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Abstract

GCC’s optimization for space seems to have been
often neglected, in favor of performance tuning.
With this work we aim at determining the weak-
points of GCC concerning its optimization capabil-
ity for space. We compare (1) GCC with two non-
free ARM cross-compiler toolchains, (2) how GCC
evolved from release 3.2.2 to version 3.3, and (3) two
runtime libraries for the Linux kernel. All tests were
performed using the C front end and for the ARM
target both as standalone and as Linux executables.
The test suite is comprised of applications from well-
known benchmark suites such as SPEC and Medi-
abench. An optimal combination of compiler (and
linker) options with respect to minimal code size
is elaborated as well. We conclude that GCC 3.3
steadily improves with respect to version 3.2.2 and
that it is only about 11% behind a high-performance
non-free compiler. At the same time, we were able
to document a number of issues that deserve further
investigation in order to improve code generation for
space.

1 Introduction

GCC is increasingly used as a cross-compiler to pro-
duce programs for embedded systems. Although
performance in terms of speed is also important,
in many cases the amount of consumed resources
(memory, energy, etc.) plays an even greater role in
the case of devices with limited resources. So, when
GCC is used to build these software, the code pro-
duced should be as small as possible. Indeed, GCC
is able to optimize for space but, alas, it seems that
this objective was often neglected when designing

and implementing various code generation and op-
timization algorithms [1, 5]. We may conclude the
same when we consider the fact that beside the vital
regression testing methods and the results of sev-
eral benchmark suites available on GCC web pages
[9, 8, 3], no word is spoken about benchmarking
code size. In fact, were unable to find any related
publication at all which deals with the assessment
of compilers’ capabilities for space optimization.

With this work we attempted to determine the
weakpoints of GCC concerning its optimization ca-
pability for space. We present the results of our
assessments where we compared:

• GCC for standalone executable with two non-
free ARM cross-compiler toolchains,

• How GCC evolved from release 3.2.2 to version
3.3, and

• Two runtime libraries for GNU/Linux, glibc [2]
and µClibc [7].

All tests were performed using the C front end and
for the ARM target (both for standalone and Linux
executables) as this combination is one of the most
frequently used nowadays for embedded applica-
tions. A testbed was utilized with applications from
various well known benchmark suites.

We did our best to discover the optimal combina-
tion of compiler (and linker) options with respect to
minimal code size; we elaborate on the relevant ones
for GCC and propose a set of options to extend the
default settings for code size. With this option set
an improvement of nearly 5% was achieved.

In the investigation we included both the object



sizes produced by the compiler and the linked exe-
cutable sizes to see what effect the runtime libraries
had on the overall linked code size. Comparing only
object sizes, one non-free compiler is about 11% bet-
ter than GCC, but in the case of executables this
ratio rises to 32%.

We investigated the generated code by GCC more
thoroughly and finally we document several issues
that deserve further investigation in order to im-
prove code generation for space. These include the
lack of interprocedural optimizations, the required
unit at a time compilation, more intelligent handling
of -Os, etc.

In Section 2 we describe our measurement environ-
ment and methodology. Section 3 deals with GCC’s
different compiler options and there also we give our
proposal for the best combination. Sections 4 and 5
present the actual results for standalone executables
and Linux libraries, respectively. Finally, in Section
6 we summarize our conclusions and give our view
on the possibilities for improving GCC.

2 Measurement Environment

For all three objectives of our investigation pre-
sented in the previous section, we have set up a
common measurement environment. It consists of
a collection of test programs that are suitable for
compiling and measuring code size for all compilers
and configurations under investigation. The envi-
ronment is able to perform these measurements and
present the data in a simple form ready for further
processing. In addition, it also facilitates the execu-
tion of the executable programs.

2.1 Compiler Toolchains

In each experiment we employed C as the source lan-
guage and the chosen target architecture was ARM
(32-bit ARM instruction set). Two types of tar-
get code were used: standalone programs (that run
on the hardware without an operating system) and
Linux target for the ARM architecture (for GCC
compiler arm-elf and arm-linux machines, respec-
tively). The following toolchains were used for the
measurements:

• GCC 3.2.2 version with newlib version 1.10.0
[6] for standalone target (with binutils version
2.13)

• GCC 3.3 prerelease snapshot (2003-04-14) with
the same newlib and binutils

• GCC version 3.2.2 with glibc version 2.2.5 [2]
for Linux target

• GCC 3.3 prerelease snapshot (2003-04-14) with
glibc version 2.2.5

• GCC version 3.2.2 with µClibc version 0.9.15
[7]

• Two non-free compilers for ARM architecture
configured as standalone targets. These will
be denoted by Compiler 1 and Compiler 2 in
the following discussions. The former uses elf
output format, while the latter produces coff
files.

The switches that control optimization for space
were turned on for all toolchains. In addition, sev-
eral further options (both compiler and linker) that
enable or disable certain code optimization and/or
generation algorithms were also set that resulted the
most compact code size. The combination of these
extra options was determined by trial and error, and
for GCC toolchains we elaborate on these in Section
3.

For each GCC toolchain the runtime libraries were
compiled using the same options as for the test pro-
grams. (Neither of the two non-free compilers li-
braries were prepared in such way.) The use of
such libraries has an effect where the executables
are compared, because the overall code size incor-
porates library code as well.

2.2 Testbed

The testbed used in the experiments consists of
two parts: small example programs and real appli-
cations from several well-known benchmark suites
(GNU applications, SPEC CPU2000 [10], Media-
Bench [4]). In the following table some information
is given about the sizes of the test programs:



Test project files lines bytes exec.

bzip2 1 4,250 121,279 1
catdvi 6 770 24,332 1
flex 21 19,571 530,312 1
g721 8 1,725 46,980 2
gsm 29 5,982 182,809 1
jpeg 84 34,181 1,150,110 6
mcf 25 2,414 53,310 1
mpeg2enc 22 7,608 217,864 1
osdemo 147 68,434 1,925,141 1
parser 18 11,391 356,526 1
sed 20 12,393 365,886 1
P3szogr 1 48 1,568 1
3szog 1 48 1,419 1
abc 1 17 443 1
arg 1 25 390 1
datum 1 48 870 1
eltelt 1 32 939 1
endian 1 18 258 1
geometry 1 435 11,869 1
lnkoszt 1 52 1,121 1
minimax 1 52 1,444 1
static 1 35 460 1
szinusz 1 52 1,372 1

The first column shows the number of files that con-
stitute the test project, the second one gives the
total number of program lines, and the third col-
umn gives the size of the source code in bytes. In
the last column the number of executables that are
built from the test project is shown.

All test programs were compiled to produce the ob-
ject files and the given executable programs were
prepared by linking. These objects and the linked
executables for each of the toolchain under investi-
gation were used for measurement.

In the following for each measurement the small pro-
grams (the last 12) are treated jointly and are de-
noted by “small.”

2.3 Measurement Method

The way to measure the size of the generated code
(i.e. its compactness) is not always trivial. As obvi-
ous, we chose to investigate the final binary machine
code (instead of, for example, the assembly code).

Objects and executables. The granularity of
the code was a further aspect: should we measure
the function sizes individually, the object code for

a complete compilation unit, or investigate the size
of the linked executable? In this paper we present
the results for the latter two because in certain en-
vironments both can be interesting. When we com-
pare the object sizes the effectiveness of the com-
piler proper is actually compared,1 while in the sec-
ond case the whole compiler toolchain is assessed
including the compiler, the linker and libraries as
well. This is because the size of a linked program
depends on the size of the libraries and also how
they are processed by the linker. Hence, in this pa-
per we mostly rely on comparing objects which is
more informative with regard to a compiler’s opti-
mization capability for space.

In order to get the best possible results when mea-
suring executables, we also built the libraries of
GCC toolchains with the same flags as the test
sources. With the libraries of the two non-free com-
pilers we were not able to do the same.

Standalone and Linux programs. Another di-
mension of the categorization we investigated was
both kinds of targets: standalone executables (i.e.
for without an operating system) and executables
built for a specific operating system (in our case
GNU/Linux). Although the same compiler is used
with the same settings, the resulted binaries gen-
erally contain several notable differences: a few in
the case of objects and a significant difference with
executables. These are mostly due to different ex-
ecutable production and to the fact that different
runtime libraries are used for the two cases (i.e. in
the case of GCC, newlib and glibc).

One would expect that with objects there should be
no difference at all. However, some minor impact of
the library is still noticeable. The library headers
should contain the same standard prototypes (e.g.
standard functions), but the difference comes from
the different implementation of some features. For
example, some standard names can be implemented
using macros and function calls as well.

Clearly, then, measuring the size of the executables
incorporates a much greater impact of the library
code. It is apparently measurable on standalone
executables. However, the situation becomes more
complicated when we investigate executables built

1Note, that the library implementation still has a mini-

mal impact on the object sizes because of the library head-

ers, which are also translated by the compiler. Consider for

example, that macros can be used to implement function-like

behavior.



for Linux. The reason for this is that Linux exe-
cutables do not embed the library code, but they
maintain only references to the so-called shared ob-
jects, which are linked at runtime. (Even if static
linking is used some functionality will still be im-
plemented in the operating system rather than the
executable.) We present some results for Linux ex-
ecutables in Section 5.

Sections. Another problem was deciding which
parts of the generated files we should take into ac-
count (obviously the size of the binary file is not
relevant because of various headers, etc.). The gen-
erated program code consists of many parts; instruc-
tions, data and so on, which are generally separate
in a binary file (in the sections). However, in many
cases these parts can be intermixed (e.g. executable
code can contain embedded data). In addition, sev-
eral other sections are generally also put into the
binary file, which are of no interest with respect to
the size of the code. These include the debug sec-
tions, symbol tables, etc.

The different types of object files (elf and coff) can
have different kinds of sections and, what is more,
the different compilers may use various strategies
for laying out code and data into sections. More
specifically, different compilers may split some code
into several sections, or put other things together in
one section. For example, elf files contain one (or
more) initialized read-write data section(s), while
coff files contain program code that will initialize
the data at runtime. So no common handling could
be used and the combination of the sections to be
incorporated in the measurements needed to be de-
termined separately for each toolchain.

In each case we summarized the size of only those
sections that contains generated code that is di-
rectly used by the program. These are the sections
that contain executable code and constant- or ini-
tialized read-write program data. Note, however,
that executable code and constant data cannot al-
ways be clearly separated (there are constant data
items which are “hidden” in the executable code) so
we handle them together during the comparison.

We experimented with two kinds of section combi-
nations: (1) the size of sections containing program
code or constant data (referred to as “read-only sec-
tions”) and (2) the size of sections that contain any
kind of program data, which also includes read-write
data (referred to as “all sections”). We decided to
follow the second approach because it seemed to be

the most reasonable because of the above-mentioned
various types of handling of initialized read-write
data.

Measurement tools. When assessing both the
object and executable sizes the elf and coff files
needed to be investigated. To this end different
methods for extracting the section sizes were em-
ployed because of the different binary formats. The
program size (part of binutils) is a suitable tool for
extracting the size of the mentioned sections from
elf files. We were unaware of any similar tool for
coff files. The program coffdump extracts the sizes
of the sections from coff files, but not in a summa-
rized form. Fortunately, all coff files contain al-
most the same sections and have the same names.
We examined what kind of data was contained in
the sections, and counted the required sizes by hand.
(Fortunately, only one of the non-free compilers uses
this format, with all other toolchains including GCC
we were able to extract code sizes automatically.)

Execution. The measurement environment is ca-
pable for executing the built programs using a sim-
ulator for standalone programs and an ARM-based
hardware device with Linux system for Linux bina-
ries. We ran the programs and checked their out-
puts for validating the compiler toolchain with com-
ponents of different versions, and for verifying the
correctness of various compiler option combinations.
Throughout our measurements only those configu-
rations were used that produced correct and running
programs.

3 Compiler and Linker Options

With each toolchain investigated we sought to find
the best possible combination of options with re-
spect to code size. In general, compilers provide
a special optimization option that instructs them
to optimize for space rather than for speed. With
GCC, this option is the switch called -Os.

3.1 Best Options for Space in GCC

Commonly, -Os is used internally in GCC to enable
or disable certain optimization algorithms, but gen-
erally any part of the compiler proper can depend
on this option and perform differently when space is



the concern. However, there are a number of other
compiler options (mostly related to optimization)
which have a notable effect on the size of the gen-
erated code. By experimenting with these options
we found that -Os alone does not produce the mini-
mal code for our testbed. Hence we determined the
combination of options on top of -Os, which proved
to be the best on our testbed.2

The following table summarizes the final choice
of options, which we used in all our trials (ex-
cept where mentioned otherwise). (Note, that
some of these are implicitly enabled or disabled by
-Os,3 therefore we supply the options later in the
command-line so that they will be overridden.)

Compiler Option 3.2 3.3

-Os yes yes
-mno-apcs-frame yes yes
-fomit-frame-pointer yes yes
-ffunction-sections yes yes
-fdata-sections yes yes
-fno-force-mem yes yes
-fno-force-addr yes yes
-fno-inline-functions yes yes
-fnew-ra no yes
-fbranch-probabilities yes yes
-finline-limit=1 yes yes
-fno-schedule-insns yes yes
-fno-optimize-sibling-calls yes yes
-fno-if-conversion no yes
-fno-thread-jumps yes yes
-fno-hosted yes yes

Some options were not available in GCC 3.2 releases,

2One option belongs to this set if it produces an overall

gain with respect to the default -Os, so it may happen that

in some cases it performs worse. It may also happen that

one option combined with another one degrades the overall

result, but of course, we could not try every combination of

the options available.
3This is the list taken from the GCC 3.3 sources:

-falign-functions -falign-jumps -falign-labels

-falign-loops -fbranch-probabilities -fcaller-saves

-fcprop-registers -fcrossjumping -fcse-follow-jumps

-fcse-skip-blocks -fdefer-pop

-fdelete-null-pointer-checks

-fexpensive-optimizations -fforce-mem -fgcse

-fif-conversion -fif-conversion2 -floop-optimize

-fno-merge-constants -fno-reorder-blocks

-foptimize-sibling-calls -fpeephole2 -fregmove

-freorder-blocks -freorder-functions

-frerun-cse-after-loop -frerun-loop-opt

-fstrength-reduce -fstrict-aliasing -fthread-jumps

options that depend on a define: -fdelayed-branch

-fomit-frame-pointer -fschedule-insns

-fschedule-insns-after-reload.

evidently they were left out in the cases when this
release was measured. We will use the notation opt-

1 for the best options for 3.2.2 and opt-2 for the best
options for 3.3.

The option -mno-apcs-frame is specific to the
ARM target. We also used another ARM-specific
option -mno-thumb-interwork to tell the compiler
that we were generating for just 32-bit ARM in-
struction set.

Two interesting options are -ffunction-sections

and -fdata-sections which generate only one
function/data per section and this helps the linker
to omit the unused functions/data from the exe-
cutable. Generally speaking, they do not influence
the object sizes, but the executables may become
smaller.

Another notable option is -fno-inline-functions
which disables the automatic inlining of GCC. In
general, automatic inlining performs very badly
with respect to code size and it could be made more
intelligent.

The linker also has a number of options that were
worth experimenting with. We determined the
following combination which produced an overall
smaller code than the default:

Linker Option

-O 2

--gc-sections

--relax

--no-whole-archive

The options listed above produced, on our testbed,
an overall improvement in code size of 4.78% with
respect to using only -Os. Figure 1 shows the results
separately for each program. To obtain the rele-
vant data we used the GCC 3.3 snapshot with only
-Os turned on and compared it to the same com-
piler with additional options from the table above
(average object sizes of test projects in standalone
target). The total sizes of the test projects is given
with the project’s name in bytes.

We can see from the above plot that every test pro-
gram has benefited from these options, especially
the bigger ones (except flex, which is probably
due to the fact that it contains uncommonly large
amount of data).

In Section 5 we present some data which shows that
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Figure 1: The effect of additional compiler options

a marked improvement in library size can also be
achieved using this options set.

Due to the above results we propose to add these
to the default operation of -Os in future releases of
GCC (at least for the ARM target).

3.2 Other Optimization Options

There are high number of optimization options
(starting in -f) in GCC that can be given on
command-line (170+). Most of them have a binary
state and so a corresponding -fno-XXX is also nor-
mally present. We examined all available options
in GCC 3.3 but of course, we could not try all of
the possible combinations, so we followed a simple
approach in that an option (both the enabling and
disabling versions) was added to the list of good op-
tions if it brought improvement over the default -Os.
An individual option was tried separately from the
others rather than by cumulating them. The final
result is given in the previous section.

Many of the investigated options had some prob-
lems or did not yield improvements and hence they
were ignored. In the following we categorize these
options rather than listing them all (they can be
found in the GCC manual). Those options that are
not mentioned here did not improve the code (the
correctness of the output was not verified either).

Combined use. The following options separately
produced certain improvements, but their combined
effect was not better on average: -ffast-math

-ffreestanding -fno-builtin -fno-inline

-fno-sched-interblock -fno-sched-spec

-fsched-spec-load -fvolatile-static.

Parameterized options. For this work we were
not able to include the investigation of those options
that accept some parameters (i.e. not a binary).
This parameter is generally a number but in some
cases it can be a string. We only investigated
-finline-limit=number which showed a minor
improvement. The following options were left with
their default settings: -falign-functions=number
-falign-labels=number

-falign-loops=number -falign-jumps=number

-fcall-used-number -fcall-saved-number

-fdiagnostics-show-location=string

-ffixed-number -fmessage-length=number

-fsched-verbose=number

-fstack-limit-register=number

-fstack-limit-symbol=string

-ftls-model=number .

Invalid generated code. The options listed
here always produced smaller code, but these
codes could not be correctly executed on GCC 3.3:
-fshort-double -fsingle-precision-constant

-funsafe-math-optimizations. These should be
investigated for possible bugs in GCC.

Irrelevant option. Some options are either not
implemented in GCC 3.3 or they did produce some
extremely small code. These are the following:
-fallow-single-precision -fcall-saved

-fcall-used -fconstant-string-class

-fdiagnostics-show-location

-fdump-tree -ffixed -finline-functions

-finline-limit -finstrument-functions

-fleading-underscore -fmessage-length

-fno-allow-single-precision

-fno-call-saved -fno-call-used

-fno-constant-string-class

-fno-diagnostics-show-location

-fno-dump-class-hierarchy

-fno-dump-translation-unit -fno-dump-tree

-fno-fixed -fno-function-sections

-fno-inline-limit -fno-message-length

-fno-pretend-float -fno-sched-verbose

-fno-stack-limit-register

-fno-stack-limit-symbol -fno-tabstop

-fno-template-depth -fpreprocessed

-fpretend-float -fprofile

-fprofile-arcs -fsched-verbose

-fshort-enums -fssa -fstack-limit

-fstack-limit -fstack-limit-register

-fstack-limit-symbol -fsyntax-only

-ftabstop -ftemplate-depth.



4 Compiler and Toolchain Compar-

isons

In this section we present the results of a compari-
son of the sizes of objects and executables of GCC
configured for a standalone target with two non-free
compilers. The two compilers shall remain anony-
mous, which will be referred to as Compiler 1 and
Compiler 2. In both cases the best configuration of
compiler options was used for code size. In the dia-
grams opt-1 denotes the best options for GCC 3.2.2
and opt-2 the best options for 3.3.

A comparison of objects is more informative with
regard to a compiler’s optimization capability for
space, because in this case no pre-generated code of
libraries or startup routines are included.

All sizes comprise of the program section sizes (as
described in Section 2.3), and we present these in
a relative form: with respect to GCC 3.3 snapshot
with our option-set (elaborated in Section 3).

4.1 Compiler Results on Objects

In Figure 2 the average achievement of the C com-
pilers is shown in terms of object size. The values
are computed as the sum of the sizes of all objects
of the test programs, and are shown as relative to
GCC.
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Figure 2: Average compiler results for objects

As can be seen, Compiler 1 provides the best results
and Compiler 2 is still better than GCC. The gain
in size achieved by Compiler 1 is 11.48% and 1.83%
by Compiler 2 relative to the size of the objects
compiled with GCC.

The same measurement is shown in more detail in
Figure 3. It shows the effect of the C compilers sep-
arately for the different test programs. The sizes of
the objects are summarized per test project (which
is shown in parentheses after the project name at
the bottom of the diagram in bytes).
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Figure 3: Individual compiler results for objects

The optimization capabilities of the compilers seems
to be similar for each test project: Compiler 1 pro-
duces the smallest code; the sizes of the result of
Compiler 2 are between the sizes of the output of
Compiler 1 and GCC.

4.2 Toolchain Results on Executables

We also investigated the difference in the generated
code size of the executable files using the same en-
vironment and options as for the objects. We per-
formed this comparison for standalone executable
images, which means that apart from the applica-
tion objects, the library code and the effectiveness
of the linker is also incorporated in these number.

In Figure 4 the average result of executable sizes is
shown. We computed the average values in the same
way as for the objects, so they are simple sums of the
program section sizes in the executables. Relative
values are shown as well with respect to GCC.

We can observe that the ranking of the toolchains
regarding code size in this comparison has not
changed with respect to investigating only the com-
pilers. The differences are, at the same time, more
significant than in the case of objects comparison
(about twice as much). Apparently, the reason for
this is twofold: the tools use different implementa-
tions of standard C runtime libraries and the link-
ers may also behave differently. It is an open ques-
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tion whether the difference in the libraries causes a
bigger difference or it is the linker that is respon-
sible (e.g. by performing different optimizations at
link time). Whatever the case, the comparison of
the executables is not as a good measure of the
toolchains as a comparison of the objects is a mea-
sure of the compilers, because the implementation
of the libraries is also an important factor, which is
included in the result.

In Figure 5 the same measurement is shown in more
detail individually for the various executables. The
sizes of the executables are summarized per test
project (which is shown in parentheses after the
executable name at the bottom of the diagram in
bytes).
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Figure 5: Individual toolchain results for executa-
bles

As can be seen, the ranking of the three toolchains
does not always show the same order as in the aver-
age case, but we can see that Compiler 1 is still in all
but one cases much better than GCC. Compiler 2

produced both the worse and the best results: there
are cases when this tool had the largest code, but
there are also cases where it seems to be the best
tool.

5 Results for Linux Libraries

Apart from using as a cross-compiler generating
standalone executable images, GCC is also widely
used to generate programs for GNU/Linux. Hence
we thought that it would be a good idea to inves-
tigate the sizes of the generated objects and ex-
ecutables in this case as well. In these experi-
ments we used a GCC compiler configured for the
arm-linux-elf target with the same environment
and compiler options as for the standalone target
(the only exception being that we needed to omit
the -ffunction-sections option of GCC because
it caused some problems when executing the pro-
grams on a Linux system). In this case we employed
the commonly used GNU library glibc [2].

The Linux executables are not comparable with a
standalone configuration (namely, with the GCC
arm-unknown-elf target or with the two non-free
compilers). This is because Linux uses shared ob-
jects that are linked at runtime to the executable
(see Section 2.3). Nevertheless, objects should be
comparable. Our results showed that the objects for
Linux target have a smaller code size than objects
for standalone target (by 8.35% with GCC 3.2.2 on
our testbed). By examining the compiled objects we
found that the size differences were primarily due to
the different implementation of the library headers.

5.1 glibc vs. µClibc

Alas we could not find any other compiler toolchain
(either free or non-free) that was able to generate for
Linux target. Only the µClibc toolchain [7] could
serve as a comparison basis. However it also uses
the GCC compiler, so it really compares two imple-
mentations of the standard C runtime libraries.

We performed all measurements on the testbed and
investigated the sizes of the objects and executa-
bles as well. We used GCC version 3.2.2 because
the later versions (3.3 snapshots and the active de-
velopment 3.4) are not supported by µClibc. With
glibc- and µClibc-based toolchains we used the same
compiler options that we found to be best for size
with the standalone target (as described in Section
3). It is interesting to note that compiling the li-
braries using our combination of options brought a
significant improvement in library size with respect
to the default settings: 3.22% for glibc and 2.04%



for µClibc (computed for shared object binaries and
not for static libraries).

An interesting observation was that the µClibc
toolchain generally produces a slightly larger code
size (1 or 2% at most) than GCC with glibc. We
do not present the actual results here. Rather it is
more interesting to look at the difference in the sizes
of the actual libraries.

We measured the total code section sizes for all the
generated library files. On average the µClibc li-
brary was smaller by 80.58% (1.94MB vs. 0.38MB)
for the shared object binaries, and was smaller by
59.49% (1.59MB vs. 0.64MB) for static libraries
counting simply the sum of all sections in all of the
library files.

6 Conclusion : Improvements and

Limitations

Assessing a compiler’s effectiveness in optimizing for
space poses a number of difficulties. Based on our
measurement results presented in previous sections,
we can say that the most reliable way is to com-
pare the section sizes containing program code and
data in objects rather than executables. This is be-
cause the implementation of the libraries is also an
important factor: all tools work with their own im-
plementation, and this difference is also included in
the result.

We managed to narrow the gap between a high-
performance non-free compiler and GCC 3.3 using
our own set of compiler options from 15.71% to
11.48% measured on objects for a standalone target.
However, this number is nearly double when we con-
sider executables. This suggests that not only GCC
needs improvement, but the associated libraries as
well (in this case newlib).

Things get more complicated if we wish to compare
toolchains configured for Linux target and not for
standalone. This is because Linux uses shared ob-
jects that are linked at runtime. In this case the
only reasonable thing is to measure the size of the
corresponding libraries. For example, we found that
the total size of µClibc,—an alternative library to
glibc—is far less than glibc (only one fifth).

6.1 Improvement of Prerelease 3.3

In the previous sections we presented the results of
measurements with the latest snapshot of GCC 3.3
version. We performed the same experiments with
version 3.2.2 as well (which is the last official release
at the time of writing) and found that prerelease
3.3 has improved slightly in terms of optimizing for
space. In this section we summarize the results of
our measurements of what are the exact improve-
ments.

The average difference between object sizes gener-
ated by GCC 3.2.2 and the 3.3 snapshot configured
for standalone (with newlib) is only 0.31%. With
both configurations we used the best compiler op-
tions, where some options are new to 3.3 and there-
fore not present in measurements with 3.2.2 (see
Section 3). Figure 6 shows the same separately for
each program of the testbed.
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Figure 6: Improvement of GCC 3.3

Overall, no extraordinary improvement can be seen
from this diagram and, in fact, the biggest program
even shows that the older GCC generates smaller
code. The difference is slightly larger in the case
of executables; (it is 1.86% on average measured
under the same conditions as for objects), which
can also be attributed to the library code which is
incorporated into the executable.

We also investigated the amount of improvement
that can be achieved with Linux libraries. We pre-
pared the glibc binaries using GCC 3.2.2 and 3.3
snapshot using the best options and found that
with the new version the library was 0.95% smaller,
which is similar to what we got for object sizes
above. Figure 7 shows this improvement for each
library component.
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Figure 7: Improvement of GCC 3.3 measured on
glibc

We made some investigations to found out what en-
hancements in GCC 3.3 caused this improvement in
code size. There are a number of minor issues that
could probably account for this, like some smaller
optimizer improvements and target specific opti-
mizations. However, we think that the major factor
was the introduction of the new register allocation
algorithm. In fact, by disabling -fnew-ra in GCC
3.3, the difference of 0.31% between 3.2.2 and 3.3
using the best options disappears and GCC 3.3 be-
comes to produce larger code by 0.29% on average!

6.2 Remaining Problems

By looking at the generated code in more depth,
we managed to identify several weakpoints of GCC
that could be improved in order to generate a more
compact code. Another group of issues addresses
GCC’s limitations that are due to its architecture
and logic of compilation. Some of them may not be
solved or at least with very high effort. In the fol-
lowing we summarize the main issues for providing
some starting point to future improvements.

Unit at a time compilation. GCC generally
translates one function at a time and therefore it
misses the opportunity of performing such optimiza-
tions that rely on seeing all functions of a compila-
tion unit at the same time. With version 3.4 there
was recently added the possibility for unit at a time
compilation, but its utilization in optimization has
not yet been fully achieved. If this feature is fully
implemented in GCC, it would enable, for exam-
ple, the sharing of global variables, the elimination
of unused static functions, and the sharing of com-
mon data among functions (when the function-per-

section option is not used).

More intelligent -Os. Generally, when -Os is
turned on it means -O2 with some additional op-
timization algorithms being implicitly enabled. In
addition, any part of GCC can check for the state of
this option. However, the semantics of this option
could be further improved. First, a more careful se-
lection of algorithms that need to be enabled could
be implemented, similar to those proposed in Sec-
tion 3. This could be further enhanced using the
possibility for target-specific configuration of this
switch. Furthermore, if -Os could act as an orthog-
onal option to other levels of optimization, it would
offer for an even more flexible configuration.

Interprocedural optimizations. Due to the
above-mentioned missing unit at a time compila-
tion, no interprocedural optimization algorithms
could be used. A number of existing algorithms
could be extended to interprocedural operation,
which would undoubtedly produce significant im-
provement, e.g. interprocedural dead-code elimina-
tion and redundant code elimination [1, 5]. Even
some evidently redundant code constructs are cur-
rently generated by GCC. Consider, for example,
the following code and notice that the call to func-
tion foo will be superfluously generated:

int a,b;

int foo(int x) { return x; }

void bar() {

a = 1;

b = foo(a);

}

Minor optimization issues. Here we list several
minor issues that are related to some optimization
algorithm (or are possibly specific for ARM target).

• The organization of loops is sometimes too
complicated with redundant condition checking
at higher optimization levels.

• The organization of the generated code for the
switch statement can be made more optimal,
especially when jump tables are used.

• RTL code generation from trees can be made
more optimal than that for the current näıve
preorder walk.

• Automatic function inlining does not seem to
take into account when code size is the ob-



jective rather than speed. In this case only
those functions should be inlined, which pro-
duce smaller code than calling the function.

• In ARM target, multiple variable load and save
instruction are generated only for simple cases.

Library issues. Although the inadequacies of li-
brary implementations are not the subject of this ar-
ticle, we would like to remind the reader of the fact
that the library headers indeed have some impact on
the size of the generated code, which we elaborate in
Section 2.3. Another interesting observation of ours
was that a lot of space could be saved if some opera-
tors could be implemented by a library function call.
For example, if integer division and modulo opera-
tors (/ and %) would have a corresponding library
function then for targets where these operations are
not part of the instruction set, a simple call would
be generated instead of the inline implementation of
the division. Naturally, this would require that all
library implementations provide such builtin func-
tions for certain commonly-used operators.

6.3 Conclusion

We have seen that GCC is getting better and bet-
ter with regard to code size. The latest version
3.3 (using an optimal combination of options) is
only 11.48% worse than a high-performance non-
free compiler. In Figure 8 we summarize the results
of our measurements.

5.89%

82.15%

11.96%

GCC-3.2.2 (-Os) to
GCC-3.3 (-Os)
GCC-3.3 (-Os) to
GCC-3.3 (opt-1)
GCC-3.3 (opt-1) to
GCC-3.3 (opt-2)

Figure 8: Summary of improvements

In this diagram we can observe (1) how much im-
provement version 3.3 brings with -Os only (0.3%),
(2) the effect of a combination of options that we
suggest over -Os measured on GCC 3.3 (4.15%) and
(3) the effect of some new algorithms in GCC 3.3
(0.61%). These three constitute the total difference
of 5.06% between GCC 3.2.2 with -Os and GCC 3.3
with opt-2.

Nevertheless there still are a number of issues—
which we summarized in the previous section—that
could make GCC’s capabilities of optimization for
space even better and this way shift its mainly aca-
demic use nowdays towards industry environments
to become a serious competition to non-free com-
mercial compilers.

7 Availability

The present document and related information in-
cluding complete measurement data are available at

http://gcc.rgai.hu/docs.php

The homepage http://gcc.rgai.hu/ aims to col-
lect and maintain references to official GCC pages
in connection with the ARM port.
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