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Abstract. We present an energy-minimization and deterministic type
method for binary tomography reconstruction problem. The energy or
objective function, beside projection data fidelity term, includes prior
knowledge about the solution in the form of regularization terms. Next to
the already used smooth regularization we propose a perimeter preserv-
ing regularization too. Using the convex-concave regularization frame-
work, the binary reconstruction problem is reformulated to a non-integer
optimization problem. The objective function is minimized by a Spectral
Projected Gradient based optimization approach. Experimental results
show that the proposed approach provides better reconstructions, espe-
cially in a case of small number of projections.

1 Introduction

Tomography is imaging by sections. It deals with recovering images from a num-
ber of projections. Since it is able to explore inside of object without touching
it at all, tomography has a various application areas, for example in medicine,
archaeology, geophysics and astrophysics. From the mathematical point of view,
the object corresponds to a function and the problem posed is to reconstruct this
function from its integrals or sums over subsets of its domain. In general, the
tomographic reconstruction problem may be continuous or discrete. In Discrete
Tomography (DT) the range of the function is a finite set. More details about
DT and its applications you can find in [6, 5]. In addition to other, it has a wide
range of application in medical imaging, for example within Computer Tomog-
raphy (CT), Positron Emission Tomography (PET) and Electron Tomography
(ET). A special case of DT, which is called Binary Tomography (BT), deals with
the problem of the reconstruction of a binary image.

In this paper we consider the BT reconstruction problem. It usually leads
to solving a large-scale and ill-posed optimization problem. To make the BT
problem well-posed, usually an appropriate regularization is used. It is often used
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the smooth regularization whose application is based on the a priori knowledge
about the solution, that it is composed of compact regions of zeros and ones. This
regularization is widely used, for example in DC based algorithm introduced by
Schüle et al. [12, 13, 15] or in Simulated Annealing approach presented in [16].

Assuming that the perimeter of the original (true) object is known, we pro-
pose a perimeter preserving regularization. Its effect is to preserve the given ob-
ject’s perimeter during the optimization process. The corresponding optimization
problem is reformulated to a convex-constrained and convex-concave regularized
type problem [12]. The optimization of this problem is based on the Spectral
Projected Gradient (SPG) method introduced by Birgin, Mart́ınez and Raydan
(2000) in [3]. The main motivation for application of SPG lies in the fact that
SPG is very efficient for solving large-scale and convex-constrained problems.

The paper is organized as follows. In Section 2 we describe the regularized
reconstruction problem. In Section 3 we propose a new method, based on the
perimeter preserving regularization. Section 4 contains experimental results and
finally, Section 5 is for conclusion remarks.

2 Regularized Reconstruction problem

A main problem in connection with BT refers to the image reconstruction. We
consider a BT image reconstruction problem where the imaging process is rep-
resented by the following linear system of equations

Ax = b, A ∈ Rm×n, x ∈ {0, 1}n, b ∈ Rm. (1)

The matrix A is a so called projection matrix, whose each row corresponds to one
projection ray, the corresponding components of vector b contain the detected
projection values, while binary-vector x represents the unknown image to be
reconstructed. The row entries ai of A represent the length of the intersection of
pixels of the discretized volume and the corresponding projection ray, see Figure
1. Components of the vector x are binary variables indicating the membership
of the corresponding pixel to the object: for xi = 1 pixel belongs to the object,
while for xi = 0 it does not. In a general case the system (1) is under-determined
(m < n) and has no unique solution. Therefore, the minimization of the squared
projection error

min
x∈{0,1}n

‖Ax− b‖2

can not lead to a satisfactory result. To avoid this problem an appropriate reg-
ularization (or eventually more than one), based on a prior information about
the true solution, is needed.

The regularized reconstruction problem can be expressed in the following
form

min
x∈{0,1}n

‖Ax− b‖2 + α · Φ(x), (2)
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Fig. 1. The discretization model. The corresponding reconstruction problem is repre-
sented in a form of a linear system of equations, see (1).

where Φ(x) is the regularization term and α > 0 is its parameter. An often used
regularization is a so called smooth regularization and it is defined by,

∑

i

∑

j∈N (i)

(xi − xj)
2, (3)

where N (i) represents a set of indices of image neighbour pixels right and be-
low from xi. Using this regularization term in reconstruction algorithms we can
enforce the spatial coherency of the solution, that is enforce a solution with pos-
sibly compact regions of zeros and ones. Therefore, its application must based on
the assumption (a priori knowledge) about compactness of the object of recon-
struction. Function (3) is quadratic and convex which make this regularization
easy manageable in optimization algorithms.

3 Proposed Method

In order to improve the quality of the reconstruction, beside already used smooth
regularization we consider a possibility for inclusion an additional regularization.
We consider a situation when the perimeter of the original (true) object is a
priori known. This information can be include into the reconstruction process.
Following this idea, we propose the perimeter preserving regularization, defined
by





∑

i

∑

j∈N (i)

χε(xi − xj)− P





2

, (4)

where P is the given (true) perimeter, N (i), like in (3), is a set of neighbour
pixels. Function χε is a smooth approximation of the absolute value function | · |.
It is defined by χε(x) =

√
4ε2 + x2 − 2ε, where ε is a small positive number.

First term in the brackets estimates the object’s perimeter in the image x, [14].
Therefore, the proposed regularization term is a squared distance between true
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perimeter and object’s perimeter in x. Its effect in the optimization process is
to penalize the possibly reconstructions where this distance is greater than zero.
We note that according to the smoothness of the function χε, the term (4) is
differentiable and convex.

The regularized reconstruction problem (2) is expanded with the perimeter
preserving term (4) and the proposed reconstruction problem has the following
form

min
x∈{0,1}n

Γα,β(x) :=
1

2

[

‖Ax− b‖2 + α · Φ(x) + β · Ψ(x)
]

, (5)

where α > 0 and β > 0 are regularization parameters and

Φ(x) =
∑

i

∑

j∈N (i)

(xi − xj)
2, Ψ(x) =





∑

i

∑

j∈N (i)

χε(xi − xj)− P





2

.

First term in (5) measures the accordance of a solution with a projection data,
the role of the second term is to enforce the coherency of the solution while a
last term preserves the perimeter of the original object.

We transform the binary optimization problem (5) to the convex-constrained
problem defined by

min
x∈[0,1]n

Γα,β(x) + µ · xT (e − x) , µ > 0 (6)

where e = [1, 1, 1, .., 1]n. In (6) we relax the feasible set of the optimization to
the convex set, [0, 1]n and add a concave regularization term xT (e − x) with
aim to enforce binary solution. Parameter µ regulates the influence of this term.
Due to the convex function Γα,β and the concave binary enforcing regulariza-
tion, the problem (6) belongs to the class of convex-concave regularized methods
[12]. Soundness of the problem (6) is ensured by the following theorem which
establishes an equivalence between the problems (5) and (6).

Theorem 1. [8, 7] Let E be Lipschitzian on an open set A ⊃ [0, 1]n and twice
continuously differentiable on [0, 1]n. Then there exist a µ∗ ∈ R such that for all
µ > µ∗:

(i) the integer (binary) programming problem
min

x∈{0,1}n

E(x)

is equivalent with the concave minimization problem
min

x∈[0,1]n
E(x) + 1

2µ〈x, e − x〉,
(ii) the function E(x) + 1

2µ〈x, e − x〉 is concave on [0, 1]n.

Our strategy is to solve a sequence of optimization problems (6), with grad-
ually increasing µ, which will lead to the binary solution. More precisely, we
suggest the following optimization algorithm.
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SPG Algorithm for binary tomography.

Parameters: ǫin > 0; ǫout > 0; δ > 1; µ0; maxit .
x0 = [0.5, 0.5, . . . , 0.5]T ; µ = µ0; k = 0;
do

do

xk+1 from xk by SPG iterative step; k = k + 1;
until ‖ xk+1 − xk ‖∞> ǫin and k < maxit
µ = µ+ δ;

until max
i

{min{xk
i , 1− xk

i }} > ǫout.

The initial configuration is the image with all pixel values equally to 0.5. In
each iteration in the outer loop we solve an optimization problem (6) for a fixed
binary factor µ > 0 by using the SPG method, described below. By iteratively
increasing the value of µ in the outer loop the binary solutions are enforced.
The termination criterion for the outer loop, ǫout, regulates the tolerance for the
finally accepted (almost) binary solution.

SPG is a deterministic optimization algorithm, introduced by Birgin, Mart́ı-
nez and Raydan (2000) in [3], for solving a convex-constrained optimization
problem

min
x∈Ω

f(x),

where the feasible region Ω is a closed convex set in R
n. This method combines

a Projected Gradient method [2] with Grippo type non-monotone line search
[9] and the spectral step-length selection approach [1]. The requirements of the
application of the SPG algorithm are: i) the objective function, f is defined
and has continuous partial derivatives on an open set that contains Ω; ii) the
projection PΩ of an arbitrary point x ∈ Rn onto a set Ω is defined. Global
convergence of this method is proved in [3]. The parameters of the algorithm are
as follows. Integer m ≥ 1 is a number of memorized previous objective function
values used in line search procedure in each iteration. Parameters 0 < αmin <
αmax and 0 < σ1 < σ2 < 1 have safeguarding function: they keep the spectral
step-length, αk and the trial step-length, λtsp inside the given limits. Parameter
γ ∈ (0, 1) controls the non-monotone objective function decrease condition [9].
Further details about parameters you can find in [4]. Starting from an arbitrary
initial iteration x0 ∈ Ω, the below computation is iterated until convergence.

SPG iterative step [4].

Given xk and αk, the values xk+1 and αk+1 are computed as follows:

dk = PΩ(x
k − αk∇f(xk))− xk;

fmax = max{f(xk−j) | 0 ≤ j ≤ min{k,m− 1}};
xk+1 = xk + dk; δ = 〈∇f(xk), dk〉; λk = 1;
while f(xk+1) > (fmax + γλkδ),

λstl = − 1
2λ

2
k/(f(x

k+1)− f(xk)− λkδ);
if (λstl ≥ σ1 ∧ λstl ≤ σ2λ) then λk = λstl;
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else λk = λk/2;
end if

xk+1 = xk + λkd
k;

end while;
sk = xk+1 − xk; yk = ∇f(xk+1)−∇f(xk); βk = 〈sk, yk〉;
if βk ≤ 0 then αk+1 = αmax;
else αk+1 = min{αmax,max{αmin, 〈sk, sk〉/βk}};
end if

Requirements for application of the SPG algorithm for solving the problem
(6) for a fixed µ are satisfied. Indeed, it is obvious that the objective function is
differentiable and the projection onto a feasible set Ω = [0, 1]n is given by

[Pr(x)]i =







0, xi ≤ 0
1, xi ≥ 1
xi, elsewhere

, where i = 1, . . . , n .

where x ∈ R
n. Pr is a projection with respect to the Euclidean distance and its

calculation is inexpensive.
As we discuss above, Γα,β is a convex function. However, by increasing the µ

factor during the optimization process the influence of the concave regularization
term becomes larger which leads to the non-convex objective function. Therefore,
we cannot guaranty that this approach always end up in a global minimum.

PH1 PH2 PH3

Fig. 2. Phantom images used in our experiments. All images have the same resolution
256× 256.

4 Experimental Results

We performed experiments on the binary test images (phantoms) presented in
Figure 2. Reconstruction problems are composed by taking parallel projections
from different directions. We take 256 parallel projections for each direction. Re-
garding to direction we distinguish reconstructions with 2 and 3 projections. The
projection directions are 00 and 900 for 2 and 00, 450 and 900 for 3 projections.
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The parameter settings for SPG based algorithm are following: M = 5, γ =
10−4, σ1 = 0.1, σ2 = 0.9, θmin = 10−3, θmax = 10−3, δ = 0.3, Ein = 0.01,
Eout = 0.001, maxit = 100. These settings are empirically determined based on
our experimental work within this research, but also on our earlier experience
regarding the application of the SPG algorithm in image reconstruction problems
[10, 11].

The quality of reconstruction (solution) is measured by the following two
error measure functions

E(xr) = ‖xr − x∗‖1,

PE(xr) = |per(xr)− per(x∗)|,
where xr is the reconstructed image. Function E gives the number of failed pixels
in compare with the original image x∗. PE is the distance between the perimeter
of the reconstructed and original object.

Proj. Alg. PH1 PH2 PH3

2 SR

SR+PR

3 SR,SR+PR

Fig. 3. Reconstructions of the phantom images presented in Figure 2. They are ob-
tained from 2 and 3 projections.

Table (1) shows the obtained error values, E and PE of the reconstructions
by the proposed method. For reconstructions obtained from 2 projections the
proposed perimeter saving regularized method (SR+PR) provides significantly
better results regarding the both criteria, expressed by E and PE. Visual look
of the reconstructed images are presented in Figure 3. In a case of 3 projections
the obtained reconstructions are exactly the same for both regularization, SR
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Proj. 2 3

SR SR+PR SR SR+PR
Reg. (α = 5, β = 0) (α = 5, β = 0.5) (α = 5, β = 0) (α = 5, β = 0.01)

E 7851 4730 5 5
PH1 PE 262 54 2 2

E 3225 2932 0 0
PH2 PE 126 70 0 0

E 7147 6902 6 6
PH3 PE 334 86 6 6

Table 1. The measured error values of the reconstructed images. By SR and PR we
indicate the using of smooth and perimeter preserving regularization, respectively.

and SR+PR. The solutions in this case are very close to the original images for
phantoms PH1 and PH3 or exactly the same for phantom PH2.

5 Concluding Remarks

We have considered a regularized reconstruction method for binary tomography.
Beside already used smooth regularization we propose utilizing of the perimeter
preserving regularization too. The new method is reformulated to a form of a
convex-constrained and convex-concave regularized optimization approach. The
using optimization is based on the Spectral Projected Gradient algorithm. Ex-
perimental results on three phantom images show that the new approach can
improve the quality of the reconstruction obtained from 2 projection directions.
This result can be useful in real applications, when the number of projections
are limited.
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7. Horst R., Tuy H.: Global Optimization: Determinitic Approaches. Springer-Verlag,
Berlin (1996)



Binary Tomography Reconstruction Method 91

8. Giannessi F., Niccolucci F.: Connections between nonlinear and integer program-
ming problems. Instituto Nazionale di Alta Mathematica Symposia Mathematica
(1976) 161–176

9. Grippo L., Lampariello F., Lucidi S.: A nonmonotone line search technique for
Newton’s method. SIAM J. Numer. Anal. 23 (1986) 707-716
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