivation

I1BM Cloud

Servers

& M contro g

:

Motivation

I1BM Cloud

Servers

& M contro g

g

Motivation

I1BM Cloud

Sservers

contro g
g

Motivation

I1BM Cloud

Sservers

- i contro g
g

Motivation

I1BM Cloud

Sservers

- VM il g]
g

Motivation

I1BM Cloud

Sservers

contro g =
g

Motivation

I1BM Cloud

Sservers

. i contro g =
g

Motivation

I1BM Cloud

Sservers

M contro g.
=)
fiE

Online Bin Packing

Framework

» Assign items with sizes < 1 into minimum amount of unit-capacity bins
» Examples

— Assigning VM to servers [Gupta, Radovanovic]
— Bandwidth allocation [Kleinberg, Rabani & Tardos]

Online Bin Packing

JU UL

b——— items —— bins

Framework

» Assign items with sizes < 1 into minimum amount of unit-capacity bins
» Examples

— Assigning VM to servers [Gupta, Radovanovic]
— Bandwidth allocation [Kleinberg, Rabani & Tardos]

Online Bin Packing

wm L]

b——— items —— bins

Framework

» Assign items with sizes < 1 into minimum amount of unit-capacity bins
» Examples

— Assigning VM to servers [Gupta, Radovanovic]
— Bandwidth allocation [Kleinberg, Rabani & Tardos]

Online Bin Packing

2

1/2
b——— items —— f bins

Framework

» Assign items with sizes < 1 into minimum amount of unit-capacity bins
» Examples

— Assigning VM to servers [Gupta, Radovanovic]
— Bandwidth allocation [Kleinberg, Rabani & Tardos]

Online Bin Packing

1/2
b——— items —— f bins

Framework

» Assign items with sizes < 1 into minimum amount of unit-capacity bins
» Examples

— Assigning VM to servers [Gupta, Radovanovic]
— Bandwidth allocation [Kleinberg, Rabani & Tardos]

Online Bin Packing

{
1/2
- 1/2
b——— items —— f bins

Framework

» Assign items with sizes < 1 into minimum amount of unit-capacity bins
» Examples

— Assigning VM to servers [Gupta, Radovanovic]
— Bandwidth allocation [Kleinberg, Rabani & Tardos]

Online Bin Packing

122 [

F—— items ——— }

Framework

» Assign items with sizes < 1 into minimum amount of unit-capacity bins
» Examples

— Assigning VM to servers [Gupta, Radovanovic]
— Bandwidth allocation [Kleinberg, Rabani & Tardos]

Online Bin Packing

122 [
dHEY L

Framework

» Assign items with sizes < 1 into minimum amount of unit-capacity bins
» Examples

— Assigning VM to servers [Gupta, Radovanovic]
— Bandwidth allocation [Kleinberg, Rabani & Tardos]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

WPl UL

items ——— bins

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

MOER JO00C

items ——— bins

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

IR QO00C

items ——— bins

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

-uZff QO0C

items ——— bins

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

~nZf0 EOOL

items ——— [bins

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

~n@7 EOOL

items ——— [bins

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

MIIED

items ———

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

d
=1

% items % }

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

mlHlD

items ———

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

{
wmlnk

——— items ——

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

{
wmlnk

——— items ——

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The stochastic viewpoint

» Uncertainty of items’ sizes — probability distributions

w2 =

——— items ——

» Stochastic bin packing [Coffman et al '80]
» Sum of squares [Csirik et al '02]

The problem

» (Outcome) size observed before packing

» In many applications this is unrealistic

The problem

» (Outcome) size observed before packing

» In many applications this is unrealistic

servers

control

The problem

» (Outcome) size observed before packing

» In many applications this is unrealistic

[Exponential Distribution Servers

control

o
o
#

The problem

» (Outcome) size observed before packing

» In many applications this is unrealistic

[Exponential Distribution servers

control
e ®

The problem

» (Outcome) size observed before packing

» In many applications this is unrealistic

[Exponential Distribution Servers

control

o
o
#

The problem

» (Outcome) size observed before packing

» In many applications this is unrealistic

servers

control

The problem

» (Outcome) size observed before packing

» In many applications this is unrealistic

Servers

control

LY
=
S

The problem

» (Outcome) size observed before packing

» In many applications this is unrealistic

servers

control

<
<

The problem

» (Outcome) size observed before packing

» In many applications this is unrealistic

servers

control

<
<

The problem

» (Outcome) size observed before packing

» In many applications this is unrealistic

“The global cloud computing market size is expected to grow from USD
371.4 billion in 2020 to USD 832.1 billion by 2025 ... Digital business
transformation has entered a more challenging and urgency-driven

phase due to the COVID-19 pandemic.”

Research and Markets, report 5136796

Our approach

Our approach

» Qur packing model that takes into account:

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s X1, ...

— Items packed online in a fixed order 1,...,n

» Xn

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s X, ..

— Items packed online in a fixed order 1,...,n
— Sizes learned after the decision maker has packed it

- Xn

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

— Sizes learned after the decision maker has packed it

— Overflowing bin incurs a fixed penalty C' and bin becomes unusable
» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

cost

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

— Sizes learned after the decision maker has packed it

— Overflowing bin incurs a fixed penalty C' and bin becomes unusable
» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

cost

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

U UL

F—— items —— = bins

cost

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

U UL

F—— items —— — bins

cost

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

J00LC

F—— items —— — bins

cost

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

cost

l B
1/4 1/ D D

F—— items —— = bins

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

cost

DD
}—

items ——— F—— bins

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

cost

)
DD
}—

items ——— F—— bins

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

cost

\J

]
1/2
s

F—— items —— = bins

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

cost

[]
1/2
I i

items ——— F—— bins

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

cost

[]
1/2
I i

items ——— F—— bins

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

cost

d

———— items ——

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

MIIE

items ———

cost

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

MIIE

items ———

cost

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

cost

1

m 2 W

———— items ——

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

mlﬁlﬂ

items ———

cost

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

mlﬁlﬂ

items ———

cost

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

mlﬁll

items ———

cost

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

mlﬁll

items ———

cost

Our approach

» Qur packing model that takes into account:

— Uncertainty of items' sizes via independent r.v.'s Xq,..., X,

— Items packed online in a fixed order 1,...,n

Sizes learned after the decision maker has packed it

Overflowing bin incurs a fixed penalty C' and bin becomes unusable

» Server overload, reduced quality of service, repacking, etc.

— Goal: Minimize number of used bins + overall penalty

cost
3/4
on B B m I
items ——— F——— bins ——

total cost =3+ C

Extensible models

» Generalized extensible bin packing problem [Levin '19]
» Stochastic extensible bin packing [Sagnol, Schmidt & Tesch 18]

» Online bin packing with overload cost [Luo '21]

Adaptive models

» Adaptive knapsack [Derman, Lieberman & Ross '78][Dean, Goemans &
Vondrak '08]

» GAP [Alaei et al '13]
» Bipartite matching [Mehta et al '14][Goyal & Udwani '19]

» Probing submodularity [Gupta, Nagarajan & Singla][Adamczyk &
Sviridenko]

Some of our results

Some of our results

Result 1 (ONline)

There is an algorithm ALG such that cost(ALG) < (3 + 2v/2)cost(OPT)
when X5,..., X, arei.i.d.

Some of our results

Result 1 (ONline)

There is an algorithm ALG such that cost(ALG) < (3 + 2v/2)cost(OPT)
when X5,..., X, arei.i.d.

OPT is best sequential policy that packs X7, ..., X, sequentially

Some of our results

Result 1 (ONline)

There is an algorithm ALG such that cost(ALG) < (3 + 2v/2)cost(OPT)
when X5,..., X, arei.i.d.

OPT is best sequential policy that packs X7, ..., X, sequentially
Result 2 (OFFline)

For any X1,..., X, there is a PTAS that computes a policy for bins with
capacity 1+ ¢ and cost < (1 + €)cost(OPT).

Some of our results

Result 1 (ONline)

There is an algorithm ALG such that cost(ALG) < (3 + 2v/2)cost(OPT)
when X5,..., X, arei.i.d.

OPT is best sequential policy that packs X7, ..., X, sequentially

Result 2 (OFFline)

For any X1,..., X, there is a PTAS that computes a policy for bins with
capacity 1+ ¢ and cost < (1 + €)cost(OPT).

Result 3 (OFFline)

Computing cost(OPT) is #P-hard.

Some of our results

Result 1 (ONline)

There is an algorithm ALG such that cost(ALG) < 8 - cost(OPT') when
Xi1,..., X, are i.i.d.

OPT is best sequential policy that packs X7, ..., X, sequentially

Result 2 (OFFline)

For any X1,..., X, there is a PTAS that computes a policy for bins with
capacity 1+ ¢ and cost < (1 + €)cost(OPT).

Result 3 (OFFline)

Computing cost(OPT) is #P-hard.

Why OPT is a sequential policy?

Why OPT is a sequential policy?

» Cannot compare against optimal offline that knows all outcomes:

X, — 1/n wp. 1-1/C
R w.p. 1/C

Why OPT is a sequential policy?

» Cannot compare against optimal offline that knows all outcomes:

X, — 1/n wp. 1-1/C
R w.p. 1/C

— Optimal offline cost is < n/C + 1

Why OPT is a sequential policy?

» Cannot compare against optimal offline that knows all outcomes:

X, — 1/n wp. 1-1/C
R w.p. 1/C

— Optimal offline cost is < n/C + 1

— Any sequential policy incurs in cost > n.

Why OPT is a sequential policy?

» Cannot compare against optimal offline that knows all outcomes:

X, — 1/n wp. 1-1/C
R w.p. 1/C

— Optimal offline cost is < n/C + 1

— Any sequential policy incurs in cost > n.

Why OPT is a sequential policy?

» Cannot compare against optimal offline that knows all outcomes:

P {l/n wp. 1—1/C

1 w.p. 1/C

— Optimal offline cost is < n/C + 1

— Any sequential policy incurs in cost > n.

new bin

+1

Why OPT is a sequential policy?

» Cannot compare against optimal offline that knows all outcomes:

P {l/n wp. 1—1/C

1 w.p. 1/C

— Optimal offline cost is < n/C + 1

— Any sequential policy incurs in cost > n.

new bin old bin

+1 CP(X;+5>1)>1

For the rest of the talk

Result 1 (ONline)

There is an algorithm ALG such that cost(ALG) < 8 - cost(OPT') when
Xi,..., X, are i.id.

For the rest of the talk

Result 1 (ONline)

There is an algorithm ALG such that cost(ALG) < 8 - cost(OPT') when
Xi,..., X, are i.id.

Idea:

» cost(P) = E[Np| + C - E[Op]

For the rest of the talk

Result 1 (ONline)

There is an algorithm ALG such that cost(ALG) < 8 - cost(OPT') when
Xi,..., X, are i.id.

Idea:

» cost(P) = E[Np| + C - E[Op]
» Phase 1:

— Notion of risk of bin — E[Op]| = sum of risks of bins
= COSt(ALG) < 2E[NAL(;,]

For the rest of the talk

Result 1 (ONline)

There is an algorithm ALG such that cost(ALG) < 8 - cost(OPT') when
Xi,..., X, are i.id.

Idea:

» cost(P) = E[Np| + C - E[Op]

» Phase 1:
— Notion of risk of bin — E[Op]| = sum of risks of bins
= COSt(ALG) < 2E[NAL(;,]

» Phase 2:
— Only bounded-risk policies are interesting: cost(Pnew) < 4 - cost(Poiq)

For the rest of the talk

Result 1 (ONline)

There is an algorithm ALG such that cost(ALG) < 8 - cost(OPT') when
Xi,..., X, are i.id.

Idea:

» cost(P) = E[Np| + C - E[Op]

» Phase 1:

— Notion of risk of bin — E[Op]| = sum of risks of bins

— cost(ALG) < 2E[Na1c]
» Phase 2:

— Only bounded-risk policies are interesting: cost(Pnew) < 4 - cost(Poiq)
» Phase 3:

= E[Narcl = ggjgdedE[NP]

risk

Greedy policies

behave poorly

10

Greedy policies

behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin

10

Greedy policies

behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin
» Consider the i.i.d. sequence

X, = 0 wp. 1-1/C
1 w.p. 1/C

10

Greedy policies

behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin
» Consider the i.i.d. sequence

x, 2 [0 we 1-1/0
1 wp. 1/C

— Optimal policy incurs in a cost <n/C +1

10

Greedy policies

behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin

» Consider the i.i.d. sequence

X, = 0 wp. 1-1/C
1 w.p. 1/C

— Optimal policy incurs in a cost <n/C +1

Bins 1st item 2nd item 3rd item 4th item
B1 0 0 0 1

10

Greedy policies
behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin

» Consider the i.i.d. sequence

X, = 0 wp. 1-1/C
1 w.p. 1/C

— Optimal policy incurs in a cost <n/C +1

Bins 1st item 2nd item 3rd item 4th item
B1 0 0 0 1
B 0] 0 1

10

Greedy policies
behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin

» Consider the i.i.d. sequence

X, = 0 wp. 1-1/C
1 w.p. 1/C

— Optimal policy incurs in a cost <n/C +1

Bins 1st item 2nd item 3rd item 4th item
B1 0 0 0 1
B 0] 0 1

10

Greedy policies

behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin

» Consider the i.i.d. sequence

X, = 0 wp. 1-1/C
1 w.p. 1/C

— Optimal policy incurs in a cost <n/C +1

Bins 1st item 2nd item 3rd item 4th item

B, (0] 0 (0] 1
Bo (0] 0 1
B, 0 0

10

Greedy policies

behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin

» Consider the i.i.d. sequence

X, = 0 wp. 1-1/C
1 w.p. 1/C

— Optimal policy incurs in a cost <n/C +1

Bins 1st item 2nd item 3rd item 4th item

B, (0] 0 (0] 1
Bo (0] 0 1
B, 0 0

— Cost of greedy > n/2

Greedy policies

behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin

» Consider the i.i.d. sequence

X, = 0 wp. 1-1/C
1 w.p. 1/C

— Optimal policy incurs in a cost <n/C +1

Bins 1st item 2nd item 3rd item 4th item

B, (0] 0 (0] 1
Bo (0] 0 1
B, 0 0

— Cost of greedy > n/2

Bin breaks:

Greedy policies

behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin
» Consider the i.i.d. sequence

X, = 0 wp. 1-1/C
1 w.p. 1/C

— Optimal policy incurs in a cost <n/C +1

Bins 1st item 2nd item 3rd item 4th item

B, (0] 0 (0] 1
Bo (0] 0 1
B, 0 0

— Cost of greedy > n/2

000---01
Bin breaks: M

%Geom(é)

Greedy policies

behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin
» Consider the i.i.d. sequence

X, = 0 wp. 1-1/C
1 w.p. 1/C

— Optimal policy incurs in a cost <n/C +1

Bins 1st item 2nd item 3rd item 4th item

B, (0] 0 (0] 1
Bo (0] 0 1
B, 0 0

— Cost of greedy > n/2

000---0100---01
Bin breaks: M M

~Geom(é) %Geom(%)

Greedy policies

behave poorly
» Cost of opening a new bin (+1) vs expected cost using an available bin
» Consider the i.i.d. sequence

X, = 0 wp. 1-1/C
1 w.p. 1/C

— Optimal policy incurs in a cost <n/C +1

Bins 1st item 2nd item 3rd item 4th item

B, (0] 0 (0] 1
Bo (0] 0 1
B, 0 0

— Cost of greedy > n/2

000---0100---01
—— ——

Bin breaks: — =& 2C items per bin
%Geom(é) %Geom(%)

Greedy policies

behave poorly

» Cost of opening a new bin (+1) vs expected cost using an available bin

» Consider the i.i.d. sequence

X, = 0 wp. 1-1/C
1 w.p. 1/C

— Optimal policy incurs in a cost <n/C +1

Bins 1st item 2nd item 3rd item 4th item

B, (0] 0 (0] 1
Bo (0] 0 1
B, 0 0

— Cost of greedy > n/2

000---0100---01
—— ——

Bin breaks: — =& 2C items per bin
%Geom(é) %Geom(%)

cost > C (%) =n/2

10

The risk

» Control number of times bins is pushed to limit

11

The risk

» Control number of times bins is pushed to limit

risk(B) = P(X;, overflows B) + P(X;, overflows B) + - - -

11

The risk

» Control number of times bins is pushed to limit

risk(B) = P(X;, overflows B) + P(X;, overflows B) + - - -

— Greedy tries &~ 1 times to break bin

11

The risk

» Control number of times bins is pushed to limit

risk(B) = P(X;, overflows B) + P(X;, overflows B) + - - -

— Greedy tries &~ 1 times to break bin

> E[Op] = ¥, Blrisk(B,)]
— cost(P) = E[Np| + CE[Op]

11

The Budgeted Greedy Algorithm

12

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin

12

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin
» Initialize risk at 0 for each bin

12

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin
» Initialize risk at O for each bin
— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C

12

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin

» Initialize risk at O for each bin
— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C
— risk(Bj) < risk(B;) + P(X; overflow j)

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin

» Initialize risk at O for each bin
— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C
— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: X1, X2, X3,... ~ Bern (%)

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin

» Initialize risk at O for each bin
— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C
— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: X1, X2, X3,... ~ Bern (%)

risk 0 0 0
usage 0 0 0

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin

» Initialize risk at O for each bin
— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C
— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: X1, X2, X3,... ~ Bern (%)
risk(By) + P(X; > 1) < %?
risk 0 0 0
usage 0 0 0

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin

» Initialize risk at O for each bin
— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C
— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: X1, X2, X3,... NBern(%)
risk(By) + P(X; > 1) < %?
=0
risk 0] 0 0]

usage 0 0 0

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin

» Initialize risk at O for each bin
— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C
— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: X1, X2, X3,... NBern(%)
risk(By) + P(X; > 1) < %?
=0
risk 0] 0 0]

usage 1 0 o0

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin

» Initialize risk at O for each bin
— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C
— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: X1, X2, X3,...~ Bern(%)

risk 0 0 0
usage 1 0 0

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin

» Initialize risk at O for each bin
— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C
— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: X1, X2, X3,... ~ Bern (%)
risk(B1) + P(X2 +1>1) < 57
risk 0 0 0
usage 1 0 0

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin

» Initialize risk at O for each bin
— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C
— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: X1, X2, X3,...~ Bern(%)

risk(B1) + P(X2 +1>1) < 57

=%
risk 0 0 0

usage 1 0 o0

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin
» Initialize risk at 0 for each bin

— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C

— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: Xl,XQ,X3,.

.. ~ Bern (%)
risk(B1) + P(X2 +1>1) < 57
1 - é
risk c 0 0
usage 1 0 0

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin
» Initialize risk at 0 for each bin

— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C

— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: Xl,XQ,Xg, .

.. ~ Bern (%)
risk & 0 o0
usage 1 0 o0

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin
» Initialize risk at 0 for each bin

— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C

— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: Xl,XQ,Xg, .

.. ~ Bern (%)
risk(B1) + P(Xs +1>1) < §7
risk & 0 o0
usage 1 0 0

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin
» Initialize risk at 0 for each bin

— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C

— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: Xl,XQ,Xg, .

.. ~ Bern (%)
risk(B1) + P(Xs +1>1) < §7
1 - %
risk z 0 0
usage 1 0 0

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin
» Initialize risk at 0 for each bin

— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C

— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: Xl,XQ,Xg, .

.. ~ Bern (%)
risk(Bz) + P(X3 > 1) < &7?
=0
risk & 0 o0
usage 1 0 O

bins B1 Bz Bs

The Budgeted Greedy Algorithm

» Put a "risk” budget of 1/C for each bin
» Initialize risk at 0 for each bin

— Item i to bin j pack if risk(B;) + P(X; overflow j) < 1/C

— risk(Bj) < risk(B;) + P(X; overflow j)

Ex: Xl,XQ,X3, .

.. ~ Bern (%)
Can show cost <2& +1
risk & 0 o0
usage 1 0 0
bins B1 Bs Bs

12

The Budgeted Greedy Algorithm

» Put a “risk” budget of 1/C' for each bin
» Initialize risk at 0 for each bin

— Item 7 to bin j pack if risk(B;) + P(X; overflow j) < 1/C
— risk(Bj) < risk(B;) + P(X; overflow j)

Proposition
For bins in Budgeted Greedy, risk(B;) < &. Therefore,

cost(ALG) = E[Narc] + C - E[OaLc]
= E[Narg] + C - Y Efrisk(B;)]

J

< 2E[Narc]-

13

Where we are ...

» cost(P) = E[Np| + C - E[Op]
> Phaset: v

— Notion of risk of bin — E[Op] = sum of risks of bins
= COSt(ALG) < QE[NALG]

» Phase 2:
— Only bounded-risk policies are interesting: cost(Pnew) < 4 - cost(Poiq)
» Phase 3:
- E[N, = i E[N
[Narel = min, [NP]

ris|

14

Only bounded risk policies are interesting

15

Only bounded risk policies are interesting

Theorem

For any policy P for packing X1, ..., X, there is a policy P’ with risk < 1/C
such that cost(P’) < 4 cost(P).

15

Only bounded risk policies are interesting

Theorem

For any policy P for packing X1, ..., X, there is a policy P’ with risk < 1/C
such that cost(P’) < 4 cost(P).

© 06 6 6 6 06 0 O X1, X2, X3 ~ Bern(1/C)

Only bounded risk policies are interesting

Theorem

For any policy P for packing X1, ..., X, there is a policy P’ with risk < 1/C
such that cost(P’) < 4 cost(P).

© 06 6 6 6 06 0 O X1, X2, X3 ~ Bern(1/C)

15

Proof

cost(P)

Proof

cost’ (P) < 2 cost(P)

Proof

cost’(P) < 2cost(P)

risk; =P(X;, >1) < &

risk; <

Q=

risk; >

Q=

P(X;, overflows j) +

P(X;, overflows j) + - -

Proof

cost”’ (P") < 2 cost(P)

risk; =P(X;, >1) < &

Q=

risk; >

Q=

Proof

cost(P"") < 2 cost(P)

risk; =P(X;, >1) < &

risk; <

Q=

risk; >

Q=

Proof

cost(P’"’) < 4 cost(P)

risk; = P(X;;, > 1)< &

Q=

16

Where we are ...

» cost(P) = E[Np| + C - E[Op]
> Phaset: v

— Notion of risk of bin — E[Op] = sum of risks of bins
= COSt(ALG) < QE[NALG]

» Phase 2: /
— Only bounded-risk policies are interesting: cost(Pnew) < 4 - cost(Poiq)
» Phase 3:
- E[N, = i E[N
[Narcl = min, [NP]

ris|

17

Number of Bins of Budgeted Greedy

Theorem
E[NALG] = minp bounded E[Np] if X1, 000 ,Xn are i.i.d.

risk

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

» i to bin j pack if
risk(B;) + P(X; overflow j) < 1/C

» risk(B;) « risk(B;) + P(X; overflow j)

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

TP

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

TP

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

TP

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

TP

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

TP

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

TP

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

TP

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

TP

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

Tpr

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

Number of Bins of Budgeted Greedy

Theorem
E[NALg} = minp bounded E[Np] if Xl, 000 ,Xn are i.i.d.

ris

18

Then

» cost(P) = E[Np| + C - E[Op]
> Phase1: v/

— Notion of risk of bin — E[Op]| = sum of risks of bins
= COSt(ALG) < QE[NAL(;,]

> Phase2:
— Only bounded-risk policies are interesting: cost(Pnew) < 4 - cost(Pod)
» Phase3: v/
- E[N, = i E[N
[Narel = i [NP]

ris|

19

Then

» cost(P) = E[Np| + C - E[Op]
> Phase1: v/

— Notion of risk of bin — E[Op]| = sum of risks of bins
= COSt(ALG) < QE[NAL(;,]

> Phase2:
— Only bounded-risk policies are interesting: cost(Pnew) < 4 - cost(Pod)
» Phase3: v/
- E[N, = i E[N
[Narel = Q&Eded [NP]
ris|

cost(ALG) < 2E[Narc] < 2E[Np,..,] < 2cost(Prew) < 8cost(Poid)

19

Some comments

» Careful analysis gives us the factor 3 + 21/2 ~ 5.828

» Budgeted Greedy also exhibits O(log C') factor against arbitrary
exponential distributions

» There are non-identical distributions in which Budgeted Greedy fails:
— cost(ALG) = n/2 but cost(OPT) < n/C
» Still open for arbitrary distributions

20

Summary

» New packing model for items with random sizes

— Outcomes are observed right after packing item
— Overflowing bins incur in penalty

Model | Positive results(?) Hardness(?)
Online | 3 + 2v/2 factor for i.i.d. input
O(log C) factor for exponential Q(v/log C) factor for exp.

O(1) factor for exponential distribu-
tions if rates are larger than 2log C'

Offline | PTAS with extra capacity #P-hard

21

» Preprint: https://arxiv.org/abs/2007.11532v2

» My site: https://sites.google.com/view/sebastianps

22

https://arxiv.org/abs/2007.11532v2
https://sites.google.com/view/sebastianps

	Adaptive Bin Packing

