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Introduction



Strip packing

• Input:
• Strip with width W ∈ N and infinite height
• Set of n items I with width wi ∈ N≤W and height hi ∈ N

• Objective:
• Find a feasible packing of the items in the strip with

minimum height.
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Strip Packing

Strip Packing bears a resemblance to Tetris.
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Applications

• Manufacturing Processes
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Standard Approach: Size classification

Classify items by size

> δW

>
δO

P
T

large

≤ δW

>
δO

P
T

vertical

> δW≤
δO

P
T

horizontal

≤ δW≤
δO

P
T

small
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Large items

Observation

• There can be only Oδ(1) large items.

• If we are given an instance containing only large items we
are able to compute efficiently.

How about the complementary case?
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Our problem

δ-skewed Strip Packing
Strip Packing restricted to instances where all items have either
wi ≤ δW or hi ≤ δT .

> δW

>
δO

P
T

large

≤ δW

>
δO

P
T

vertical

> δW≤
δO

P
T

horizontal

≤ δW≤
δO

P
T

small
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Our Results

Theorem
For any δ > 0 and ε > 0, there is no polynomial time
(3/2− ε)-approximation for δ-skewed Strip Packing unless
P = NP.

Theorem
For any ε > 0 there exists δ > 0 such that there is a
(3/2 + ε)-approximation for δ-skewed Strip Packing.
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Hardness



Hardness

Reduction from Partition

• Classical reduction from Partition: 2n rectangles of height
1 and widths a1,a2, . . . ,a2n satisfying a1 + · · ·+ a2n = 2S.

S

ai

2S

2S
δ S

0

W = (2
δ + 1)S

0

1

2
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Hardness

Reduction from Partition

• Let us increase the width of the strip by a factor 2/δ + 1;
this way the rectangles become δ-skewed.

S

ai2S

2S
δ

S

0 W = (2
δ + 1)S

0

1

2
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Hardness

Reduction from Partition

• Let us add δ-skewed dummy items of width 2S and height
1 (they are δ-skewed).

S

ai

2S

2S
δ S

0 W = (2
δ + 1)S

0

1

2
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Algorithm



General approach of previous algorithms

Search for well-structured solutions
Decompose the solution into simple regions where items are
packed by means of polynomial time algorithms.

Example: Container packings.

12/22



General approach of previous algorithms

Search for well-structured solutions
Decompose the solution into simple regions where items are
packed by means of polynomial time algorithms.

Example: Container packings.

12/22



General approach of previous algorithms

Search for well-structured solutions
Decompose the solution into simple regions where items are
packed by means of polynomial time algorithms.

Example: Container packings.

12/22



General approach of previous algorithms

Search for well-structured solutions
Decompose the solution into simple regions where items are
packed by means of polynomial time algorithms.

Example: Container packings.

12/22



General approach of previous algorithms

Search for well-structured solutions
Decompose the solution into simple regions where items are
packed by means of polynomial time algorithms.

Example: Container packings.

12/22



General approach of previous algorithms

Search for well-structured solutions
Decompose the solution into simple regions where items are
packed by means of polynomial time algorithms.

Example: Container packings.

12/22



Harren et al.’s algorithm

W

1. Consider the optimal
solution and derive a
well-structured solution.

2. Iterate all structures to find
the correct one

3. Add almost all the items
via linear programming

4. Create two extra thin
regions for the residual
rectangles.
These containers can be
included by using extra
2/3 ·OPT height.
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Strategy

Idea

Place all items with height larger than 1
2OPT inside the

structured solution.

This way the additional container only
needs a height of at most 1

2OPT.

Structural lemma
If I is an instance of δ-skewed Strip Packing, there exists a
well-structured solution of height at most

(3
2 + ε

)
OPT for I

such that:

• The rectangles of height larger than 1
2OPT can be packed

exactly in polynomial time into the solution, and

• There is a free rectangular region of height 1
2OPT and

width εW inside the solution.
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Generating the Structured Packing

New item classification

< δW

>
1 2
O

P
T

tall T
< δW∈

(δ
O

P
T,

1 2
O

P
T]

vertical V
∈ (0,W ]<

δO
P

T
short S
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Generating the Structured Packing

(3
2 + O(ε)

)
OPT

W

1
2OPT

OPT

0

0 W

• Classification:
• T : h(i) > 1

2 OPT ;
• V : δOPT ≤ h(i) ≤ 1

2 OPT ;
• S: h(i) < δOPT .
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Generating the Structured Packing
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Generating the Structured Packing
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• Silhouette of both item sets
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1
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OPT

• Shift up and sort stripes of
short items.

• Silhouette of both item sets
has step form

• Shift the short items up by
O(ε)OPT ; round up the
silhouettes so as to have
Oε(1) jumps.
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Generating the Structured Packing

(3
2 + O(ε)

)
OPT

0

0 W

(3
2 + O(ε)

)
OPT

1
2OPT

OPT

• Introduce containers for
vertical items.
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Generating the Structured Packing

(3
2 + O(ε)

)
OPT

fre
e

0

0 W

(3
2 + O(ε)

)
OPT

1
2OPT

OPT

• Introduce containers for
vertical items.

• Total area in containers is at
least a(V ) +

(1
2 + ε

)
W ·OPT

• Sliced vertical items can be
filled inside containers
greedily because they have
a height of at most OPT/2

• Guaranteed existence of a
free area with width Ω(εW )

and height OPT/2
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Placing items inside containers

Theorem [Kenyon and Rémila, 2000]
Given a set R of constantly many rectangular regions, and a
set of items I with the following properties:

• The sliced short items fit inside the horizontal regions of R.

• The sliced vertical items fit inside the vertical regions of R.

• There exists a value γ ∈ (0,1) such that the height of each
horizontal regions is at least 1

γ the height of the short items
and the width of the vertical regions are at least 1

γ the width
of the vertical items.

Then almost all items can be packed integrally inside the
regions. The total area of the non-packed items can be
bounded by O(γ) · area(I).
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and the width of the vertical regions are at least 1

γ the width
of the vertical items.

Then almost all items can be packed integrally inside the
regions. The total area of the non-packed items can be
bounded by O(γ) · area(I).
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Placing items inside containers

Unpacked items can be placed into thin extra boxes.
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Algorithm Summary

• Place the tall items sorted by height at the bottom left.

• Guess the containers for horizontal items, and generate
the containers for vertical items.

• Use Linear Programming to place almost all horizontal and
vertical items inside the containers.
(for the correct guess they fit as sliced items)

• Place the residual items in one box with width W and
height O(ε)OPT at the top and inside the free area of
height OPT/2 and width O(ε)W .
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Summary

Theorem
For any δ > 0 and ε > 0, there is no polynomial time
(3/2− ε)-approximation for δ-skewed Strip Packing unless
P = NP.

Theorem
For any ε > 0 there exists δ > 0 such that there is a
(3/2 + ε)-approximation for δ-skewed Strip Packing.

20/22



Summary

Theorem
For any δ > 0 and ε > 0, there is no polynomial time
(3/2− ε)-approximation for δ-skewed Strip Packing unless
P = NP.

Theorem
For any ε > 0 there exists δ > 0 such that there is a
(3/2 + ε)-approximation for δ-skewed Strip Packing.

20/22



Open Problems

• Can we improve the approximation factor for Strip Packing
from 5

3 + ε?

Or improve the hardness of approximation?

• For which other classes of items one can obtain tight
results? For example lower bounded height or lower
bounded width?

• Strip Packing with constant number of types?
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Thank You for
Your Attention
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