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Overview

Question: How online algorithms can benefit from some
advice/prediction about the input sequence?

We consider general frameworks of advice and predictions.
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Part I: Modeling
Prediction

https://www.cnbc.com/2020/04/10/

coronavirus-empty-streets-around-the-world-are-attracting-wildlife.html
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Relaxing the Online Constraint

Relax the online constraint via some information about input.

Lookahead? closed online problems? locality?

Advice model: give any information about the input sequence.

The main constraint is the advice size.

The advice scheme indicates:

What the advice should be.
How an algorithm should work, given specific advice.
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Advice Example: Ski Rental

Ski-rental problem: we go skiing for an unknown number U of days:

At each day rent the equipment at a cost of 1 or buy it once at a
cost of B (B > 1).

One bit of advice: is B < U?

If yes, buy on day 1; otherwise, always rent.
With 1 bit of advice, one can achieve an optimal solution.
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Advice Example: Bin Packing

The advice size indicates the competitive ratio.

The larger is the advice, the better is the competitive ratio.

Advice for bin packing:

Encode the optimal packing in O(n logN) bits (N is the cost of
Opt).
One cannot achieve an optimal solution with an asymptotically
smaller number of bits [Boyar et al., 2016].

What can be done with a smaller advice, e.g., of size O(log n)?
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Breaking the Lower Bound

Consider ReserveCritical algorithm[Boyar et al., 2016].

Receive the number of critical items, in the range (1/2, 2/3]), with
O(log n) bits of advice.

At the beginning, reserve a space of size 2/3 for critical items

huge items (of size > 2/3): open a new bin
critical items (of size ∈ (1/2, 2/3]): place in a reserve space
mini item (of size in (1/3, 1/2]): place two of them in the same bin
tiny items (of size < 1/3): apply First-Fit to place in bins with
critical or other tiny items

7 / 28
Online Bin Packing with Predictions

N



Breaking the Lower Bound

Consider ReserveCritical algorithm[Boyar et al., 2016].

Receive the number of critical items, in the range (1/2, 2/3]), with
O(log n) bits of advice.

At the beginning, reserve a space of size 2/3 for critical items

huge items (of size > 2/3): open a new bin
critical items (of size ∈ (1/2, 2/3]): place in a reserve space
mini item (of size in (1/3, 1/2]): place two of them in the same bin
tiny items (of size < 1/3): apply First-Fit to place in bins with
critical or other tiny items

7 / 28
Online Bin Packing with Predictions

N



Breaking the Lower Bound

Consider ReserveCritical algorithm[Boyar et al., 2016].

Receive the number of critical items, in the range (1/2, 2/3]), with
O(log n) bits of advice.

At the beginning, reserve a space of size 2/3 for critical items

huge items (of size > 2/3): open a new bin
critical items (of size ∈ (1/2, 2/3]): place in a reserve space
mini item (of size in (1/3, 1/2]): place two of them in the same bin
tiny items (of size < 1/3): apply First-Fit to place in bins with
critical or other tiny items

7 / 28
Online Bin Packing with Predictions

N



ReserveCritical Algorithm

At the beginning, reserve a space of size 2/3 for critical items

huge items: open a new bin (no other item goes there)
critical items: place in a reserve space
mini item: place two of them in the same bin
tiny items: apply FirstFit to place in critical or tiny bins

σ = 〈 0.3 0.9 0.6 0.5 0.1 0.1 0.56 0.4 0.3 0.45 0.8 0.51 0.41 0.2 0.1 0.37 0.3 〉
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Theorem

The competitive ratio of ReserveCritical is at most 1.5.
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ReserveCritical Algorithm

At the beginning, reserve a space of size 2/3 for critical items
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Theorem

The competitive ratio of ReserveCritical is at most 1.5.

Instead of the number of critical items in O(log n), one can encode
γ = no. critical bin

no. critical bins+no. small bins in O(1) [Angelopoulos et al., 2018].
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Bin Packing & Advice

- No advice: best upper and lower bounds by [Balogh et al., 2018] and

[Balogh et al., 2019].
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Bin Packing & Advice

- With k ≥ 4 bits, one can get a competitive ratio of 1.5 + 15

2k/2+1

[Angelopoulos et al., 2018].
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Bin Packing & Advice

- With O(1) bits, one can get a competitive ratio of 1.4702

[Angelopoulos et al., 2018].
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Bin Packing & Advice

- With linear number bits, one can achieve a competitive ratio of 4/3

[Boyar et al., 2016].
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Bin Packing & Advice

- With a linear number bits, one can achieve a competitive ratio of 1.0

[Renault et al., 2015].

1
2

adv
ice 
siz
e

5
6

7
8

10

4

9

advice size

competitive ratio

1.7

1.5817
1.5403

1.172
7/6   1.666 

9/8 = 1.125

1.5
1.47012

Θ (log n) Θ (n)

4/3   1.333

Ω (n) Θ (n log N)16
big 

constant

1.5783
1.54278

9 / 28
Online Bin Packing with Predictions

N



Bin Packing & Advice

- For a competitive ratio better than 9/8, a linear number of bits are required

[Boyar et al., 2016].
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Bin Packing & Advice

- For a competitive ratio better than 7/6, a linear number of bits are required

[Angelopoulos et al., 2018].
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Bin Packing & Advice

- For a competitive ratio better than 4− 2
√

2 ≈ 1.172, a linear number of bits

are required [Mikkelsen, 2016].
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Advice Model in Practice

In practice:

The advice size is not the main concern.

The advice cannot be designed to be anything; it should be
predictable.
Predictions are often noisy.
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Online Algorithms with Prediction

Predictions about the input are given (e.g., item frequencies in bin
packing).

There is an error η in prediction.

It is desirable to state the competitive ratio as a function of error.
When η = 0, the competitive ratio is called consistency.
When η takes its largest value, the competitive ratio is called
robustness.
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Ski-rental with Prediction

Prediction: the number U ′ of skiing days.

You cannot fully trust the prediction: if B < U ′ and you buy at day
1, the robustness will be B (when U = 1).

Algorithm Aλ (λ ∈ [1,B]) [Angelopoulos et al., 2020]:

If B < U ′, then rent until day λ− 1 and buy on day λ; otherwise,
buy on day B.
Small values of λ favor consistency and larger values favor
robustness.

Theorem

Algorithm Aλ has consistency (1 + (λ − 1)/B) and robustness
1 + (B − 1)/λ.

Pareto-optimality: any algorithm with consistency (1 + (λ− 1)/B)
has robustness at least 1 + (B − 1)/λ.
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Ski-rental with Prediction

Prediction: the number U ′ of skiing days.

You cannot fully trust the prediction: if B < U ′ and you buy at day
1, the robustness will be B (when U = 1).
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Online Algorithms with Predictions

A different algorithm with competitive ratio
min{(1 + λ)/λ, (1 + λ) + η/((1− λ)Opt)} [Purohit et al., 2018].

η is the error parameter, defined as U − U ′, and λ ∈ (0, 1).

Other online problems studied under the prediction model:

Online Bidding and List Update problem [Angelopoulos et al., 2020]
Contract Scheduling [Angelopoulos and Kamali, 2021].
Paging [Lykouris and Vassilvitskii, 2018, Rohatgi, 2020], Metric
Task Systems [Antoniadis et al., 2020],
scheduling [Lattanzi et al., 2020].
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Part II: Bin Packing
with Prediction

https://www.houseandgarden.co.uk/gallery/

animals-cities-coronavirus-lockdown
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ReserveCritical Revisit

Prediction: γ = no. critical bins
no. critical bins+no. small bins .

Maintain a ratio γ when opening bins with small items.

This scheme is not robust: assume γ = 1 and
σ = (1/6, ε, 1/6, ε, . . . , 1/6, ε); the c.r. is at least 6.

Instead of maintaining a ratio γ, maintain a ratio β = min{λ, γ},
for some parameter λ.

E.g., when λ = 0.5, half of bins will be critical in the above example.

The modified algorithm has consistency 1.5 + 1−λ
4−3λ

, and robustness

1.5 + max{1/4, 9λ
8−6λ
} [Angelopoulos et al., 2020].

One can get a r -consistent algorithm with robustness
max{33− 18r , 7/4} for any r > 1.5.
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Bin Packing with Predictions in Practice

Setting: items are integers in the range [1..k], and bin capacity is k.

In the continuous setting, we cannot hope for consistency better
than 1.172 unless predictions are of size Ω(n) [Mikkelsen, 2016].

Predictions: frequency of items of size x for any x ∈ [1..k].

We use f (x) as the actual frequencies, and f ′(x) as the predicted
(noisy) predictions.
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Profile-Packing Algorithm

Profile-Packing with parameter M (M ∈ O(1) is a large constant):

Form a profile multiset P in which there are dMf ′(x)e items of size
x .

Form an optimal packing of P (a profile packing) in which there is a
placeholder of size x for each item of size x in the profile multiset.
Place each item in a placeholder of the same size (open a new
profile packing if needed).
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Profile-Packing Illustration

Suppose predictions are perfect, i.e., f (x) = f ′(x) for all x ∈ [1..k].

Assume k = 10, M = 20

Profile multiset is P = {13, 211, 33, 42, 6, 7, 9}.

E.g., there are d0.11 · 20e = 3 items of size 1 in the profile set.
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Profile Packing Analysis

Theorem

For any constant ε ∈ (0, 0.2], and error-free prediction
(f ′ = f ), Profile-Packing has competitive ratio at most 1 +
ε [Angelopoulos et al., 2021].

Profile-Packing has consistency 1 + ε.

What about noisy predictions?
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Profile-Packing with Noisy Predictions

Define the error as the L1 distance between vectors f and f ′.

η = |0.10− 0.11|+ |0.05− 0|+ |0.1− 0.05| = 0.2

The algorithm works as before but some placeholders remain empty.

Special items with predicted frequency 0 are treated using First-Fit.
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Profile-Packing with Noisy Predictions

Theorem

For any constant ε ∈ (0, 0.2], and predictions f ′ with error η,
Profile-Packing has competitive ratio at most 1 + (2 + 5ε)ηk + ε.

Consistency is 1 + ε (when η = 0).

Robustness grows with k :

Can we improve over this?
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Consistency-Robustness Trade off

Theorem

Any (1 + ε)-consistent algorithm has robustness that grows with
k.

Consider input sequences that start with a common prefix formed by
n items of size 1.

Suppose predictions indicate that half of items are of size 1 and half
are of size k − 1.
σ1 = 1, 1, . . . , 1︸ ︷︷ ︸

n items

, k − 1, k − 1, . . . , k − 1︸ ︷︷ ︸
n items

(η = 0)

To be (1 + ε)-consistent, the algorithm should open at least
(1− kε)n bins for the first n items

σ2 = 1, 1, . . . , 1︸ ︷︷ ︸
n items

, 1, 1, . . . , 1︸ ︷︷ ︸
n items

(η = 1)

Given that the algorithm opens at least (1− kε)n, robustness is at
least (1− c)k, assuming ε ≤ c/k.

22 / 28
Online Bin Packing with Predictions

N



Consistency-Robustness Trade off

Theorem

Any (1 + ε)-consistent algorithm has robustness that grows with
k.

Consider input sequences that start with a common prefix formed by
n items of size 1.

Suppose predictions indicate that half of items are of size 1 and half
are of size k − 1.
σ1 = 1, 1, . . . , 1︸ ︷︷ ︸

n items

, k − 1, k − 1, . . . , k − 1︸ ︷︷ ︸
n items

(η = 0)

To be (1 + ε)-consistent, the algorithm should open at least
(1− kε)n bins for the first n items

σ2 = 1, 1, . . . , 1︸ ︷︷ ︸
n items

, 1, 1, . . . , 1︸ ︷︷ ︸
n items

(η = 1)

Given that the algorithm opens at least (1− kε)n, robustness is at
least (1− c)k, assuming ε ≤ c/k.

22 / 28
Online Bin Packing with Predictions

N



Consistency-Robustness Trade off

Theorem

Any (1 + ε)-consistent algorithm has robustness that grows with
k.

Consider input sequences that start with a common prefix formed by
n items of size 1.

Suppose predictions indicate that half of items are of size 1 and half
are of size k − 1.

σ1 = 1, 1, . . . , 1︸ ︷︷ ︸
n items

, k − 1, k − 1, . . . , k − 1︸ ︷︷ ︸
n items

(η = 0)

To be (1 + ε)-consistent, the algorithm should open at least
(1− kε)n bins for the first n items

σ2 = 1, 1, . . . , 1︸ ︷︷ ︸
n items

, 1, 1, . . . , 1︸ ︷︷ ︸
n items

(η = 1)

Given that the algorithm opens at least (1− kε)n, robustness is at
least (1− c)k, assuming ε ≤ c/k.

22 / 28
Online Bin Packing with Predictions

N



Consistency-Robustness Trade off

Theorem

Any (1 + ε)-consistent algorithm has robustness that grows with
k.

Consider input sequences that start with a common prefix formed by
n items of size 1.

Suppose predictions indicate that half of items are of size 1 and half
are of size k − 1.
σ1 = 1, 1, . . . , 1︸ ︷︷ ︸

n items

, k − 1, k − 1, . . . , k − 1︸ ︷︷ ︸
n items

(η = 0)

To be (1 + ε)-consistent, the algorithm should open at least
(1− kε)n bins for the first n items

σ2 = 1, 1, . . . , 1︸ ︷︷ ︸
n items

, 1, 1, . . . , 1︸ ︷︷ ︸
n items

(η = 1)

Given that the algorithm opens at least (1− kε)n, robustness is at
least (1− c)k, assuming ε ≤ c/k.

22 / 28
Online Bin Packing with Predictions

N



Consistency-Robustness Trade off

Theorem

Any (1 + ε)-consistent algorithm has robustness that grows with
k.

Consider input sequences that start with a common prefix formed by
n items of size 1.

Suppose predictions indicate that half of items are of size 1 and half
are of size k − 1.
σ1 = 1, 1, . . . , 1︸ ︷︷ ︸

n items

, k − 1, k − 1, . . . , k − 1︸ ︷︷ ︸
n items

(η = 0)

To be (1 + ε)-consistent, the algorithm should open at least
(1− kε)n bins for the first n items

σ2 = 1, 1, . . . , 1︸ ︷︷ ︸
n items

, 1, 1, . . . , 1︸ ︷︷ ︸
n items

(η = 1)

Given that the algorithm opens at least (1− kε)n, robustness is at
least (1− c)k, assuming ε ≤ c/k.
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A Hybrid Algorithm

A HybridA(λ) algorithm between Profile-Packing and A

A can be any online algorithm (e.g., First-Fit or Super-Harmonic).

Each item x is declared as either PP-item or A-item.
For each x ∈ [1..k], there are counters ppcount(x) and count(x)

If there is a place-holder of size x in a non-empty bin, then x is
declared a pp-item and placed in the placeholder.
Otherwise, x is declared as a pp-item iff ppcount(x) ≤ λcount(x)
and an A-item otherwise.
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Analysis of Hybrid

Theorem

For any ε ∈ (0, 0.2] and λ ∈ [0, 1], Hybrid(λ) has competitive
ratio (1 + ε)((1 + (2 + 5ε)ηk + ε)λ+ cA(1−λ)), where cA is the
competitive ratio of A.

Corollary

For any ε ∈ (0, 0.2] and λ ∈ [0, 1], there is an algorithm with
competitive ratio (1 + ε)(1.5783 + λ((2 + 5ε)ηk − 0.5783 + ε)).
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Experimental Results

We study the typical performance of Profile-Packing and
Hybrid(λ) using experiments.

Create sequences using Weibull distribution or from the BIBLib bin
packing library.

We have n = 106, M = 5000, k = 100, and use FFD for packing
profile.
Predictions are defined based on frequencies in prefixes of different
lengths.
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Conclusions

https://www.cnbc.com/2020/04/10/

coronavirus-empty-streets-around-the-world-are-attracting-wildlife.html
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Concluding Remarks

Most current results consider static predictions.

First the predictions are generated and then the input is revealed.

It is possible to update predictions in the course of the algorithm.
Adaptive algorithm: maintain frequencies in a window of size w
formed by the last w items.
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Concluding Remarks

Predictions about frequencies can be helpful for improving online
algorithms.

One can use other error measures, e.g., Earth-Mover-Distance.

Not only the competitive ratio, but more importantly the typical
performance of algorithms can be improved, using predictions.
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