Intézeti szeminárium

Félév: 2017/18 II.félév
Helyszín: Árpád tér 2. II. em. 220. sz.
Dátum: 2018-02-27
Időpont: 14:00-15:00
Előadó: Tapolcai János (BME, Távközlési és Médiainformatikai Tanszék)
Cím: A Tractable Stochastic Model of Correlated Link Failures Caused by Disasters

Absztrakt:
In order to evaluate the expected availability of a service, a network administrator should consider all possible failure scenarios under the specific service availability model stipulated in the corresponding service-level agreement. Given the increase in natural disasters and malicious attacks with geographically extensive impact, considering only independent single link failures is often insufficient.

In this talk, we build a stochastic model of geographically correlated link failures caused by disasters, in order to estimate the hazards a network may be prone to, and to understand the complex correlation between possible link failures. With such a model, one can quickly extract information, such as the probability of an arbitrary set of links to fail simultaneously, the probability of two nodes to be disconnected, the probability of a path to survive a failure, etc.

Furthermore, we introduce a pre-computation process, which enables us to succinctly represent the joint probability distribution of link failures. In particular, we generate, in polynomial time, a quasilinear-sized data structure, with which the joint failure probability of any set of links can be computed efficiently.

Source URL (retrieved on 2018-03-02 13:06): http://www.inf.u-szeged.hu/en/node/2997