A Tight $(3/2 + \varepsilon)$ Approximation for Skewed Strip Packing

W. Gálvez, F. Grandoni, A. Jabal Ameli, K. Jansen, A. Khan and M. Rau

Introduction

Strip packing

- Input:
 - Strip with width $W \in \mathbb{N}$ and infinite height
 - Set of *n* items \mathcal{I} with width $w_i \in \mathbb{N}_{\leq W}$ and height $h_i \in \mathbb{N}$

Strip packing

- Input:
 - Strip with width $W \in \mathbb{N}$ and infinite height
 - Set of *n* items \mathcal{I} with width $w_i \in \mathbb{N}_{\leq W}$ and height $h_i \in \mathbb{N}$
- Objective:
 - Find a *feasible* packing of the items in the strip with minimum height.

Strip Packing bears a resemblance to Tetris.

Manufacturing Processes

Manufacturing Processes

• VLSI Design

• VLSI Design

• Optimizing Energy Consumption

Optimizing Energy Consumption

| $3/2 - \varepsilon$

There is no $(3/2 - \varepsilon)$ -approximation unless P = NP

 $3/2 - \varepsilon$

There is no $(3/2 - \varepsilon)$ -approximation unless P = NPBy a simple reduction from the *Partition* problem.

There is no $(3/2 - \varepsilon)$ -approximation unless P = NPBy a simple reduction from the *Partition* problem.

Approximation Algorithms:

B.S. Baker, D. J. Brown and H. P. Katseff, 1980
E.G. Coffman Jr., M. R. Garey, D. S. Johnson and R. E. Tarjan, 1980
D. Sleator, 1980

State Of the Art

There is no $(3/2 - \varepsilon)$ -approximation unless P = NPBy a simple reduction from the *Partition* problem.

Approximation Algorithms:

[1] B.S. Baker, D. J. Brown and H. P. Katseff, 1980

- [2] E.G. Coffman Jr., M. R. Garey, D. S. Johnson and R. E. Tarjan, 1980
- [3] D. Sleator, 1980
- [4] A. Steinberg, 1997
- [5] I. Schiermeyer, 1994

There is no $(3/2 - \varepsilon)$ -approximation unless P = NPBy a simple reduction from the *Partition* problem.

Approximation Algorithms:

[1] B.S. Baker, D. J. Brown and H. P. Katseff, 1980

- [2] E.G. Coffman Jr., M. R. Garey, D. S. Johnson and R. E. Tarjan, 1980
- [3] D. Sleator, 1980
- [4] A. Steinberg, 1997
- [5] I. Schiermeyer, 1994
- [6] R. Harren and R. van Stee, 2009

There is no $(3/2 - \varepsilon)$ -approximation unless P = NPBy a simple reduction from the *Partition* problem.

Approximation Algorithms:

[1] B.S. Baker, D. J. Brown and H. P. Katseff, 1980

- [2] E.G. Coffman Jr., M. R. Garey, D. S. Johnson and R. E. Tarjan, 1980
- [3] D. Sleator, 1980
- [4] A. Steinberg, 1997
- [5] I. Schiermeyer, 1994
- [6] R. Harren and R. van Stee, 2009
- [7] R. Harren, K. Jansen, L. Prädel and R. van Stee, 2014

State Of the Art

Pseudo-Polynomial Time $(n \cdot W \cdot h_{max})^{\mathcal{O}(1)}$

[1] K. Jansen and R. Thöle, 2008

K. Jansen and R. Thöle, 2008
G. Nadiradze and A. Wiese, 2016

Algorithms

[1] K. Jansen and R. Thöle, 2008[2] G. Nadiradze and A. Wiese, 2016

[3] W. Gálvez, F. Grandoni, S. Ingala and A. Khan, 2016

[4] K. Jansen and M. Rau, 2017

Algorithms

APX-hardness

- [1] K. Jansen and R. Thöle, 2008
- [2] G. Nadiradze and A. Wiese, 2016
- [3] W. Gálvez, F. Grandoni, S. Ingala and A. Khan, 2016
- [4] K. Jansen and M. Rau, 2017
- [5] A. Adamaszek, T. Kociumaka, M. Pilipczuk and M. Pilipczuk, 2017

Algorithms

APX-hardness

- [1] K. Jansen and R. Thöle, 2008
- [2] G. Nadiradze and A. Wiese, 2016
- [3] W. Gálvez, F. Grandoni, S. Ingala and A. Khan, 2016
- [4] K. Jansen and M. Rau, 2017
- [5] A. Adamaszek, T. Kociumaka, M. Pilipczuk and M. Pilipczuk, 2017
- [6] S. Henning, K. Jansen, M. Rau and L. Schmarje, 2018

- [1] K. Jansen and R. Thöle, 2008
- [2] G. Nadiradze and A. Wiese, 2016
- [3] W. Gálvez, F. Grandoni, S. Ingala and A. Khan, 2016
- [4] K. Jansen and M. Rau, 2017
- [5] A. Adamaszek, T. Kociumaka, M. Pilipczuk and M. Pilipczuk, 2017
- [6] S. Henning, K. Jansen, M. Rau and L. Schmarje, 2018
- [7] K. Jansen and M. Rau, 2019

Classify items by size

Observation

- There can be only $\mathcal{O}_{\delta}(1)$ large items.
- If we are given an instance containing only large items we are able to compute efficiently.

Observation

- There can be only $\mathcal{O}_{\delta}(1)$ large items.
- If we are given an instance containing only large items we are able to compute efficiently.

How about the complementary case?

Our problem

$\delta\text{-skewed Strip Packing}$

Strip Packing restricted to instances where all items have either $w_i \leq \delta W$ or $h_i \leq \delta T$.

Theorem

For any $\delta > 0$ and $\varepsilon > 0$, there is no polynomial time $(3/2 - \varepsilon)$ -approximation for δ -skewed Strip Packing unless P = NP.

Theorem

For any $\delta > 0$ and $\varepsilon > 0$, there is no polynomial time $(3/2 - \varepsilon)$ -approximation for δ -skewed Strip Packing unless P = NP.

Theorem

For any $\varepsilon > 0$ there exists $\delta > 0$ such that there is a $(3/2 + \varepsilon)$ -approximation for δ -skewed Strip Packing.

Reduction from Partition

• Classical reduction from Partition: 2n rectangles of height 1 and widths a_1, a_2, \ldots, a_{2n} satisfying $a_1 + \cdots + a_{2n} = 2S$.

Reduction from Partition

 Let us increase the width of the strip by a factor 2/δ + 1; this way the rectangles become δ-skewed.

Reduction from Partition

• Let us add δ -skewed dummy items of width 2*S* and height 1 (they are δ -skewed).

Algorithm

Search for well-structured solutions

Decompose the solution into *simple* regions where items are packed *by means of polynomial time algorithms*.
Decompose the solution into *simple* regions where items are packed *by means of polynomial time algorithms*.

Decompose the solution into *simple* regions where items are packed *by means of polynomial time algorithms*.

Decompose the solution into *simple* regions where items are packed *by means of polynomial time algorithms*.

Decompose the solution into *simple* regions where items are packed *by means of polynomial time algorithms*.

Decompose the solution into *simple* regions where items are packed *by means of polynomial time algorithms*.

 Consider the optimal solution and derive a well-structured solution.

 Consider the optimal solution and derive a well-structured solution.

 Consider the optimal solution and derive a well-structured solution.

- Consider the optimal solution and derive a well-structured solution.
- 2. Iterate all structures to find the correct one

- Consider the optimal solution and derive a well-structured solution.
- 2. Iterate all structures to find the correct one
- 3. Add almost all the items via linear programming

- Consider the optimal solution and derive a well-structured solution.
- 2. Iterate all structures to find the correct one
- 3. Add almost all the items via linear programming
- Create two extra thin regions for the residual rectangles.

- Consider the optimal solution and derive a well-structured solution.
- 2. Iterate all structures to find the correct one
- 3. Add almost all the items via linear programming
- Create two extra thin regions for the residual rectangles. These containers can be
 - included by using extra
 - $2/3 \cdot OPT$ height.

Strategy

Idea

Place **all** items with height larger than $\frac{1}{2}$ OPT inside the structured solution.

Strategy

Idea

Place **all** items with height larger than $\frac{1}{2}$ OPT inside the structured solution. This way the additional container only needs a height of at most $\frac{1}{2}$ OPT.

Idea

Place **all** items with height larger than $\frac{1}{2}$ OPT inside the structured solution. This way the additional container only needs a height of at most $\frac{1}{2}$ OPT.

Structural lemma

If \mathcal{I} is an instance of δ -skewed Strip Packing, there exists a well-structured solution of height at most $\left(\frac{3}{2} + \varepsilon\right) OPT$ for \mathcal{I} such that:

• The rectangles of height larger than $\frac{1}{2}OPT$ can be packed exactly in polynomial time into the solution,

Idea

Place **all** items with height larger than $\frac{1}{2}$ OPT inside the structured solution. This way the additional container only needs a height of at most $\frac{1}{2}$ OPT.

Structural lemma

If \mathcal{I} is an instance of δ -skewed Strip Packing, there exists a well-structured solution of height at most $\left(\frac{3}{2} + \varepsilon\right) OPT$ for \mathcal{I} such that:

- The rectangles of height larger than $\frac{1}{2}OPT$ can be packed exactly in polynomial time into the solution, and
- There is a free rectangular region of height $\frac{1}{2}OPT$ and width εW inside the solution.

New item classification

- Classification:
 - $T: h(i) > \frac{1}{2}OPT;$
 - V: $\delta OPT \leq h(i) \leq \frac{1}{2}OPT;$
 - S: $h(i) < \delta OPT$.

- Classification:
 - $T: h(i) > \frac{1}{2}OPT;$
 - $V: \delta OPT \leq h(i) \leq \frac{1}{2} OPT;$
 - S: $h(i) < \delta OPT$.
- Consider only *T* and *S* in *OPT*.

- Consider only *T* and *S* in *OPT*.
- · Slice short items horizontally.

- Consider only *T* and *S* in *OPT*.
- Slice short items horizontally.
- Shift the bottom sliced short items up by *OPT* unit.

- Consider only *T* and *S* in *OPT*.
- Slice short items horizontally.
- Shift the bottom sliced short items up by *OPT* unit.
- · Shift down tall items.

- · Slice short items horizontally.
- Shift the bottom sliced short items up by *OPT* unit.
- · Shift down tall items.
- Shift the tall items to the left and sort them according to their height, then shift the slices to the right.

- Shift the bottom sliced short items up by *OPT* unit.
- · Shift down tall items.
- Shift the tall items to the left and sort them according to their height, then shift the slices to the right.
- Shift up and sort stripes of short items.

- · Shift down tall items.
- Shift the tall items to the left and sort them according to their height, then shift the slices to the right.
- Shift up and sort stripes of short items.
- Silhouette of both item sets has step form

- Shift up and sort stripes of short items.
- Silhouette of both item sets has step form
- Shift the short items up by *O*(ε)*OPT*; round up the silhouettes so as to have *O*_ε(1) jumps.

Introduce containers for vertical items.

- Introduce containers for vertical items.
- Total area in containers is at least $a(V) + (\frac{1}{2} + \varepsilon) W \cdot OPT$

- Introduce containers for vertical items.
- Total area in containers is at least $a(V) + (\frac{1}{2} + \varepsilon) W \cdot OPT$
- Sliced vertical items can be filled inside containers greedily because they have a height of at most OPT/2

- Introduce containers for vertical items.
- Total area in containers is at least $a(V) + (\frac{1}{2} + \varepsilon) W \cdot OPT$
- Sliced vertical items can be filled inside containers greedily because they have a height of at most OPT/2
- Guaranteed existence of a free area with width Ω(εW) and height OPT/2

Given a set \mathcal{R} of constantly many rectangular regions, and a set of items \mathcal{I} with the following properties:

Given a set \mathcal{R} of constantly many rectangular regions, and a set of items \mathcal{I} with the following properties:

• The sliced short items fit inside the horizontal regions of $\ensuremath{\mathcal{R}}.$

Given a set \mathcal{R} of constantly many rectangular regions, and a set of items \mathcal{I} with the following properties:

- The sliced short items fit inside the horizontal regions of $\ensuremath{\mathcal{R}}.$
- The sliced vertical items fit inside the vertical regions of \mathcal{R} .

Given a set \mathcal{R} of constantly many rectangular regions, and a set of items \mathcal{I} with the following properties:

- The sliced short items fit inside the horizontal regions of \mathcal{R} .
- The sliced vertical items fit inside the vertical regions of \mathcal{R} .
- There exists a value γ ∈ (0, 1) such that the height of each horizontal regions is at least ¹/_γ the height of the short items and the width of the vertical regions are at least ¹/_γ the width of the vertical items.

Given a set \mathcal{R} of constantly many rectangular regions, and a set of items \mathcal{I} with the following properties:

- The sliced short items fit inside the horizontal regions of \mathcal{R} .
- The sliced vertical items fit inside the vertical regions of \mathcal{R} .
- There exists a value γ ∈ (0, 1) such that the height of each horizontal regions is at least ¹/_γ the height of the short items and the width of the vertical regions are at least ¹/_γ the width of the vertical items.

Then almost all items can be packed *integrally* inside the regions.

Given a set \mathcal{R} of constantly many rectangular regions, and a set of items \mathcal{I} with the following properties:

- The sliced short items fit inside the horizontal regions of \mathcal{R} .
- The sliced vertical items fit inside the vertical regions of \mathcal{R} .
- There exists a value γ ∈ (0, 1) such that the height of each horizontal regions is at least ¹/_γ the height of the short items and the width of the vertical regions are at least ¹/_γ the width of the vertical items.

Then almost all items can be packed *integrally* inside the regions. The total area of the non-packed items can be bounded by $\mathcal{O}(\gamma) \cdot area(\mathcal{I})$.
Placing items inside containers

Unpacked items can be placed into thin extra boxes.

• Place the tall items sorted by height at the bottom left.

- Place the tall items sorted by height at the bottom left.
- Guess the containers for horizontal items, and generate the containers for vertical items.

Algorithm Summary

- Place the tall items sorted by height at the bottom left.
- Guess the containers for horizontal items, and generate the containers for vertical items.
- Use Linear Programming to place almost all horizontal and vertical items inside the containers. (for the correct guess they fit as sliced items)

Algorithm Summary

- Place the tall items sorted by height at the bottom left.
- Guess the containers for horizontal items, and generate the containers for vertical items.
- Use Linear Programming to place almost all horizontal and vertical items inside the containers. (for the correct guess they fit as sliced items)
- Place the residual items in one box with width W and height O(ε)OPT at the top and inside the free area of height OPT/2 and width O(ε)W.

Theorem

For any $\delta > 0$ and $\varepsilon > 0$, there is no polynomial time $(3/2 - \varepsilon)$ -approximation for δ -skewed Strip Packing unless P = NP.

Theorem

For any $\delta > 0$ and $\varepsilon > 0$, there is no polynomial time $(3/2 - \varepsilon)$ -approximation for δ -skewed Strip Packing unless P = NP.

Theorem

For any $\varepsilon > 0$ there exists $\delta > 0$ such that there is a $(3/2 + \varepsilon)$ -approximation for δ -skewed Strip Packing.

- Can we improve the approximation factor for Strip Packing from $\frac{5}{3} + \varepsilon$?

• Can we improve the approximation factor for Strip Packing from $\frac{5}{3} + \varepsilon$? Or improve the hardness of approximation?

- Can we improve the approximation factor for Strip Packing from $\frac{5}{3} + \varepsilon$? Or improve the hardness of approximation?
- For which other classes of items one can obtain tight results? For example lower bounded height or lower bounded width?

- Can we improve the approximation factor for Strip Packing from $\frac{5}{3} + \varepsilon$? Or improve the hardness of approximation?
- For which other classes of items one can obtain tight results? For example lower bounded height or lower bounded width?
- Strip Packing with constant number of types?

Thank You for Your Attention