
Object-Oriented Reengineering: Patterns and Techniques

Serge Demeyer
University of Antwerp, Lab On REengineering (LORE)

http://www.lore.ua.ac.be/

St́ephane Ducasse, Oscar Nierstrasz
University of Berne, Software Composition Group (SCG)

http://www.iam.unibe.ch/ ducasse/

Abstract

Surprising as it may seem, many of the early adopters
of the object-oriented paradigm already face a number of
problems typically encountered in large-scale legacy sys-
tems. Software engineers are now confronted with millions
of lines of industrial source code, developed using object-
oriented design methods and languages of the late 80s and
early 90s. These systems exhibit a range of problems, effec-
tively preventing them from satisfying the evolving require-
ments imposed by their customers.

This tutorial will share our knowledge concerning the
reengineering of object-oriented legacy systems. We will
draw upon our experiences, to show you techniques and
tools we have applied on real industrial OO systems to
detect and repair problems. In particular, we will discuss
issues like reverse engineering, design extraction, metrics,
refactoring and program visualisation.

1. Introduction

Once upon a time there was a Good Software En-
gineer whose Customers knew exactly what they
wanted. The Good Software Engineer worked
very hard to design the Perfect System that would
solve all the Customers’ problems now and for
decades. When the Perfect System was designed,
implemented and finally deployed, the Customers
were very happy indeed. The Maintainer of the
System had very little to do to keep the Perfect
System up and running, and the Customers and
the Maintainer lived happily every after.

Why isn’t real life more like this fairy tale? Could it be
because there are no Good Software Engineers? Could it be
because the Users don’t really know what they want? Or is
it because the Perfect System doesn’t exist?

Maybe there is a bit of truth in all of these observations,
but the real reasons probably have more to do with certain
fundamental laws of software evolution identified several
years ago by Manny Lehman and Les Belady. The two most
striking of these laws are:

The Law of Continuing Change: A program that is used
in a real-world environment must change, or become
progressively less useful in that environment.

The Law of Increasing Complexity: As a program
evolves, it becomes more complex, and extra re-
sources are needed to preserve and simplify its
structure.

In other words, we are kidding ourselves if we think that
we can know all the requirements and build the perfect sys-
tem. The best we can hope for is to build a useful system
that will survive long enough for it to be asked to do some-
thing new.

2 What is this tutorial ?

This tutorial (and the accompanying book) came into be-
ing as a consequence of the realization that the most inter-
esting and challenging side of software engineering may not
be building brand new software systems, but rejuvenating
existing ones.

From November 1996 to December 1999, we partic-
ipated in a European industrial research project called
FAMOOS (ESPRIT Project 21975 – Framework-based Ap-
proach for Mastering Object-Oriented Software Evolution).
The partners were Nokia (Finland), Daimler-Benz (Ger-
many), Sema Group (Spain), Forschungszentrum Infor-
matik Karlsruhe (Germany), and the University of Berne
(Switzerland). Nokia and Daimler-Benz were both early
adopters of object-oriented technology, and had expected
to reap significant benefits from this tactic. Now, however,

1



they were experiencing many of the typical problems of
legacy systems: they had very large, very valuable, object-
oriented software systems that were very difficult to adapt to
changing requirements. The goal of the FAMOOS project
was to develop tools and techniques to rejuvenate these
object-oriented legacy systems so they would continue to
be useful and would be more amenable to future changes in
requirements.

Our idea at the start of the project was to convert these
big, object-oriented applications into frameworks – generic
applications that can be easily reconfigured using a variety
of different programming techniques. We quickly discov-
ered, however, that this was easier said than done. Although
the basic idea was sound, it is not so easy to determine
which parts of the legacy system should be converted, and
exactly how to convert them. In fact, it is a non-trivial prob-
lem just to understand the legacy system in the first place,
let alone figuring out what (if anything) is wrong with it.

We learned many things from this project. We learned
that, for the most part, the legacy code was not bad at all.
The only reason that there were problems with the legacy
code was that the requirements had changed since the orig-
inal system was designed and deployed. Systems that had
been adapted many times to changing requirements suffered
from design drift – the original architecture and design was
almost impossible to recognize – and that made it almost
impossible to make further adaptations, exactly as predicted
by Lehman and Belady’s laws of software evolution.

Most surprising to us, however, was the fact that, al-
though each of the case studies we looked at needed to
be reengineered for very different reasons – such as un-
bundling, scaling up requirements, porting to new environ-
ments, and so on – the actual technical problems with these
systems were oddly similar. This suggested to us that per-
haps a few simple techniques could go a long way to fixing
some of the more common problems.

We discovered that pretty well all reengineering activity
must start with some reverse engineering, since you will not
be able to trust the documentation (if you are lucky enough
to have some). Basically you can analyze the source code,
run the system, and interview users and developers to build
a model of the legacy system. Then you must determine
what are the obstacles to further progress, and fix them.
This is the essence of reengineering, which seeks to trans-
form a legacy system into the system you would have built
if you had the luxury of hindsight and could have known all
the new requirements that you know today. But since you
can’t afford to rebuild everything, you must cut corners and
just reengineer the most critical parts.

Since FAMOOS, we have been involved in many other
reengineering projects, and have been able to further vali-
date and refine the results of FAMOOS.

In this tutorial we summarize what we learned in the

hope that it will help others who need to reengineer object-
oriented systems. We do not pretend to have all the answers,
but we have identified a series of simple techniques that will
take you a long way.

3 Why patterns?

A pattern is a recurring motif, an event or structure that
occurs over and over again. Design patterns are generic so-
lutions to recurring design problems. It is because these de-
sign problems are never exactly alike, but only very similar,
that the solutions are not pieces of software, but documents
that communicate best practice.

Patterns have emerged in recent years as a literary form
that can be used to document best practice in solving many
different kinds of problems. Although many kinds of prob-
lems and solutions can be cast as patterns, they can be
overkill when applied to the simplest kinds of problems.
Patterns as a form of documentation are most useful and in-
teresting when the problem being considered entails a num-
ber of conflicting forces, and the solution described entails
a number of tradeoffs. Many well-known design patterns,
for example, introduce run-time flexibility at the cost of in-
creased design complexity.

This tutorial explains a catalogue of patterns for reverse
engineering and reengineering legacy systems. None of
these patterns should be applied blindly. Each patterns re-
solves some forces and involves some tradeoffs. Under-
standing these tradeoffs is essential to successfully apply-
ing the patterns. As a consequence the pattern form seems
to be the most natural way to document the best practices
we identified in the course of our reengineering projects.

We do not pretend that our catalogue of patterns is ”com-
plete“ in any sense, and we do not even pretend to have
patterns that cover all aspects of reengineering. We cer-
tainly do not pretend that these patterns represents a system-
atic method for object-oriented reengineering. What we do
claim is simply to have encountered and identified a number
of best practices that exhibit interesting synergies. And by
catalogueing them, we hope to help reengineers all over the
world in their daily struggle to revive their legacy systems.

2


