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Abstract. Recent results demonstrate the practical advantages of the
Body-Centered Cubic (BCC) lattice for regular sampling and the appli-
cation of different spline filters for reconstructing an originally continuous
signal from its discrete BCC-sampled representation. In order to study
the frequency-domain behavior of these filters, a 3D analysis of their fre-
quency responses is required. In our work, we apply direct volume render-
ing as a natural tool for such a 3D analysis. As the frequency responses
are analytically known, their characteristic isosurfaces can be rendered
separately in the pass band and in the stop band. The visualization of the
frequency responses conveys information not just on the absolute postal-
iasing and oversmoothing effects, but also on their direction dependence.
In this paper, we thoroughly study the frequency-domain behavior of the
non-separable box splines, the non-separable DC-splines, and the tensor-
product B-splines on the BCC lattice. In addition, we also analyze how
the frequency responses are influenced by a discrete prefiltering, which
is necessary to fully exploit the approximation power of the higher-order
reconstruction filters.

1 Introduction

In volume-rendering applications, the input data is usually a discrete representa-
tion of a continuous phenomenon. In order to faithfully visualize the underlying
continuous function, it has to be accurately reconstructed from its discrete sam-
ples. If the volumetric data is acquired by regular sampling on a specific lattice,
the reconstruction can be easily performed by a convolution filtering. An appro-
priate choice of the filter kernel is of crucial importance as it directly determines
the quality of the rendered images. Visual artifacts are often introduced because
of the imperfect frequency-domain behavior of the applied filter [18]. Theoreti-
cally, an ideal low-pass filter can perfectly reconstruct a band-limited signal if it
is sampled above the Nyquist limit [22]. The Fourier transform of such an ideal
filter is a characteristic function that takes a value of one in the pass band, and
a value of zero in the stop band. If the original signal is not band-limited or
not sufficiently sampled, which is often the case in practice, the ideal low-pass
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filter might result in ringing artifacts [18]. This prealiasing effect is caused by
the drastic cut-off in the frequency domain. Ringing can be avoided by using
practical filters that ensure a smooth transition between the pass band and the
stop band. However, the energy of the filter in the stop band still needs to be as
low as possible to reduce postaliasing effects.

For the Cartesian Cubic (CC) lattice, reconstruction filters are usually de-
signed in 1D and extended to 3D by using a separable tensor-product exten-
sion [20, 21]. Therefore, it is sufficient to analyze the frequency-domain behavior
just in 1D based on frequency plots [1, 7]. This approach, however, is not feasible
for the optimal BCC lattice, since the advantageous properties of a 1D filter are
not necessarily inherited in 3D if its separable extension is used on the non-
separable BCC lattice. Furthermore, when a signal is sampled on a BCC lattice,
its spectrum is replicated around the points of the dual Face-Centered Cubic
(FCC) lattice [13], which is not separable either. Therefore, a 3D frequency-
domain analysis is really necessary to study how much the aliasing spectra con-
tribute to the reconstructed signal if a given filter kernel is applied.

The contributions of this paper are the following:

– We thoroughly analyze the frequency-domain behavior of the box spline [16],
the DC-spline [12], and the B-spline [11] filters proposed for the BCC lattice.
Previously, the frequency responses usually have been studied based on only
2D cross-sectional slices [8]. In contrast, we render the frequency responses
by direct volume rendering [10]. Therefore, we can identify the preferred
directions of a given filter based on the 3D distribution of its spectrum.

– We validate the results of our 3D frequency-domain analysis by rendering an
appropriate BCC-sampled test signal [18]. We demonstrate that the postal-
iasing effect is indeed minimal along the preferred directions identified in the
rendered frequency responses.

– We confirm that on the BCC lattice, the box splines perform better in the
pass band, the B-splines ensure better stop-band behavior, while regarding
the direction dependence, DC-splines make a compromise between the box
spline and the B-spline filters. For the sake of fair comparison, we use recently
proposed discrete prefilters for quasi-interpolation [8, 12, 14] that fully exploit
the approximation powers of the proposed reconstruction filters.

2 Related Work

The optimal BCC lattice was first used for volume rendering by Theußl et al. [25].
However, they applied the splatting technique with spherical filters that resulted
in rather blurry images. Mattausch [19] studied several practical reconstruction
schemes for the BCC lattice, but the results did not show unambiguously the
theoretical benefits of BCC sampling. For example, the sheared trilinear inter-
polation led to an anisotropic reconstruction.

The first reconstruction filters that are tailored to the geometry of the BCC
lattice were proposed by Entezari et al. [13, 16]. Their non-separable linear and
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quintic box splines provide the same approximation orders on the BCC lattice as
the trilinear and tricubic B-splines on the CC lattice, respectively. Theoretically,
the computational complexity of a box spline is lower than that of an equivalent
B-spline, since its support is more compact and its total polynomial degree is
lower. Nevertheless, this theoretical advantage cannot be exploited on the current
GPUs [17], which are rather optimized for separable filtering.

Another family of non-separable filters is represented by the BCC-splines [6]
that generalize the Hex-splines [26] for the BCC lattice. The Hex-splines were
originally proposed for the hexagonal lattice, which is optimal for sampling cir-
cularly band-limited 2D signals. The BCC-splines were evaluated by a discrete
approximation and their efficient piecewise formulas are not known yet.

Csébfalvi recommended a prefiltered Gaussian reconstruction scheme [5] ad-
apting the principle of generalized interpolation [2] to the BCC lattice. This
method was extended also to the B-spline family of filters [11]. Both the non-
separable box spline filters and the tensor-product B-spline filters have been
applied for quasi-interpolation on the BCC lattice [8, 14]. From a practical point
of view, a separable B-spline filtering can be implemented on the recent GPUs
more efficiently than a non-separable box spline filtering of the same approx-
imation order [8, 17], since the B-splines can utilize the hardware-accelerated
trilinear texture fetching [23].

Recently, Domonkos et al. [12] proposed a discrete/continuous filter family
generated by the impulse response of the BCC trilinear kernel [19, 24]. This tech-
nique is theoretically equivalent to the discrete upsampling of the BCC-sampled
volume on a higher resolution CC lattice, where the standard trilinear interpo-
lation is used for resampling. In practice, however, the missing CC samples are
calculated on the fly and not in a preprocessing. Similarly to the box spline,
B-spline, and BCC-spline families, the impulse response of the BCC trilinear in-
terpolation can also be used for generating higher-order filters by consecutively
convolving the impulse response with itself. Due to the associative property of
the convolution operator, the impulse responses of the DC-spline family members
can be factorized to a discrete filter and a continuous filter.

Although these filtering schemes have already been compared both theoret-
ically and practically [8, 10, 12, 17] it is worthwhile to analyze their frequency-
domain behavior more thoroughly. We provide a straightforward technique for a
3D frequency-domain analysis by using direct volume rendering.

3 Frequency Responses of Reconstruction Schemes for

the BCC Lattice

In this section, we review the frequency responses of the non-separable box
splines, the non-separable DC-splines, and the tensor-product B-splines. As these
reconstruction filters are usually applied on prefiltered data values [8, 12, 17], the
Fourier transforms of the discrete prefilters are also discussed. The resultant im-
pulse response of a prefiltered reconstruction is the convolution of the continuous
reconstruction filter ϕ and the discrete prefilter p. Consequently, the resultant



Analyzing Postaliasing and Smoothing Effects of Non-sep. Recon. Schemes 57

frequency response is ϕ̂(ω) · p̂(ω), where ϕ̂ and p̂ are the Fourier transforms of
ϕ and p, respectively.

3.1 Box Spline Reconstruction on the BCC Lattice

The linear box spline for the BCC lattice [16] is defined by convolving a 1D box
filter with itself along directions ξk that are defined as

Ξ = [ξ1, ξ2, ξ3, ξ4] =
1

2





1 -1 -1 1
-1 1 -1 1
-1 -1 1 1



 . (1)

Since the Fourier transform of a 1D box filter is a sinc function, and consecutive
convolutions in the spatial domain correspond to consecutive multiplications in
the frequency domain, the Fourier transform M̂Ξ of the four-directional linear
box spline MΞ is expressed as a product of four sinc terms [16]:

M̂Ξ(ω) =
4
∏

k=1

sinc(ξTk ω), (2)

where sinc(t) = sin(t/2)
t/2 . The quintic box spline MΞ2 is obtained by convolving

the linear box spline with itself; therefore, its Fourier transform is the square of
M̂Ξ(ω).

To fully exploit the approximation power of the box splines, they need to
be combined with discrete prefilters. Applying the framework of Condat and
Van De Ville [4], Csébfalvi derived an optimal discrete prefilter [8] for a quasi-
interpolating linear box spline reconstruction. The Fourier transform of this pre-
filter pMΞ

is

p̂MΞ
(ω) =

4

3
−

1

12

4
∑

k=1

cos(ξTk ω). (3)

The quintic box spline is not an interpolating filter, but it can be combined
with a discrete prefilter pM

Ξ2
that makes it interpolating [2, 9, 17]. The Fourier

transform of this prefilter [8] is p̂M
Ξ2

(ω) = 1/ŝ(ω), where

ŝ(ω) =
2

5
+

1

10

4
∑

k=1

cos(ξTk ω) +
1

15
[cos(ωx) + cos(ωy) + cos(ωz)], (4)

and ω = [ωx, ωy, ωz]
T . Note that the prefiltering is, in fact, a deconvolution that

is performed as a division by ŝ in the frequency domain.

3.2 DC-Spline Reconstruction on the BCC Lattice

The BCC lattice can be obtained from a CC lattice such that all CC lattice
points are removed where the discrete coordinates i, j, and k are neither all even
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Fig. 1. Trilinear interpolation on the
BCC lattice: The BCC lattice points
are located on the interleaved red and
blue CC lattices. The green samples are
interpolated from two BCC samples of
the same color. Inside the green cubic
cell a standard trilinear interpolation is
applied.

11

1

Fig. 2. The discrete components of the
trilinear filter for the BCC lattice. The
green sample has the value of one while
the blue samples have the value of half.
This discrete filter is responsible for
producing the missing CC samples in
an upsampled CC representation.

nor all odd numbers. The BCC trilinear interpolation reproduces these “missing
CC samples” by interpolating between the available BCC samples. The BCC
lattice can also be interpreted as two interleaved CC lattices. Figure 1 shows
two cubic cells of these interleaved CC lattices that intersect each other in a
smaller cubic cell depicted in green. The green cubic cell has only two corners
that are BCC lattice points, the others (the green dots) need to be interpolated
from two BCC samples along either red or blue edges. Afterwards, a simple
trilinear interpolation is performed inside the green cell.

The green samples are, in fact, reconstructed using a discrete filter on the
BCC lattice. This filter is shown in Figure 2. The resultant impulse response
χ1
BCC of the BCC trilinear interpolation is obtained by convolving this discrete

filter with a scaled trilinear kernel β1(2x):

χ1
BCC(x) = β1(2x) +

1

2

6
∑

k=1

β1(2(x− vk)), (5)

where

[v1,v2,v3,v4,v5,v6] =
1

2





1 -1 0 0 0 0
0 0 1 -1 0 0
0 0 0 0 1 -1



 .

Since χ1
BCC is constructed as a convolution of a discrete filter and a continuous

filter, its Fourier transform χ̂1
BCC is easy to derive by multiplying the Fourier
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transforms of these two components:

χ̂1
BCC(ω) =

[

1 + cos
(ωx

2

)

+ cos
(ωy

2

)

+ cos
(ωz

2

)]

β̂1
(ω

2

)

, (6)

where ω = [ωx, ωy, ωz]
T . The linear DC-spline filter χ1

BCC is interpolating and
also quasi-interpolating of order two by using a discrete prefilter [8, 12]:

p̂χ1

BCC
(ω) =

17

12
−

5

48

4
∑

k=1

cos(ξTk ω). (7)

Similarly to other spline families of filters, the impulse response χ1
BCC of the

BCC trilinear interpolation can also be used for generating higher-order filters
by consecutively convolving χ1

BCC with itself [12]. Thus the cubic DC-spline
χ3
BCC is defined as:

χ̂3
BCC(ω) = χ̂1

BCC(ω) · χ̂1
BCC(ω). (8)

The cubic DC-spline is non-interpolating; therefore a discrete prefiltering for
generalized interpolation is necessary to use it for interpolation [2, 8, 9, 12]. The
Fourier transform of this prefilter is p̂χ3

BCC
(ω) = 1/ŝ(ω), where

ŝ(ω) =
1

54

[35

2
+ 5c0,0,2 +

157

32
(c1,1,1 + c−1,1,1) +

1

8
c−2,0,2

+
1

4
c0,2,2 +

1

32
(c1,1,3 + c−1,1,3 + c−1,−1,3)

]

(9)

where ca,b,c =
∑

(i,j,k)∈perm(a,b,c) cos(
iωx+jωy+kωz

2 ). Additionally, the prefilter-
ing fully exploits the approximation power of the reconstruction filter, so the
prefiltered cubic DC-spline reconstruction leads to quasi-interpolation [3, 4, 9, 8]
of order four, that is, it can perfectly reproduce polynomials of at most third
degree.

3.3 B-Spline Reconstruction on the BCC Lattice

Although the tensor-product B-splines are not tailored directly to the geometry
of the BCC lattice like the linear and quintic box splines, their application on
BCC-sampled data can still be reasonable because of two reasons. First, the B-
splines show very good antialiasing properties on the BCC lattice [8]. Second, a
B-spline filtering can be efficiently implemented on the recent GPUs exploiting
that the BCC lattice consists of two interleaved CC lattices [11]. For example, in
a GPU-accelerated isosurface-rendering application, a B-spline reconstruction [8]
turned out to be four to five times faster than an optimized non-separable box
spline reconstruction [17] of the same approximation order.

The Fourier transform of the trilinear B-spline β1 is

β̂1(ω) = [sinc(ωx)sinc(ωy)sinc(ωz)]
2. (10)
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Since the tricubic B-spline β3 is the convolution of the trilinear B-spline with
itself, its Fourier transform is β̂3(ω) = β̂1(ω) · β̂1(ω).

To better fit the frequency response of the trilinear B-spline filter to the
geometry of the dual FCC lattice, an optimal discrete prefilter of Finite Impulse
Response (FIR) has been proposed [8], which guarantees a quasi-interpolation
of order two. The Fourier transform of this prefilter is

p̂β1(ω) =
5

3
−

1

6

4
∑

k=1

cos(ξTk ω). (11)

Similarly to the trilinear B-spline, the tricubic B-spline cannot be used for in-
terpolation on the BCC lattice either. Instead, it is suitable for quasi-interpolation
of order four if it is combined with a discrete prefilter pβ3 of Infinite Impulse
Response (IIR) [8]. Interestingly, the Fourier transform of this prefilter is the
square of p̂M

Ξ2
. Thus, for a quasi-interpolating tricubic B-spline reconstruction,

the same prefilter is used as for the interpolating quintic box spline reconstruc-
tion, but the prefiltering is performed twice.

4 3D Frequency-Domain Analysis

Having the analytical frequency response of a reconstruction filter known, its
oversmoothing and postaliasing effects can be analyzed. Marschner and Lobb
defined error metrics [18] for oversmoothing and postaliasing as the squared de-
viation from the ideal pass-band and stop-band behavior, respectively. However,
in 3D, these error metrics express only the absolute measures of oversmoothing
and postaliasing effects, and do not tell anything about their direction depen-
dence or 3D distribution. Therefore, a 3D analysis is necessary to better under-
stand the frequency-domain behavior of a filter, especially if it is non-separable
or applied on a non-separable lattice. Since, in case of BCC sampling, the spec-
trum of the original signal is replicated in the frequency domain around the dual
FCC lattice points, the shape of the pass band is a rhombic dodecahedron [13],
which is the Voronoi cell of the FCC lattice (see Figure 3). To analyze the over-
smoothing effect, it has to be visualized how much the frequency response of
the applied reconstruction filter differs from that of the ideal low-pass filter in
the pass band. Consequently, the postaliasing effect is analyzed by visualizing
the frequency response in the stop band. Here the energy of the filter should be
as low as possible to well approximate the ideal low-pass filter. Furthermore, it
is worthwhile to emphasize those frequency components that are closer to the
centers of the aliasing spectra, since mostly these components contribute to the
postaliasing effect. For this purpose, we will use an appropriate penalty function.

Direct volume rendering is a natural tool for visualizing an analytically known
3D frequency response. Note that the preferred directions of the spectrum can be
identified in 3D more easily than in cross-sectional 2D slices [8]. Nevertheless, the
behavior of the filter in the pass band and in the stop band cannot be separated.
First, we tried to render the spectrum using different colors inside and outside the
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2p

2p

-2p

-2p

Fig. 3. The pass band corresponding
to BCC sampling is the Voronoi cell of
the dual FCC lattice, which is a rhom-
bic dodecahedron. The red dots depict
the first nearest neighbors, whereas the
blue dots depict the second nearest
neighbors.

vanishing

Filter
approx. moments

order 1st 2nd

linear box spline 2 2 4
quintic box spline 4 4 8

linear DC-spline 2 2 2
cubic DC-spline 4 4 4

trilinear B-spline 2 4 2
tricubic B-spline 4 8 4

Fig. 4. Approximation orders and the
number of vanishing moments (the or-
der of zero crossings) of different spline
filters at the nearest and second nearest
lattice points in the dual FCC lattice
points.

pass band. This approach, however, was not informative when the filter had high
energy in the stop band, since in this case the pass band often became almost
completely hidden. Therefore, we decided to separately render the spectrum in
the pass band and in the stop band. This is favorable regarding also the transfer
function specification, which requires different parameter tuning for analyzing
the oversmoothing and postaliasing effects.

4.1 Postaliasing

In order to visualize the stop-band behavior, we used a two-step opacity trans-
fer function t(r(ϕ̂)). Function r, which maps a frequency response ϕ̂(ω) to

r(ϕ̂(ω)) = |ϕ̂(ω)|
1

6 , is responsible for making even the low-intensity parts of
the spectrum visible. Function t, which enhances a characteristic isosurface of
the frequency response, is defined as follows:

t(r) =

{

1
2 [1− (1− 2r)

1

8 ] if 0 ≤ r ≤ 1
2

1
2 [1 + (2r − 1)

1

8 ] if 1
2 < r ≤ 1.

(12)

To emphasize the aliasing frequencies especially in the vicinity of the dual
FCC lattice points, we used the following penalty function:

w(ω) =

(

1

2
+

1

8

4
∑

k=1

cos(ξTk ω)

)2

. (13)

Note that w is periodic on the FCC lattice and takes its maximum at the lattice
points. Getting far from the lattice points, w is monotonically decreasing.
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Figure 5 shows the frequency responses in the stop band weighted by w.
The images show the interval [−4π, 4π]3 in the frequency domain. The pass
band is depicted as an opaque rhombic dodecahedron. The red dots represent
the twelve first nearest neighbors, whereas the blue dots depict the six second
nearest neighbors. Note that the images are ordered according to the overall
postaliasing effects of the corresponding reconstruction filters. The linear box
spline results in the highest total postaliasing, whereas the tricubic B-spline
leads to the lowest total postaliasing. Concerning the direction dependence, the
box splines introduce higher aliasing frequencies along the diagonal directions,
while the postaliasing effect of the B-splines is the strongest along the major
axes. Representing a compromise between the box splines and the B-splines, the
DC-splines suppress these aliasing frequencies isotropically. Note that, generally,
a discrete prefiltering increases the total postaliasing effect but does not change
the preferred directions that are mostly determined by the reconstruction filter
itself.

The Fourier transform of a BCC-sampled signal contains the replicas of the
primary spectrum around the points of the dual FCC lattice. Therefore, the
FCC lattice points except the origin represent the “DC” components of the
aliasing spectra, which mostly contribute to the postaliasing effect. If the fre-
quency response of the filter is significantly non-zero at these lattice points, a
sample-frequency ripple [18] might occur.

Although both the box splines, the DC-splines, and the B-splines ensure
zero-crossings at the centers of the aliasing spectra [16, 8], they do not suppress
the aliasing frequencies in the vicinity of the centers uniformly along different
directions (see Figure 4). This can lead to direction-dependent postaliasing called
near-sample-frequency ripple [18]. Theoretically, the order of the zero-crossings
(in other words, the number of vanishing moments [16]) expresses how much
the aliasing spectra are suppressed around the dual FCC lattice points. At the
nearest twelve FCC lattice points (see the red dots in Figure 3), which are located
along the diagonal directions at [±2π,±2π, 0], [±2π, 0,±2π], and [0,±2π,±2π],
the trilinear and tricubic B-splines ensure four and eight vanishing moments,
respectively [8]. In contrast, at these points of the frequency domain, the linear
and quintic box splines guarantee just the minimal number of their vanishing
moments, which are two and four, respectively. As a consequence, based on the
theory developed in [15], the BCC B-splines can suppress the postaliasing effect
more efficiently along the diagonal directions than the non-separable box splines.

On the other hand, at the six second nearest FCC lattice points (see the blue
dots in Figure 3) located along the major axes at [±4π, 0, 0], [0,±4π, 0], and
[0, 0,±4π], the linear and quintic box splines ensure four and eight vanishing
moments, while the trilinear and tricubic B-splines guarantee just the minimal
number of their vanishing moments, which are two and four, respectively. Thus,
the non-separable box splines suppress the postaliasing effect more efficiently
along the major axes than the B-splines.

The linear and cubic DC-spline filters isotropically suppress the nearest alias-
ing spectra that contribute most to the postaliasing effect, since the orders of
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their zero-crossings are two and four for both the nearest and the second nearest
FCC lattice points. Thus, DC-splines perform similarly to the box splines in the
diagonal directions and they perform like the B-splines along the major axes. In
this sense, even if the DC-splines do not have the postaliasing frequencies of the
least average magnitude, considering the direction dependence, they have the
most isotropic postaliasing effect.

The rendered frequency responses of the stop band in Figure 5 completely
confirm the explanation of the direction-dependent postaliasing based on the
number of vanishing moments. It is clearly apparent that the box splines in-
troduce aliasing frequencies in the directions of the twelve nearest FCC lattice
points, the B-splines cause aliasing in the directions of the six second nearest
FCC lattice points, while the DC-splines introduce moderate aliasing in both
directions. However, as the frequency responses decay rapidly, it is favorable if
the number of vanishing moments is increasing by getting closer to the origin
and not vice versa. The B-splines fulfill this requirement better than the box
splines and the DC-splines of the same approximation powers with and without
prefiltering, since the B-splines have twice as many vanishing moments as the
other filters have at the nearest FCC lattice points. Especially around the pass
band, the B-splines produce the thinnest postaliasing shell.

4.2 Oversmoothing

In order to visualize the pass-band behavior, we use only the transfer function t
(see Equation 12). Thus, the opacity at a frequency ω is set to t(|ϕ̂(ω)|), where
ϕ̂ is the frequency response. Furthermore, we set the opacity to zero outside the
rhombic dodecahedron that represents the pass band. The border of the pass
band is also depicted as an opaque rhombic dodecahedron cut in a half. Figure 6
shows the frequency responses rendered by these settings.

Note that the lowest oversmoothing is ensured by the interpolating prefiltered
quintic box spline reconstruction as its frequency response almost completely fills
the volume of the pass band, whereas the tricubic B-spline without prefiltering
leads to the highest oversmoothing, since most of its energy is concentrated inside
a sphere of a relatively small radius. On the other hand, the IIR prefiltering
significantly improves the pass-band behavior of the tricubic B-spline filter.

Nevertheless, as the B-splines are not tailored directly to the geometry of
the BCC lattice, even with prefiltering, they approximate the shape of the pass
band with a cubic shape. In contrast, the frequency response of the interpolating
prefiltered quintic box spline reconstruction nicely takes the rhombic dodecahe-
dral shape of the pass band. DC-splines represent a transition between the box
splines and the B-splines also in terms of the pass-band behavior. With and
without prefiltering, the linear and cubic DC-splines perform better than the
trilinear and tricubic B-splines, but they have slightly higher smoothing effect
than the linear and quintic box splines. Generally, the discrete prefiltering im-
proves the pass-band behavior of all the analyzed filters, but at the cost of a
higher postaliasing (see Figure 5 for comparison).
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Linear box spline. Linear DC-spline. Trilinear B-spline.

Quintic box spline. Cubic DC-spline. Tricubic B-spline.
Frequency responses without prefiltering.

Linear box spline. Linear DC-spline. Trilinear B-spline.

Quintic box spline. Cubic DC-spline. Tricubic B-spline.
Resultant frequency responses after a discrete prefiltering.

Fig. 5. Frequency responses of different reconstruction schemes for the BCC lat-
tice in the stop band. The penalty function w emphasizes those frequencies that
are closer to the FCC lattice points. These points represent the “DC” compo-
nents of the aliasing spectra, which mostly contribute to the postaliasing effect.
The images show the interval [−4π, 4π]3 in the frequency domain. The pass
band is depicted as an opaque rhombic dodecahedron. The red dots represent
the twelve first nearest neighbors, whereas the blue dots depict the six second
nearest neighbors.
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Linear box spline. Linear DC-spline. Trilinear B-spline.

Quintic box spline. Cubic DC-spline. Tricubic B-spline.
Frequency responses without prefiltering.

Linear box spline. Linear DC-spline. Trilinear B-spline.

Quintic box spline. Cubic DC-spline. Tricubic B-spline.
Resultant frequency responses after a discrete prefiltering.

Fig. 6. Frequency responses of different reconstruction schemes for the BCC
lattice in the pass band. The images show the interval [−2π, 2π]3 in the frequency
domain. The opacity is set to zero outside the pass band. The border of the pass
band is also depicted as an opaque rhombic dodecahedron cut in a half.
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5 Experimental Results

To validate the results of our frequency-domain analysis, we rendered the isosur-
faces of a well-known benchmark signal [18] using the analyzed filtering schemes.
Since the linear filters cause stronger postaliasing effects than the higher-order
filters, it was reasonable to apply them on a relatively oversampled volume rep-
resentation. Therefore, we sampled the Marschner-Lobb signal [18] on 643 × 2
BCC lattice points. Figure 7 shows the results of quasi-interpolating prefiltered
linear box spline, linear DC-spline, and trilinear B-spline reconstructions.

Note that the linear box spline produces ridge artifacts with low frequen-
cies exactly along the diagonal directions as it has been predicted in our 3D
frequency-domain analysis. Similarly, the linear DC-spline introduces moderate
aliasing along both diagonal and axial directions. Furthermore, the trilinear B-
spline produces aliasing with high frequencies mainly along the major axes, which
also confirms our theoretical hypothesis. However, on the dual FCC lattice, the
second nearest aliasing spectra along the major axes are not so closed to the
primary spectrum as the first nearest aliasing spectra along the diagonal direc-
tions; therefore, the postaliasing effect of the trilinear B-spline is less apparent
than that of the linear box spline and the linear DC-spline.

As the higher-order filters can better approximate the ideal low-pass filter
than the linear filters, we tested them on a volume representation that sam-
ples the Marschner-Lobb signal closer to the Nyquist limit. Therefore, we took
323×2 BCC samples from the test signal. Figure 8 shows the results of an inter-
polating prefiltered quintic box spline reconstruction, an interpolating prefiltered
cubic DC-spline reconstruction, and a quasi-interpolating prefiltered tricubic B-
spline reconstruction. The IIR prefiltering combined with the quintic box spline
and the cubic DC-spline enhances the diagonal postaliasing effects even stronger
than the FIR prefiltering combined with the linear box spline and the linear DC-
spline, respectively (see Figure 7). In contrast, using an IIR prefilter for a quasi-
interpolating tricubic B-spline reconstruction, the circular structure of the rings
can be reproduced almost perfectly without introducing direction-dependent ar-
tifacts. Although the tricubic B-spline is expected to produce high postaliasing
along the major axes, the magnitude of its aliasing effect in these directions seems
to be much lower than that of the quintic box spline and the cubic DC-spline
along the diagonal directions.

6 Conclusion

In this paper, we have presented a comparative 3D frequency-domain analysis of
reconstruction filters previously proposed for the optimal BCC lattice. According
to our results, both the box splines and the B-splines cause direction-dependent
postaliasing effects, but along different directions, while the DC-splines produce
less direction-dependent postaliasing. The box splines maximize the postaliasing
along the diagonal directions, while the B-splines produce the highest postal-
iasing along the major axes. However, the average magnitude of the aliasing
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Linear box spline. Linear DC-spline. Trilinear B-spline.

Fig. 7. Quasi-interpolating prefiltered reconstruction of the Marschner-Lobb sig-
nal from 643 × 2 BCC samples using the linear box spline, the linear DC-spline,
and the trilinear B-spline. The lower three images show the angular errors of
the estimated gradients. Angular error of 30 degrees is mapped to black, while
angular error of zero degree is mapped to white.

Quintic box spline. Cubic DC-spline. Tricubic B-spline.

Fig. 8. Prefiltered reconstruction of the Marschner-Lobb signal from 323 × 2
BCC samples using the interpolating quintic box spline, the interpolating cubic
DC-spline, and the quasi-interpolating tricubic B-spline. The lower three images
show the angular errors of the estimated gradients. Angular error of 30 degrees
is mapped to black, while angular error of zero degree is mapped to white.
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frequencies is the lowest in the frequency responses of the B-splines with and
without prefiltering. The B-spline filters suppress especially the nearest aliasing
spectra more efficiently than the box spline and the DC-spline filters. In con-
trast, the box splines perform best in the pass band; therefore, they can capture
more high-frequency details. Particularly, the interpolating prefiltered quintic
box spline reconstruction can well approximate the ideal pass-band behavior,
since its frequency response almost completely fills the rhombic dodecahedral
volume of the pass band. This might explain that the quintic box spline does not
blur the gradients as much as the tricubic B-spline does. As a consequence, the
interpolating prefiltered quintic box spline reconstruction leads to lower angular
gradient error. As a compromise, the interpolating prefiltered cubic DC-spline
performs better in the pass band than the quasi-interpolating tricubic B-spline
but slightly worse than the interpolating prefiltered quintic box spline.

Overall, combined with the known prefilters, none of the proposed filters is
superior. The advantageous properties of the box splines and the B-splines are
complementary while the DC-splines can represent an appropriate compromise
between them. It depends on the specific application whether the preservation of
the high-frequency details or an efficient suppression of the postaliasing artifacts
is considered to be more important.
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11. B. Csébfalvi and M. Hadwiger. Prefiltered B-spline reconstruction for hardware-

accelerated rendering of optimally sampled volumetric data. In Proceedings of

Vision, Modeling, and Visualization, pages 325–332, 2006.
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