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Abstract. Although very promising results have been achieved by oth-
ers in producing reference disparity maps for real-world indoor scenes
with uncalibrated structured light and engineered scenes, few papers
emphasise that 3D-synthesis remains indispensable in generating ground-
truth data up to numerical precision, and also for long-range stereo, to
discriminate among the best-performing stereo and optical flow algo-
rithms. We introduce a fast and flexible method for generating synthetic
data by using a combination of a free, easy-to-use rendering software
and algorithms for post-processing the rendered output to produce dense
depth maps, disparity maps, occlusion maps and 2D motion fields.

1 Introduction

Research interest in correspondence algorithms have been revived in the last
decade due to some elementary breakthroughs in optimization strategies, as well
as, due to some novel, increasingly popular stereo and optical flow datasets.
Although, feature-based sparse methods received significant attention earlier,
today there seems to be a focus on dense correspondence of rectified stereo
pairs, which is unquestionably one of the most challenging problems of binocu-
lar stereopsis, mainly because of occlusions, textureless areas, noise, geometric
distortions, radiometric distortions, specular reflections and repeated patterns.
Sound overviews of existing stereo registration methods are the work of Brown,
Burschka and Hager [1] and that of Scharstein and Szeliski [2].

Many researchers tend to publish new algorithms and leave it to the reader
to qualitatively judge the resulted disparity, depth or occlusion maps, while
comparably less work has been done in meaningful, quantitative evaluation of
the methods [3]. Therefore, encouraged by similar achievements in the optical
flow field by Barron, Fleet and Beauchemin [4], [2] introduces a well-established
taxonomy and a systematic, quantitative evaluation framework for correspon-
dence algorithms on rectified stereo pairs. The same group published a similar
work for optical flow recently [5]. They provide evaluation results of numerous
existing algorithms, both stereo and optical flow, posted by other researchers,
at the Middlebury website1. Recently, this website has received great attention

1 http://vision.middlebury.edu/flow/ and vision.middlebury.edu/stereo/
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by the computer vision community. However, engineered indoor scenes may not
necessarily serve as reference for long-range outdoor applications.

Driven by the need for quantitative evaluations, we performed a quick survey
on datasets publicly available for our purposes and noticed that only few contain
reference depth or disparity maps. Some promising efforts have already been
made by others [6] in acquiring dense reference range information for engineered
indoor scenes, but few papers emphasise that 3D-synthesis remains indispensable
for generating ground-truth data up to numerical precision, and also for long-
range stereo. Since, to the best of our knowledge, there is a lack of similar
guidelines, we present a fast and flexible method for generating synthetic data
by using a combination of a free, easy-to-use rendering software and simple
additional algorithms for post-processing the rendered output to produce dense
depth maps, disparity maps, binary occlusion maps and dense 2D motion fields.

Section 2 is a survey of existing, available datasets and methods used for gen-
erating dense reference data for stereo and optical flow algorithms. The proposed
method is overviewed in Section 3 and details are given in Section 4, including
our camera description, depth map, disparity map, binary occlusion map and
dense motion field generation technique. A validation of the proposed techniques
and two generated datasets for complex scenes are presented in Section 5. Finally,
Section 6 concludes the paper.

2 Existing datasets and related work

For the subjected purpose, there exist some well-known, but rather old datasets,
such as the CMU/VAST, the JISCT database, or the one provided by the Univ.
of Karlsruhe2. Most of the contained datasets do not include reference data.

For stereo vision, the Tsukuba image pair [7] is probably the most well-
known stereo dataset. The images are taken of a real indoor scene and only a
pixel-accurate hand-labeled ground-truth disparity map is given.

Depth maps from stereopsis for real scenes can be validated using several
range sensing principles [8]. Structured light techniques are prevalent for gen-
erating close-range reference maps [8],[9]. [6] achieves very promising results
with an uncalibrated off-the-shelf projector and a movable camera. The resulted
datasets (Cones, Teddy, Art etc.) are getting popular for algorithm evaluations
in recent papers. However, numerical precision can not be guaranteed due to fi-
nite resolution of the projector, specularities, dark holes, inter-reflections in the
scene, code ambiguities, interpolation errors etc. [6].

The same reseach group provides datasets of real indoor scenes for optical
flow. Grainy fluorescent paint visible only in UV-lighting is applied to all surfaces
in the scene in order to track surface points for reference [5].

It is also possible to measure the performance of a matching algorithm with
respect to another one that incorporates knowledge about the scene, e.g. [10] rep-
resents the scene as a collection of piecewise planar objects (Venus and Sawtooth
datasets). These methods only work in the special environments they model.

2 http://i21www.ira.uka.de/image_sequences/
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While radars and lidars are typically used up to a depth of 100 m with long-
range vision sensors in Advanced Driver Assistant Systems (ADAS) to reduce
the risk of false or lack of detections, these are reported to acquire less detail of
the scene than vision sensors do [11].

If ground-truth data is not available but images from a third view are at
service instead, image-based rendering offers an alternative solution for mea-
suring the quality of stereo algorithms [12],[13]. It is a good solution when no
reference data is available for applications like virtual reality, view interpolation,
frame-rate conversion etc. [12]. However, we believe that qualification based on
ground-truth depth maps, if available, still remain more representative for appli-
cations in robotics, e.g. bin picking, autonomous robots, collision avoidance in
ADAS. Also, trinocular data may not always be available. In these cases, or as a
first quantitative test of an algorithm, synthetic data is reasonable, even though
some results can not always be generalised for real scenes [13]. As stated in [5],
good-quality rendered images can be indistinguishable from real ones.

The old Yosemite and Marble block sequences are the most widely used syn-
thetic ones, as they include reference flow and depth data. Some more sophisti-
cated rendered datasets are made available recently [5],[13]. Unfortunately, only
the rendering engine is named and no description is given on how these datasets
are exactly generated.

Rendering a dataset has the advantage that it can be done without the need
for a trinocular system or specific light projector, artifacts present at structured
light techniques can be avoided and engineering far-range scenes does not induce
any additional problem. Bonn University provides an old but specialized renderer
(MRT) for stereo depth map generation, but only from a very limited scene
description. Much more complex commercial, free or open-source renderering
engines capable of rendering photorealistic images exist today. Consequently, it
is not reasonable to develop a new rendering engine with built-in disparity map,
occlusion map and optical flow rendering capabilities.

3 Overview of the proposed method

We have chosen POV-Ray3, a freely available raytracer with easy-to-use Scene
Description Language (SDL) to produce photorealistic images and ground-truth
data. POV-Ray takes a text description of objects, lights and atmospheric effects,
and generates an image of the scene from a camera also defined within the scene
description. The ray-tracing process constists of tracing viewing rays backwards,
from the camera center into the scene, via each pixel of the viewing window. If
the back-traced ray hits a surface in any point, the color of a pixel is calculated
by sending rays from the surface point to each of the light sources in order to
compute their contribution to the final color of the pixel based on the surface
normal, albedo and transparency. More rays are traced to determine the effect of
the refracted rays on the pixel color if the surface is not opaque. The procedure

3 http://www.povray.org/documentation/
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can result in photo-real images, though, by default, it does not take into account
inter-diffuse reflections (radiosity), i.e. light reflected by all other surfaces when
computing the image of a surface. Even approximation of this effect increases
drastically the computation time. An alternative way to simulate radiosity is
ambient illumination that renders some color to pixels that would be totally
black due to the lack of radiosity. The proposed method has two main stages:

1. Render the original scene and the same scene with different special effects and
lighting in POV-Ray. As a result, several output image pairs are produced
for stereo, or single-frame images for optical flow.

2. Post-process the acquired synthetic images to get dense, high-precision ref-
erence data for each frame in the sequence.

The images rendered in normal conditions (illumination, texture) may serve as
input for the stereo correspondence or optical flow algorithms under test, while
the post-processed reference maps can be used to measure the output quality of
the algorithms. The following reference data types are computed for each view:

– Labeled images assigning the identifier of the object seen in each pixel to the
pixel. Identifiers are integer labels predefined by the user in the scene de-
scription. Labeled images are required by the motion field estimation method
presented and may also serve as reference for image segmentation algorithms.

– Depth maps encoding the distance between the optical center and the surface
point observed in each pixel center. One depth map is computed per view.

– Disparity maps encode the displacement at each pixel center in a reference
image. A horizontal and a vertical map is computed for each image.

– Occlusion maps are binary maps indicating which surface point projection
to a pixel center can not be seen in the other view. Thus, an occlusion map
is always determined by another view taken into consideration.

– 2D motion field in multiple senses: it is the 2D projection of the 3D motion
of surfaces or it is the ground-truth disparities between two successive frames
in a sequence. We provide reference data for both.

The depth maps, disparity maps and motion fields are all high-precision and all
the maps are dense, i.e. computed on a per-pixel basis. Sub-pixel density can
also be achieved by increasing the resolution of the output maps. Note that the
two disparity maps are not coding the same information, because of occlusions
and also, because their domain is discrete while the values are double-precision.

Depth and disparity maps are univalued representations of 3D point-samples
of the observed surface. A depth map does not contain any data of a surface
point seen in other views but occluded in the current one. For algorithms that
take such points into consideration (e.g. space carving or image-based render-
ing), a multivalued/volumetric representation might be more appropriate. These
algorithms are out of the scope of this paper.

A 2D motion field should be distinguised from optical flow, the apparent
motion of brightness fields. A motion field is independent of textureless areas,
movement of specular highlights, changes in texture or in lighting, while optical
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flow depends on these effects [12]. In practice, the goal of opical flow compu-
tation is application-dependent. We focus on applications that aim to estimate
the 2D motion field, e.g. robot navigation. Some applications, like inter-frame
interpolation, that estimate the apparent motion, are excluded by now.

POV-Ray originally supports several camera types but not stereoscopic cam-
eras. Although, several add-ons exist for this purpose, they are not required, since
the cameras can be easily and automatically swapped in the scene description
between renderings. Camera and motion information used in the post-processing
stage must exactly match the virtual camera and motion present in the scene
rendered. As a consequence, camera matching is required.

We implemented the post-processing algorithms presented below in Matlab
(commercial) but re-implementing them in SciLab, Octave or other free environ-
ments would also be simple, and it would make the complete procedure free.

4 Reference data for stereopsis and optical flow

4.1 Camera model and camera matching

In the followings, M̃ denotes the Euclidean (inhomogeneous) representation of
any homogeneous point M and ∼ denote similarity (equality up to scale).

Perspective projection of any homogeneous scene point M ∼ (X,Y, Z,W )T ,
W ∈ {0, 1}, is described as m ∼ PM, where m ∼ (x, y, 1)T is the image of
M. P is a 3 × 4 homogeneous camera matrix that can be decomposed as P ∼
KR

[
I −C̃

]
, where C is the camera center in the world reference frame, the rows

of the ortonormal matrix R represent the camera axes in the world, and K is
the camera calibration matrix incorporating the axis skewness γ, the principal
point (x0, y0)T and relative focal lengths α = −f/sx and β = −f/sy, where f
is the focal length and the pixels are parallelograms of side lengths sx × sy.

P′ = KR
[
I −C̃′

]
describes a second camera, supposing the pair {P,P′} is

in standard configuration. An example on how to implement this pair in the SDL
of POV-Ray is shown below. It can be treated as a pseudo-code.

#declare CamLoc2 = CamLoc1 - Baseline*xAxis;

camera {

perspective

#if (currentCamera=1) location CamLoc1 #else location CamLoc2 #end

direction FocalLength*zAxis

right -ViewSizeHoriz*xAxis // right handed system

up ViewSizeHoriz/ImageAspect*yAxis }

A stereo pair in general configuration can be described in a very similar way. It
is supposed that the elements of the rotation matrix are explicitely specified in
the vectors xAxis, yAxis and zAxis. An alternative solution is to first describe
the camera P = K

[
I 0
]

and then rotate and translate it, specifying rotation
with three rotation angles, which is easier to use with motion.

Figure 1 shows a simple test scene MarbleBoxes rendered in POV-Ray. We
will use it to validate and illustrate our approach of ground-truth data gener-
ation throughout the paper. It is very similar to the Marble sequence referred
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in Section 2. The top-left image indicate that the POV-Ray camera is correctly
encapsulated in the camera matrix P used in the post-processing stage.

Time-dependence of an inrinsic or extrinsic camera parameter can be de-
scribed by expressing the parameter with the clock variable that encodes time.

Fig. 1. From left to right: (a) Rendered view of the MarbleBoxes scene and overlayed
box edges. The rasterized box edges coincide with edges projected with the camera
matrix P: POV-Ray’s camera model is correctly captured by P. (b-c) Untextured, foggy
scene with D = 5 (b) and D = 15 (c): intensity is an exponential function of depth. (d)
Labeled reference image rendered with ambient light only. Intensity-stretched dispariy
map (e) without occlusion detection and (f) with occlusions.

4.2 Depth map generation and surface reconstruction

Currently, there is no single-call solution for directly extracting a per-pixel depth
map of a scene from a viewpoint in POV-Ray (v3.6). However, as also observed
in [14], depth information is encoded in the fog media. Fog renders regions whiter
where depth is higher while it has less effect on the pixel colors in closer regions.
More precisely (see http://www.povray.org/documentation/),

I(λ) = exp

{
− λ
D

}
· Itrace +

(
1− exp

{
− λ
D

})
· Ifog, (1)

where λ is the depth along the viewing direction, I is the final intensity (or
color) of a pixel, Itrace is the intensity (or color) of the pixel computed by the
raytracer without fog effect, Ifog is the fog intensity (color) and D the fog density
parameter. To simplify this function, we set Ifog as absolute white (Imax) and
Itrace as absolute black (0) by eliminating all lights and transparencies and using
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an absolute diffuse black material on all scene objects. As a result

I(λ) =

(
1− exp

{
− λ
D

})
· Imax and λ = −D ln

(
1− I

Imax

)
. (2)

Thus, the depth λ can be extracted by logarithmic correction. Although, [14]
builds on the same idea, i.e. using a foggy scene for depth extraction in POV-Ray,
a major difference is that [14] approximates a linear function of the depth with
multiple fog instances as

∑
i Ii(λ) ≈ c · λ, where c is a scalar, while we perform

distortion correction in the post processing step to avoid approximation errors.
The resulted foggy scene at different fog densities is depicted in Figure 1 and the
resulted characteristics are plotted in Figure 2. Exponential compression maps

Fig. 2. The I(λ) intensity vs. depth characteristics at Itrace = 0, Ifog = 1 andD1 < D2.
The horizontal white or gray stripes represent a 1-LSB quantum in intensity. λmax,i is
the maximum distance that can be represented due to quantization for Di, i = 1, 2.

the depth interval [0,∞] to the valid intensity range [0, Imax] which is useful
to store the depth map in any standard file format or to display it, another
reason why it is better to save the compressed exponential map first and perform
corrections later. However, this introduces a quantization error that increases
with distance. Imax correspond to a depth range of [λmax,∞]. We introduce the
resolution r = Imax/∆I where ∆I is the quantum size. Supposing ∆λ is the size
of the depth range corresponding to ∆I, than the depth resolution is

∆λ(λ,D, r) = −D ln

{
1− 1

r
· exp

(
λ

D

)}
. (3)

The resolution bounds the highest depth to represent. More precisely, λ < D ln r.
Thus, λ < 5.54D, for an 8-bit fog map and λ < 11.09D, for a 16-bit one. It is
recommended to use a 16-bit grayscale map to encode depths in POV-Ray, as it
supports the 48-bit (16 bits per channel) PNG format.

Note that D is specified by the user. Increasing D increases both λmax but
decreases the depth resolution. We search for the optimal Dopt fog density that
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maximizes resolution within the valid depth range:

sup {∆λ(λ) | λ ∈ [0, λmax]} = ∆λ(λmax)→ min
D

. (4)

Differentiating (3) and using the approximation ln(x) ≈ x − 1 around x ≈ 1,
one may find that Dopt ≈ λmax, provided that Dopt � λmax/ ln r, that is, if
Dopt � λmax/5.54 for an 8-bit map and, if Dopt � λmax/11.09 for a 16-bit one.

Consequently, in order to set Dopt for optimal depth resolution, λmax must
be known, however, to determine λmax, the scene must be rendered with D set.
The suggested solution is a two pass method: render the fog map with some D0,
perform logarithmic correction (2) to get the depth λ(x, y) for each pixel center
(x, y)T , find λmax = maxx,y λ(x, y) and repeat rendering and correction with
D = λmax. Finally, the resolution error ∆λ(x, y) can be computed based on (3).
For correct results, rendering should be done without antialiasing.

From known λ(x, y) depth map, the surface point M(x, y) = (X,Y, Z,W )T

seen in any pixel center m = (x, y, 1)T can be determined easily. The normalized
viewing direction is v(x, y) = αK−1m with α = ||K−1m||−1. If λ(x, y) = ∞,
then the homogeneous point observed Mc(x, y) = (vT , 0)T lies on the plane at
infinity and M(x, y) = (vTR, 0)T . Otherwise, the homogeneous surface point in
the camera reference frame is Mc(x, y) = (λvT , 1)T and, in the world reference
frame, it is M(x, y) = (λvTR + C̃T , 1)T .

4.3 Computing the disparity maps

We describe two methods we use to compute disparity maps, one for a general
and one for a standard geometry. Both build on the computed depth map λ(x, y)
and on the decomposed camera matrices P and P′.

Starting from a pixel center m = (x, y, 1)T , the 3D point Mc in the camera
reference frame of the first view can be determined knowing λ(x, y) and P =
KR

[
I −C̃

]
(see Section 4.2). Then Mc is reprojected to the second view as

m′ = (x′, y′, 1)T ∼ P′Mc. m′ does not necessarily fall to a pixel center. Then
dx = x′−x and dy = y′−y are the horizontal and vertical disparities, respectively.

If the cameras are in a standard configuration, then all the epipolar lines
and disparities are horizontal (dy = 0). In such a case, a surface point at depth
Zc measured along the optical axis is observed with a disparity dx = αb/Zc,
where b is the base distance and α is the relative focal length in horizontal pixel
sizes. This equation is valid even if there is an axis skew (γ 6= 0). With known
disparity, the observed 3D point can be reconstructed at a depth Zc = αb/dx.
To achieve a depth resolution ∆Zc, the required resolution in disparity is [1]

∆d =
α · b ·∆Zc

Zc(Zc −∆Zc)
. (5)

In order to determine the precision of the disparity map computed, the depth
λ(x, y) measured along the viewing ray must be converted to depths Zc(x, y),
measured along the optical axis. The same applies for the resolutions ∆λ(x, y)
and ∆Zc(x, y). If v(x, y) = (vx, vy, vz)

T ∼ K−1(x, y, 1)T is the normalized view-
ing direction, then Zc(x, y) = vz(x, y)λ(x, y) and ∆Zc(x, y) = vz(x, y)∆λ(x, y).
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4.4 Finding occluded areas

It is unfair to expect from a correspondence algorithm to correctly match scene
points only seen by one camera but it is reasonable to require the detection of
such regions. At least, we need to know which pixels are occluded in the other
image, and which are not, to correctly measure the performance of an algorithm.
The basic ideas of three different approches are as follows.

1. Perform a dense left-right consistency checking on the ideal per-pixel dispar-
ity maps d(x, y) = (dx, dy)T and d′(x′, y′) = (d′x, d

′
y)T , as suggested in [15]

for stereo matching algorithms based on block-matching.
2. Use rendered, labeled maps to distinguish between object projections.
3. Replace one of the cameras with a light source and re-render.

The first method starts from a pixel center (x, y) in the first view. Then
it maps (forward-warps) it to the second view with its corresponding precise
disparity (dx, dy). The point (x+dx, y+dy) does not necessarily fall into a pixel
center in the second view, so based on the map d′(x′, y′) in the second view, we

find an approximate disparity d̂′(x + dx, y + dy) = (d̂′x, d̂
′
y)T for it. If d̂′ points

back to the initial point (x, y) in the first view, i.e. the squared Euclidean distance

c(x, y) = ||d + d̂′||22 = (dx + d̂x)2 + (dy + d̂y)2 is small, then the disparity maps
are consistent at location (x, y). If the pixel (x, y) is occluded than inconsistency
should occur and c(x, y) is expected to be high (more than 1 pixel2), see the left

side of Figure 3. As d̂′ is an approximation, full c(x, y) = 0 consistency is not
expected. A user-specified threshold is needed, which is a disatvantage.

It seems straightforward to interpolate the unknown disparity d̂′ at location
(x+ dx, y + dy) from known disparities d′(x′, y′) of the four neighbouring pixel
centers, but this is likely to fail at object boundaries where some of the four pixels
belong to a closer object while others to a further one. See center of Figure 3:
if one could detect which of the neighbouring pixel centers (black dots) fall on
the same side of the boundary line as the point (x + dx, y + dy) (depicted by
× in the figure), we could avoid this problem by using the center-disparities for
those pixels at interpolation. From the available data, there is no way to tell this,
although an approximation of the boundary may be found with active contours.
Very similarily, by using a higher resolution of the disparity maps boundary
localization may be better, which decreases the likelihood of false detections.

The second method determines whether the same object is seen at (x, y) in
the first view and at (x+ dx, y + dy) in the second using labeled maps for both
views. We render the label maps in POV-Ray for the same scene by automatically
eliminating all lights, removing textures and assigning purely ambient maps with
a distinct gray value for each object (see Figure 1). These predefined values act
like object identifiers. As depicted on the right of Figure 3, finite resolution of the
labeled images is expected to cause, again, problems at object boundaries. The
partial solutions for the first method apply here, as well. The second method has
the advantage that it does not require a user-defined threshold for binarization, it
directly produces binary maps. A price payed is that labeled maps are required.
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Fig. 3. Occlusion detection with left-right consistency checking: the point M2 on Ob-
ject2 occludes M1 on Object1, so based on the ideal disparity maps, m1 7→ m′

1 ≡ m′
2

in View2 but m′
2 7→ m2 6≡ m1 in View1 (left). Problem with finite resolution at

consistency checking (center). Similar problem with the label-based method (right).

The third method consists of re-rendering the scene from one view by replac-
ing the other camera by a white intense light source, removing all other lights
and setting all material to diffuse white. Since the surfaces do not illuminate
each other by default, light renders ideal white each surface point seen by the
second view and ideal black shadows represent occluded areas. Because the ren-
derer starts by tracing a ray through a pixel center and it then checks whether
the surface point hit by the ray is illuminated from the light source, we do not
expect any rounding artifact around object borders or at depth discontinuities.
However, the light source does not model the finite rectanglar viewing window
of the camera, i.e. it radiates in all directions. Therefore, we need to correct the
occlusion map to include out-of-view points (red region along the right edge in
Figure 1f). This is done in a post-processing step by checking, for each pixel
center (x, y), whether (x+ dx, y + dy) falls within the second view.

In POV-Ray (v3.6), shadows are never computed for the points at infinity,
neither when the sky_sphere feature is on. Thus, projections of points at infinity,
if there are any, are never detected as occluded. A solution is to use a normal,
shadow-capable sphere with finite but huge radius ρ encapsulating all scene
objects. In Figure 4, the finite point M occludes M∞. m∞, that is the image
of M∞, should be detected as occluded. M∞ can not receive shadows in POV-
Ray, so Ms is shadowed on the inner surface of the introduced sphere, instead.
This causes a shift from the correct point m∞ to the approximation ms. The
approximation error can be expressed with the euclidean distance dE(ms,m∞),
as follows. Suppose ms is the center of a rendered pixel and P = KR

[
I 0
]

is the camera matrix. Then the viewing direction of ms is ds = RTK−1ms.
Ms lies both on the viewing ray C̃ + αds, where α ≥ 0 is a scalar, and on
the sphere, satisfying ||M̃s(α) − L̃||2 = ρ2. Supposing that C falls inside the
sphere, this equation has only one positive solution α = αs. This determines the
point Ms. This, just like M∞ behind it, falls in the direction d∞ = M̃s − L̃
from the light source located at L. M∞ is seen in the same direction d∞ from
the camera center, so it can be expressed as M∞ ∼ (dT∞, 0)T . Its image is
m∞ ∼ PM∞ = KRd∞ = KR(C̃ − L̃) + αsms. Finally, the appoximation
error is dE(ms,m∞) for any pixel center ms = (x, y, 1)T . The error is small
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Fig. 4. Computing the error of occlusion estimation with the third method when a
finite sky sphere is used for enforcing shadows on ”far enough” points (left). Error map
for MarbleBoxes (right). Brighter means larger errors.

in directions nearly perpendicular to the baseline and increases radially (see
Figure 4). Errors decrease as the sphere radius ρ increases.

4.5 Determining the motion field

We aim to compute an ideal motion field, supposed a depth map and a labeled
map are given for each frame of an image sequence and object motions are rigid
and known. See Sections 4.2 and 4.4 on how to get depth and labeled maps.

The motion of n (potentially) moving objects in the scene is described by the
instantaneous pose of the objects, that is, by the parameter set {Ri(t), ti(t)}ni=1,
j being the object index, ti(t) the location of the object in the virtual world at
time instance t and the rows of Ri(t) defining normalized axis directions of
the local (object) reference frame. Similarily, the instantaneous camera pose is
defined by {R(t), t(t)}, t being the camera center denoted by C̃ earlier. All these
parameters and their time-derivatives are supposed to be analytically known,
which is natural, since we design the virtual world, including the motion.

Consider any pixel center (x, y) and suppose that the i-th object is seen
at finite depth λ through it. The object identifier i and the depth λ can be
read out from the labeled and depth maps, respectively. By using the camera
parameters, the observed surface point ci(t) ∈ R3 can be determined in the
camera reference frame, as detailed in Section 4.2. If the same point in the
object’s local reference frame is pi(t), then it can be expressed in the camera
reference frame in the form ci(t) = Qi(t)Tpi(t)+qi(t), where Qi(t) and qi(t) and
their derivatives are analytically known from the above-mentioned camera and
object motion parameters. Exploiting the rigidity constraint pi(t) = const = pi,
the instantaneous spatial velocity of the point in the camera reference frame is

D(t) =
dci(t)

dt
=

(
d

dt
Qi(t)

)T
Qi(t)[ci(t)− qi(t)] +

dqi(t)

dt
. (6)

If ∆t is the time between frames and k is the frame index, then the point
in continuous motion is sampled as cik = ci(k∆t), while its image is mi

k =



High-precision Ground-truth Data for Evaluating Dense Stereo and Optical... 269

(xik, y
i
k, 1)T ∼ Kcik. Define the 2D projection of the sampled instantaneous ve-

locity Dk = D(k∆t) as vk = (vxk, vyk)T , the 2D Forward Difference Motion
(FDM) as ∆Fk = m̃k+1 − m̃k and the 2D Backward Difference Motion (BDM)
as ∆Bk = m̃k − m̃k−1. It depends on the purpose of the optical flow algorithm
whether the ground-truth instantaneous velocity vk(x, y), the FDM ∆Fk(x, y)
or the BDM ∆Bk(x, y) should be used as a reference for evaluation. The pro-
posed framework can generate all three, though, computation of the FDM and
BDM are easier to implement, since they do not require parameter derivatives.

5 Results

For the MarbleBoxes scene, it is not difficult to implement a double-precision
depth computation without using POV-Ray. Such a λ̄(x, y) depth map can be
used to validate our λ(x, y) depth map resulted from the procedure in Section 4.2.
Hence, we implemented a basic (non-recursive) raytracing algorithm in Matlab
that determines depths for a planar scene, as well as, for the rectangular faces
of any given box. For each pixel, we chose the closest intersection of each ray
with the scene, similarily to the Z-buffer algorithm. Figure 5 shows a compar-
ison of the difference I(λ̄) − I(λ), where I(ξ) denotes the exponential function
(2) of ξ. The experiment has been performed with a 16-bit fog map, with the
fog density parameter D = 10. This is not optimal, since it differs from the
maximum scene depth of 19.501 units (see Section 4.2). The error histogram
clearly indicates a uniform distribution, explained by the quantization error in
the POV-Ray fog map I(λ). Interestingly, comparing the truncated exponential
function bI(λ̄)c of the reference depth map, with I(λ), we still find 22+33 out
of 320 × 240 pixels with non-zero depth errors (errors are of ±1 LSB exactly).
These are randomly spread over the image and may be due to numerical errors
in intersection computations.

For direct comparison of the depths with no exponential distortion, the the-
oretical depth resolution maxx,y∆λ(D) has been computed based on (3). Then
several pairs of fog maps have been generated in POV-Ray with different fog
densities Di and the maximum depth error maxx,y{λ(x, y) − λ̄(x, y)} is com-
puted for each pair. This experimental error is near to but always less than the
resolution predicted from theory (see plot in Figure 5). This is confirmed for all
the pixels of the image, except for exactly the same 22 misbehaving pixels that
had a -1 LSB error in the fog map. The depth error at these locations exceeded
the depth resolution with a neglectable amount, only up to the fourth significant
digit (in the error of the error). Thus, the worst-case error prediction is proven
to be good at least up to the third significant digit. The smallest worst-case error
is experimented around D = Dopt being approximately equal to the maximum
scene depth (of 19.501 units here), just as predicted in Section 4.2.

A comparison of the two disparity map computation methods yields similar
results. For the standard arrangement of MarbleBoxes, we computed the dispar-
ity maps d̄gx(x, y) and d̄gy(x, y) with the general method from the double-precision

Matlab depth map λ̄(x, y), on the one hand, and the disparity dsx(x, y) with its
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Fig. 5. From left to right:(a) 50-bin error histogram and (b) grayscale error map of the
computed depth map for MarbleBoxes. White corresponds to an error of 1 LSB, black
to no error. (c) Theoretical maxx,y∆λ(D) resolution error function is plotted vs. the
fog density parameter D (continuous curve). The maximum errors evaluated at several
D values experimentally are plotted as squares. Note that Dopt ≈ 19.5, as predicted.
(d) Stretched horizontal disparity map and some points with results detailed below.

resolution ∆dsx(x, y) from the POV-Ray data, assuming standard geometry, on
the other hand (the upper indices stand for general and standard method). We
experimented that d̄gy(x, y) is zero up to numerical precision (13 digits) and the

error e(x, y) = dsx(x, y) − d̄gy(x, y) is always less than the resolution ∆dsx(x, y),
except for the 22 misbehaving pixels with inferior numerical errors. In order to
illustrate this validation, we selected some pixels in the first image (see Fig-
ure 5) and summarised the results for them in Table 1. Due to the quantization
error of the 16-bit POV-Ray fog map, the disparity values computed by the pro-
posed method are not double-precision but have a precision of about 10−3 pixels.
Comparing this to the highest accuracy of about 0.1 pixels of known matching
algorithms, we can conclude that the proposed method produces disparity maps
that are accurate enough to validate the best stereo algorithms known today.

We tested the three proposed occlusion detection methods with MarbleBoxes
and experienced false detections along box edges, at depth discontinuities in the
first two cases, as expected from theory. The third method is free from such
artifacts (see Figure 1f for a result).

We validated our optical flow computation methods, as well, both for station-
ary and moving camera. Due to space limitations and for clairity, we only present
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Table 1. A comparison of the horizontal disparities (in pixels) with the error-free values
for some selected pixel centers depicted in Figure 5. See the text for the explanation of
the symbols. Errors are all below the corresponding resolution error.

# d̄gx dsx dsx − d̄
g
x ∆dsx

1 18.29436 18.29556 0.00120 0.00125
2 21.17369 21.17419 0.00051 0.00161
3 15.15390 15.15447 0.00058 0.00090
4 12.35276 12.35331 0.00055 0.00066
5 12.87468 12.87477 0.00009 0.00069

the stationary camera and backward-difference motion results here. Three con-
secutive images and the computed BDM is depicted in Figure 6. We recall that
the depth and segmentation maps are also needed for each image. For a rough
validation, we computed the double-precision motion vectors for the box corners
and took the min. and max. vector length for each box. Then we compared the
minimum and maximum BDM computed for the pixel centers within the image
of each box (see Table 2). Subpixel differences in the lengths come from the fact
that box corners do not fall to pixel centers, while the large difference in the
minimum vector lengths for the green box is due to a whirpool with a center of
zero motion within the image of the box, far from the box corners.

Table 2. A rough validation of the BDM computed for the 2nd and 3d images of the
sequence in Figure 6. For each box, the min/max vector lengths of the double-precision
motion vectors of the box corners and those of the per-pixel BDM are shown.

Object Corners Pixels
Min Max Min Max

yellow box 26.90 36.42 26.86 36.42
green box 12.41 69.19 0.13 69.13
red box 0.00 94.47 0.60 94.44

Reference data for some more complex scenes is shown in Figure 7. In the
Saint pair, the sky is mapped on a hollow sphere of radius ρ = 106. The cor-
responding displacement errors at occlusion map generation (see Section 4.4) is
radial, similarily to that shown in Figure 4. The error is in the [0.0012, 0.0013]
pixels range which is comparable to the accuracy of the disparity maps.

The Workdesk pair competes with the widely used real-world Tsukuba pair
in complexity. While the Tsukuba dataset contains hand-labeled reference dis-
parities only up to pixel precision, with the automatically rendered Workdesk
dataset, one can discriminate among the best algorithms of sub-pixel accuracy.

6 Conclusions

A review of existing datasets for evaluating stereo vision and optical flow al-
gorithms has been presented. We conclude that quantitative approches have
started to gather ground but few research groups provide accurate ground-truth
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Fig. 6. Three consecutive images of a motion sequence of the MarbleBoxes scene and
two details of the backward-difference motion field computed for the 2nd and 3d images.
The camera is stationary while the boxes are translating and rotating.

Fig. 7. From left to right: (a) Right image of the Saint pair, (b) the corresponding
stretched reference horizontal disparity map with occluded pixels (in red). Disparities
range from 0 to 20.5 pixels. (c) Saint scene reconstructed from the depth map. (d)
Right image of the synthetic Workdesk pair competing the real-world Tsukuba set
in complexity, (e) its stretched ground-truth disparity map with occlusions and (f) a
reconstruction without hidden face removal. Disparities range from 8.2 to 21.3 pixels.

evaluation data besides the input images. Motivated by this fact, we presented
a two-step method for generating this kind of data for virtual scenes of any
complexity (in fact, up to the designer’s patience). In the first stage we make
use of the POV-Ray renderer to produce the original images (input for the al-
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gorithms to test) and we also render the scene with special modifications to
textures and illuminations. We recall that all these modifications can be made
automatically. In the second stage, we apply special post-processing algorithms
to produce high-precision ground truth depth maps, disparity maps, occlusion
maps and 2D motion fields, including the 2D projections of 3D motion, e.g. useful
in robotics, and the forward/backward difference motion, e.g. for video process-
ing algorithms. After a validation of the method, we presented some photo-real
close-range reference images (the Saint and the Workdesk set) to work with.

Synthetic data seems to be inferior compared to real images, but the most
important reason for this is the lack of modeled radiosity, supposed that the
scene is engineered carefully for photo-reality. However, we must emphasize that
POV-Ray can locally model radiosity for the price of rendering time.

In the future, we plan to generate sophisticated, photo-real outdoor, long-
range reference data with the proposed method and evaluate some of the best
known stereo and optical flow algorithms based on the generated data.
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