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Abstract. The computing power of modern GPUs makes them very suitable for 
Computed Tomography (CT) image reconstruction. Apart from accelerating the 
reconstruction, their extra computing performance compared to conventional 
CPUs can be used to increase image quality in several ways. In this paper we 
present our upgraded GPU based image acquisition and reconstruction system, 
including gain correction, beam hardening correction, various reconstruction 
filters, and a new back-projection method for cone-beam geometry. We 
experimentally evaluated the impact of wide range of reconstruction filters on 
the image noise level and the resolution, and we compared the performance of 
the reconstruction components in phantom studies with special focus on image 
noise, resolution and ring artefacts.  

Keywords: graphics processing unit, computer tomography, image 
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1 Introductions 

 
Previously we developed a real time cone-beam helical CT (Computed Tomography) 
reconstruction [1, 2] that has been applied in the Mediso NanoPET/CT (Mediso Ltd.) 
equipment for in vivo imaging. To achieve the necessary computing performance, we 
decided to use a GPU (Graphical Processing Unit) for reconstruction. Using the GPU 
has reduced the reconstruction time dramatically. After achieving a real-time 
reconstruction we focused on image quality. In a post-reconstruction protocol there 
are less time constraints and more complex algorithms can be used for calculating the 
images. In this paper we go through the known fallbacks of the reconstruction method 
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we used (FDK-[3]) and present recent improvements. Some artefacts related to the 
acquisition process are also discussed. 

High resolution micro-CT images are often superimposed by so called ring 
artefacts. Ring artefacts are concentric rings in the images around the centre of 
rotation of the CT setup, which are caused by imperfect detector elements e.g. gain 
inhomogenity in the detector array. We managed to suppress this artefact by an 
improved gain calibration and correction method. 

Image noise is a major issue in in-vivo cone-beam CT. Flat panel X-ray detectors 
are generally not sensitive enough or have small dynamic range, and as dose and 
acquisition time are limited, the noise is increased. We implemented better filters 
before the back-projection to reduce noise, and also developed a more complex back-
projection algorithm that handles the noise better. 

Another challenge is the Beam Hardening effect. In X-ray computed tomography 
the decay of the incident intensity is related exponentially to the thickness of the 
object (Lambert-Beer law). In practice the X-ray beam is polychromatic and the 
Lambert-Beer law is no longer valid empirically because different energies attenuate 
differently (the out-scattering coefficient is wavelength dependent). As the FDK 
reconstruction uses only one energy, the beam hardening effect will cause the so 
called cupping artefact introducing gradients in homogeneous regions of the 
reconstructed image.  

Metallic artefact is generated by objects with saliently strong attenuation in the 
field of view of an acquisition. Filtered back-projection algorithms are creating very 
shiny stars around these objects. Our improved back-projection algorithm performs 
better in this sense, but the artefact can only be eliminated by more complex methods, 
e.g. using iterative reconstruction, not dealt with it in this paper. 

2 Materials and Methods 

To evaluate the accuracy of a cone-beam CT system, a comprehensive test object is 
needed. The vmCT-610 Micro-CT Performance Evaluation Phantom (Shelley 
Medical Imaging Technologies) is a widely accepted tool, designed for characterizing 
cone-beam CT performance [4]. Sections of the phantom provide several possibilities 
to measure the performance of the system in many aspects like uniformity, noise, 
linearity and spatial resolution.  

To evaluate the performance of the scanner, we measured all the modular plates 
with three different tube voltages (45, 55 and 65kVp), three exposure times (600, 
1100 and 1600ms) and three zooms settings (1.4×, 2.5× and 5×).  

In addition to using this professional phantom, we also built and measured a 
simpler one. Our phantom is divided into three areas: water, air, and a slanted edge 
(for resolution measurement). The aim of measurements with the simple phantom is 
to define an executable quality control routine for the NanoPET/CT system.  
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2.1   Resolution measurement 

The common measure of resolution is the spatial frequency where the modulation 
transfer function (MTF) falls to 2% of the maximum value. The MTF is calculated 
from the edge spread function: 
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where the edge spread function (ESF(x)) is the image of a slanted edge.  

In practice the average ESF along a line perpendicular to the edge is used. The 
intensity of each voxel in the image is plotted against its distance from the edge. The 
edge is found by using the Canny edge detector. After deriving the ESF the following 
model function is fitted to the measured data: 
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The c1 and c2 parameters correspond to the asymptotic values of the ESF. The ai  is 

the spread, the bi is the amplitude and x0 is the position of the ith error function. We 
found that J=2 is enough to represent the ESF.  

2.2   Noise measurement 

The noise is measured in the water part of our image quality phantom. A VOI is 
selected using thresholding and the standard deviation is calculated. 

3 Increasing the image quality 

We tested all standard configurations of the Mediso NanoPET/CT system. After 
executing many data acquisitions and measurements, we identified a few major image 
quality issues: the ring and the beam-hardening artefacts, and image noise. We 
focused our development on these topics.  

3.1   Ring artefact 

The detector element of our CT is a CMOS active pixel sensor (Rad-icon Corp, 
CA, USA). This type of detector is inherently less linear than a CCD or passive pixel 
sensors, as the charge to voltage conversion takes place at the pixel level and not at a 
common readout amplifier. 

The slight inhomogeneous nonlinear gain of pixels has little consequence on the 
linearity of the reconstructed CT image compared to e.g. the beam hardening effect, 
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but due to its deterministic nature it can cause severe ring artefacts. Nonlinear pixel-
wise gain correction can almost completely eliminate this artefact. 

The basic idea of the gain calibration is to record the response of each pixel at 
different known X-ray intensities and calculate the difference between the ideal and 
the actual signal as a function of the X-ray intensity. To produce controlled X-ray 
illumination, varying the tube current would be the most straightforward method. This 
did not work for us however, because changing the current caused small movement of 
the X-ray focal spot and hence changed the light distribution over the detector panel. 

Another option to tune the illumination is to vary the exposure time. Unfortunately 
at the shortest exposure time of the detector (370 ms) the pixel response is still much 
higher than in the shadow of a typical sample, so we measured the behaviour at low 
illumination by covering the detector surface with an aluminium plate. Both 
“covered” and “direct” images were recorded at several exposure times. The response 
curve of our detector has a characteristic S-shape: it starts nonlinearly at low 
exposure, has a relatively linear region at intermediate exposure and saturates at 
strong illumination. We utilized the linear part, available in both the “covered” and 
the “direct” image sets to scale together the two sets. Linear region of the response 
curve was determined experimentally at several X-ray energies. The scaling is done 
for each pixel separately. We fit a fourth order polynomial to the “merged” pixel 
response – exposure time curve. 

Correction is done by evaluating the polynomial at a recorded pixel value and 
replacing the pixel by the result. In figure 1 the difference between the old (quadratic) 
and the new (fourth order) gain calibration can be seen. 

 

 
Fig. 1. Left image: Quadratic gain correction with several ring artefacts. Right image: new 
fourth order gain correction without the ring artefact. The same water phantom was scanned. 

 

3.2   Noise 

The FDK algorithm is basically a filtered back-projection that applies a filter in the 
frequency domain before back-projecting the projection frames. The mathematical 
derivation prescribes the RAMP (a.k.a. RamLak) filter which suppresses the low 
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frequency components but raises the high frequency parts of the signal. In practice 
this filter gives suboptimal noise performance because the highest frequencies often 
do not contain useful information and the high frequency edge of the filter behaves 
badly during the discrete inverse Fourier transform. We can combine the RAMP filter 
with several window functions for filtering the high frequency components. There are 
some well known window functions for the back-projection operator of a CT 
reconstruction. The new filters named after the window function are simply the 
product of the original RamLak filter and a window function. 

We can categorize the filters into three groups. The RamLak, Butterworth and the 
Shepp-Logan are high-resolution filters.  In the balance between resolution and noise 
they are definitely on the resolution side. For the most common cases we suggest to 
use the Shepp-Logan filter as it reduces the noise by at least 10% while the resolution 
is almost 96% of the RamLak filtered image. The Butterworth filter has even less 
adverse effect on the resolution while still improving noise performance.  

In the second group there are the Cosine, Hamming and Hann filters. The noise 
reduction of these filters is better than that of the high-resolution filters; on the other 
hand the resolution is also reduced.  

We experimented with several low-resolution filters but decided to keep only the 
Blackman filter. Low-resolution filters cut off not only the noise but also reduce the 
resolution significantly. With the Blackman filter the noise is about the 60%, the 
resolution is proximately 75% of the RamLak filtered image. 

The characteristics of the different filters are shown in Figure 2, while the 
resolution and noise measured in a water phantom are plotted in Figure 3. The 
resolution is expressed in 2% MTF and the noise is the standard deviation of water in 
Hounsfield units.  

 
Fig. 2. Filter characteristics. Horizontal axis represents the frequencies from 0 (base 

frequency) to 1 (highest frequency). Vertical axis represents the gain (multiplier) for the current 
frequency. 
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Fig. 3. Resolution versus noise evaluated with different reconstruction filters. The noise 

level in Hounsfield Unit and resolution in MTF. 
 

The micro-CT systems are intended for creating high resolution images so low 
resolution filters are not an option. With high resolution filters we achieved noticeable 
but not satisfactory noise reduction. 

Besides filtering, improving the back-projection operator (BP) is the way to 
enhance image quality. Due to limited computing power, the exact BP is only 
approximated in contemporary algorithms. Currently there are three different 
approaches for BP: pixel-, voxel-, distance-driven.  

In the first case rays are generated from the detector pixels. They go through the 
whole volume and the contribution of the current pixel to the voxels among the actual 
ray is calculated [5, 6].  

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Pixel-driven back-projection schema. 
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The pixels of the projection image are normalized by function:  

ఏܲ,௜
ᇱ ൌ െ lnሺ

ఏ,௜ܫ
଴ܫ
ሻ 

and the image is filtered ( ఏܲ,௜) by the selected filter (see previous section). In 
Figure 4 a single voxel is shown. The incremental voxel value for the current 
projection (at ߠ angle) is  

ఏܸ,௝ ൌ ෍ሺ ఏܲ,௜ ·
௜ܸ

௩ܸ
ሻ

௜ୀே

௜ୀ଴

 

 where ௜ܸ is the volume of the section of the voxel and the “ray-pyramid” and ௩ܸ is 
the volume of the voxel. In 3D the base of the “ray-pyramid” is the current detector 
pixel, and the zenith is the focus point of the X-ray source. In Figure 4 the two 
dimensional case is presented for simplicity; blue and yellow areas represent sections 
of the “ray-pyramids”. In practice the sections are usually approximated by starting 
several rays from each pixel. The calculations are still complex and have to be 
repeated for each projection image, which makes the algorithm slow. Another 
disadvantage of this method is that its implementation for GPU is not efficient, 
because there can be write collision in the GPU memory when writing back the 
calculated (incremental) value of the voxel. The implementation is possible by using 
atomic operations (e.g. atomic add) but that significantly slows down the 
reconstruction speed. 

The distance-driven (DD) projector [7, 8] is a current state-of-the-art method. It 
maps the horizontal and vertical boundaries of the image voxels and detector cells 
onto a common plane such as xz or yz plane, approximating their shapes by 
rectangles. It calculates the lengths of overlap along the x (or y) direction and along 
the z direction, and then multiplies them to get the area of overlap. 

The voxel-driven (a.k.a. ray-driven [9, 10]) method generates rays from the focal 
point of the X-ray source through the voxels. The projection is independent for each 
voxel, making a parallel implementation that suits for the GPU architecture 
straightforward. The difficult part of the algorithm is to calculate the footprint of the 
voxels (see Figure 5). This is a function generated by projecting the 3D voxel onto the 
detector surface at a given angle. More information about the footprint function can 
be found in [11]. 

 
 
 

 
 
 
 
 
 
 

Fig. 5. Voxel-driven back-project schema with voxel footprint. 
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For a given ߠ angle we define the ఏ݂,௝ሺݐሻ footprint function, where j is the index of 
a voxel and t is a point on the detector. The incremental voxel value for the ߠ angle is: 

 

ఏܸ,௝ ൌ
ሺ׬ ఏܲሺݐሻ · ఏ݂,௝ሺݐሻሻ݀ݐ

׬ ఏ݂,௝ሺݐሻ݀ݐ
 

where ఏܲሺݐሻ function is the logarithmically normalized and filtered value of the 
detector at point t, the integrals are calculated for the full detector surface. The value 
of a voxel is the sum of all the incremental values of the voxel calculated for all 
detector angles (similarly to the pixel-driven method). 

Unfortunately this quasi exact solution gives a rather slow algorithm, although 
recently Long and Fessler [11] suggested a new method. Their paper describes a 
separable approximation of the footprints for the integration that accelerates the 
calculation considerably. We will try to incorporate this method in the future. 

This integration can be approximated by sampling if we choose the distribution of 
the sampling points proportional to the current integrand, the ఏ݂,௝ሺݐሻ footprint 
function. Furthermore if we are sampling a voxel with a homogeneous distribution, 
the projections of these points will represent the necessary distribution (see Figure 6). 
Calculation of the incremental voxel value now simplifies to the following equation: 

ఏܸ,௝ ൌ
∑ ఏܲ,௞
௞ୀௌ
௞ୀ଴

ܵ , 
where is S the number of sampling points and ఏܲ,௞ is the normalized filtered pixel 
value for the sample point k. 

How can we choose the best sampling method? We can use a regular three 
dimensional grid inside the voxel. It is a very simple method but if we use some low-
discrepancy sequence we can reach more uniform distribution [12]. There are several 
low- discrepancy sequences like Sobol’s, Halton’s or Poisson Disk (PD) [13, 14]. We 
choose the Poisson Disk [15] distribution. With Poisson Disk sampling we have 
achieved lower noise levels with only half of the points we used for regular sampling. 
Moreover with quasi-random sampling we can avoid the Moiré effect which is the 
most common artefact of the voxel-driven BP. Generating the PD samples is very 
computation intensive, but it can be done offline. So we have generated a couple of 
sample point sets offline and later simply choose one for a selected projection. With 
this multi-sampled voxel-driven BP we can significantly suppress the noise without 
lowering the resolution. 

 
 
 
 
 
 
 
 
 
 

Fig. 6. Multi-sampled voxel-driven back-project schema with voxel footprint. 
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In Figure 7 we compare image noise using the normal (3D regular) sampling and 
the PD sampling for reconstruction. Beside the type of the sampling and the number 
of samples all other parameters of the reconstruction are the same. 

 
Fig. 7. Noise level (in Hounsfield Unit) of different sampling methods, and various number of 
samples.  

By increasing the size of the voxels the noise is reducing but the PD sampling 
always gives better results. If we use only one sample, the curve is flattening faster 
than in the PD sampling case (Figure 8). The necessary number of sampling points is 
increasing for larger voxels but we can calculate it before the reconstruction (larger 
voxels generate larger footprint): 

 
voxel size: 19 um 39 um 78 um 156 um 235 um 

Number of samples 
needed for optimal 
footprint coverage: 

10 20 30 40 50 
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Fig. 8. Noise level (in Hounsfield Unit) for different voxel size and sampling method. 

Multisampling makes the reconstruction time longer, but not dramatically because 
we do not have to do all calculations as many times as sampling points we have inside 
the voxel. A lot of optimization can be done. The projection image is stored in the 
texture memory of the GPU so it is spatially cached. 

 
Number of samples 10 20 30 64 

Recon. time 
multiplier 

2.1 4.2 5.8 11 

 
According to our measurements, 30 PD sample points are enough in most cases. 
With this upgraded BP operator the noise level can be reduced by about 25-30% 

without lowering the spatial resolution of the reconstructed image. We can combine 
this new BP operator with the Shepp-Logan filter and we can get a 40% noise 
reduction with high resolution. 

3.3   Beam Hardening 

In CT projection the beam hardening causes a nonlinear relation between the 
thickness and the attenuation (see Figure 9). If we use only one energy model for 
reconstruction (like the traditional FDK), cupping artefacts can be seen in 
reconstructed images. 
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Fig. 9. The beam hardening effect for a homogenous object. 

The nonlinearity of the attenuation can be approximated by using the bimodal 
energy model [16]:  
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where f(E) is the power spectrum of the source and γ(E) is the detector efficiency.  
At the calibration process we get the constant values for µ1 and µ2 and a pixel 

dependent α matrix. Using these parameters we can linearize the thickness 
dependency by correcting the intensities of the pixels. The thickness can be derived 
from the measured data, and then the thickness should be used for calculating the 
corrected pixel intensity 
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where I’ is the corrected intensity value. 
 

4 Results and conclusion 

Putting all proposed techniques together, we decided to acquire a real mouse to see 
the image quality improvement. We are interested in mouse lung because in these 
images there are both low and high contrast areas, there are bones and soft tissues, 
and we can see the small parts inside the lung. 
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In Figure 10 we compare our results. The ring artefact is completely removed, and 
thanks to our noise reduction methods the resolution can be increased. The Moiré 
pattern is also suppressed and less metallic artefact is noticeable in the new image. 

 

 
Fig. 10. Mouse lung slices. The left image is generated by the classic acquisition and 
reconstruction process, the right image presents the new methods. 

The new method applied multi-sampled voxel driven BP with 30pcs Poisson Disk 
samples, fourth order gain correction, and Shepp-Logan filtering. The classic method 
used as a reference executed voxel-driven back-projection with one sample for one 
voxel, quadratic gain correction, and Hamming filtering. 

The common acquisition parameters are as follows: 
• Helical scan with 540 projection for each rotation, 
• Normal projection size (1:4 binned frames, resolution: 512×1798 pixels), 
• Reconstructed voxel size: 39݉ߤ. 

 
With the power of the GPUs, we obtained high quality reconstruction in reasonable 

time. High resolution images can be generated with less artefact and noise. A whole 
body mouse reconstruction time is about half an hour with 39݉ߤ voxels (Shepp-
Logan filter, 30 PD samples/voxel, all corrections are enabled). That means 
768×768×2560 voxels for the volume (almost 1.5 Giga voxels). 

 

 
 

Fig. 11. Full CT scan of the mouse. 
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