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Abstract. The Self Affine Feature Transform (SAFT) can analyze both
geometric and photographic 2D image details. It is capable to identify
analytical curves and extract their parameters. This is achieved by inves-
tigating the invariance of the 2D image against planar affine transforma-
tions. This paper presents the spatial extension of this model, which can
process vectorized or volumetric 3D information and detect analytical
surfaces in space. Projective extensions are introduced also. The goal of
the article is to show theoretical equivalence of the described planar and
spatial methods. Only very brief test results are given.

1 Introduction

The Self Affine Feature Transform (SAFT) was introduced by Prohaszka in 2008
[1]. Tt can extract geometric information from 2D grayscale images invariantly
from regular affine transformations. It can be used also to compress image detail
information into a 54-dimensional feature vector. This enables it to be used for
photograph registration also. It’s purely analytical, continuous formulation en-
ables a wide variety of post-processing algorithms to be used on the descriptor
matrix [2], and easy implementation on GPUs. These properties make SAFT
be different from standard feature descriptors, which are mainly defined by al-
gorithms, often having branches and discrete tables. SAFT performs average in
photograph registration but outstanding in geometric image analysis. SAFT re-
lates to several moment extracting methods, for example RGB moments used in
[3], however SAFT calculates moments of image gradients.

The SAFT method must be differentiated from the Self-Affine Mapping Sys-
tem (SAMS or SMS) [4, 5]., which uses self-similarity transformations of discrete,
finite value, while SAFT uses continuous range of infinitessimal transformations.

This article extends the SAFT image descriptor into the 34 dimension, yield-
ing to SAFT-3D, which can analyze and register spatial data similarly to the
planar SAFT descriptor. It is able to indicate geometric surfaces, and retrieve
their parameters. 3D input data can be either volumetric (produced by medical
diagnostic tools) or vectorized scanned 3D data. This kind of data is analyzed for
the purpose of reverse engineering of shapes. The field of 3D reverse engineering
has a multitude of algorithms to solve emerging task. They can be organized
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into five main phases, according to [6]. Our method can be utilized during the
last phase: Surface Fitting. The Translational Vector Field method described in
[6] is equivalent to the 3D extension of the Harris corner detector, except nor-
mal vectors has to be used instead of gradients. As the matrix of the 3D-Harris
corner detector is embedded in our formulations, the Translational Vector Field
is a special case of our general algorithm. Our method can also be interpreted as
the generalization of [7]. It analyzes the invariance of surfaces against euclidean
transformations only (6 DoF), but neither describe planar, projective nor affine
connections of the proposed method. However, these methods have been widely
used and tested, and these tests can be considered as a proof that the formulation
presented here works in the practice, at least some special case of it. The purpose
of our article is to show the geometric identity of these methods, highlighting
that any filtering, pre- and post-processing or interpretation working well in the
planar case might be tested for volumetric data processing and vice versa.

This paper also describes the formulation of a projective planar extension,
which is demonstrated briefly.

2 The SAFT Detector

This section briefly summarizes previous results about the SAFT detector, which
are essential to understand this article. More details can be found in [1] and [8].

2.1 Notations and Symbols

® refers Kronecker product of matrices. Its precedence is between % and +.
Readers not familiar with ® need only a very short reading about it. According
to the notations of [8], subscript y denotes homogeneous quantities. Projective
equivalence of homogeneous representations is notated by .

The standard, 2D SAFT descriptor will be referred in this paper as SAFT-
2D also, when it is necessary to distinguish form the spatial extension. We keep
the notations used in the basic SAFT articles [8], even the matrices of spatial
extension will be notated with the same letters as those used on the plane. This
should not be confusing, since there are no formulations using both versions. To
help seeking matrix sizes, a quick variable index can be found in Table 1.Two
columns are used to describe the sizes for the planar and spatial interpretations.
Image and spatial density derivatives are located in vector g'(p) = VI(p).
Despite gradients are contravariant quantities, g itself is a column vector to
avoid confusion.

2.2 2D Affine Flows

Affine flows (see Figure 1 for planar examples) in any dimension can be described
as local velocity v is a linear function of homogeneous position py:

v =QpH , (1)
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3D and Projective Extension of S.A.F.T

Table 1. Frequently Used Variables

Size-2D Size-3D Description Eq.
4x4 9x9 Upper-left part of M (11)
2x2 3x3 Harris detector’s matrix, lower-right part of M (11)
2x1 3x1 Gradient or surface-normal vector
2x 6 3 x 12 Linear relation between local velocity and flow pa- (3)

rameters

6x6 12 x 12 SAFT matrix (7)
9x9 16 x 16 Self Projective matrix (16)
1x1 1x1 Number of Dimensions, 2 or 3 here.

3x1 4x1 Homogeneous position [z y 1]T or [z y 2z 1]7 (1)
2x3 3x4 Affine flow matrix (1)
3x3 4 x4 Homogeneous, or projective extension of Q 9)
6 x1 12 x 1 Affine flow parameters, elements of Q (2)
2x1 3x1 Local flow velocity (1)
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Fig. 1. Typical affine flows, and corresponding Q matrices.
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where Q is a n x (n+ 1) matrix, and n is the dimensionality of the investigated
space (2 or 3 in this article). The elements of Q are the linear parameters of the
flow. They can be collected into the parameter vector q in column major order:

v = Ln(pH)qa Ln(pH) = PL ® In><n 5 (2)
z0y010
2_[0xgy01} , Ly =[2-Isx3y Isx3 2 Isx3 Isxs] . (3)

The properties of affine flows are preserved during regular affine transformations.
Affine flows of small strength are identical to infinitesimal affine transforma-
tions.

2.3 Image Invariance against Affine Flows

Fig. 2. Concentric ellipses and streamlines of their invariant flow.

The affine Lucas-Kanade (L-K) detector estimates the optimal affine trans-
formation between two images I and I’ [9]. If this affine registration succeeds,
the dependence of the registration error against small disturbances of the opti-
mal transformation will be the quadratic function of affine flow parameters. This
quadratic function is hold by the local working variables of the L-K detector,
and can be managed to be returned also. The investigated region is measured
at sample locations which are indexed by k € N. Each measurement has a local
error ey, which is a linear function of flow parameters. The square of these errors
are summed symbolically resulting the quadratic error function:

ex = givi — (I(pr) — I'(px)), €*(a) = _ei(q) (4)
k
M
e*(q) = [qT 1} |:nT ﬂ {ﬂ , Ve?=2q"M +2n' = Aopt = —M!n, (5)
e(q)® — €2,y = AQ'MAq, Aq=q— qop- (6)
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Fig. 3. SAFT can be used to find optimal center of rotation (a,b) or scaling (c,d) in
closed form.

Fig. 4. Conics resulting rank 4 M matrices are precisely reconstructed.
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When the two images are identical (I = I’), this quadratic function describes
the sensitivity of this single image against infinitesimal affine transformations.
M, the quadratic matrix of this error function is called the Self-Affine Feature
Transform (SAFT):

M=) My, My =LlgiglLi = PuiPHi © gi8], - (7)
k

Due to this summation, M preserves positive semi-definite and block-symmetric
properties of My, therefore it has 18 independent elements.

For example, images of concentric circles, polygon vertices and lines are in-
variant against rotation, scaling around the vertex and against translation re-
spectively. See Figure 2. This can be expressed by algebra as the parameter
vector of these flows is in the null-space of the corresponding M matrix. See
[1] for more details, where several methods are given. Figure 3 demonstrates
localization of mean circle on images and localization of scaling center.

Regular and degenerate conics can be identified in closed formulation, Fig-
ure 4 shows cases when rank(M) = 4.

—
0))=y

Fig. 5. The minimum of Wy identifies the accumulated fixpoint of invariant flows.
Potential lines reflect it’s uncertainty in different directions. 2D case is illustrated.

3 3D Extension

The spatial extension of the SAFT detector and it’s formulation is a straight-
forward generalization of the planar case. Before giving definition of SAFT-3D,
the properties of 3D affine flows need to be investigated.
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3.1 3D Affine Flows

3D affine flows have 12 scalar parameters, which can be organized into the 4 x 3
matrix Q:
v =QpH . (8)

Examples to these flows are:

— (Elliptic) rotation around an axis.
— (Elliptic) rotation around and translation along an axis: screw flow.
— Any 2D affine flow in a 2D subspace and with
e ( velocity
e constant velocity
e proportional velocity (affinity)
along the 3™ direction.

Similarly to the planar case [2], 3D flows can be normalized and classified
by the eigen-decomposition of flow parameter matrix. It is convenient to use
Qu, the homogeneous extension of Q, since an (n + 1) x (n + 1) matrix can be
decomposed with classic methods.

Qn = [O OQO O} , VH= [g} =QupH, Qu=UDU". )

It can be seen that A4, the eigenvalue corresponding to the direction [0 0 0 1]T,
is always 0. U is the normalizing affine transformation, while D contains class-
specific data, affine invariant informations of the flow. The enumeration of classes
can be done by listing possible combinations of elementary divisors, together with
the analysis whether a complex conjugate pair is, or is not present among the
eigenvalues.

— Complex conjugate roots present:
e One non-zero root.
e Two zero roots, 2 cases: whether Jordan block present or absent.
— Oanly real roots:
e Four different roots.
e Three similar non-zero roots, 3 cases:
* normal 3 x 3 block,
* 3 x 3 Jordan block,
* 2 x 2 Jordan block.
e Three similar zero roots, 3 cases as above.
e Two pairs of identical roots, 4 cases: whether Jordan block present or
absent in each.
e Two different and two identical roots, 4 cases: identical roots are zero or
not, Jordan block present or absent.

These cases add up to 18 possible classes of 3D affine flows.
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3.2 The SAFT-3D Descriptor

The formulation of SAFT-3D can be obtained by direct extension of the stan-
dard, 2D SAFT formulation on 3D affine flows. It is straightforward, only the
size of the matrices (and vectors) differs from the planar formulation, but all
equations hold. For convenience, we repeat (7):

M =Y My, My = Ligig{ L = Puiprf © gigf - (10)
k

In 3D, M has 60 independent elements, namely 10 different 3 x 3 symmetric
blocks with 6 independent elements in each. Similarly to 2D, M can be parti-
tioned as:

BT C (11)

M — [ A B] ’
where the 3 x 3 matrix C = ), gkgz is the matrix of the 3D Harris corner
detector. The 9 x 9 matrix A describes the examined object’s invariance against
translation-free affine flows (flows leaving the origin in place).

The minimum of the quadratic function pEWHpH is a reliable, robust repre-
sentation of the cumulated fixed-point of the invariant flows, see [2] and Figure 5

for illustration the planar case. For n dimensions:
n
_ T ;o _
Whig=> Ml oy 1<=ijeN<=n+1, (12)
1=1

where M = UDUT. Df can be calculated from the eigenvalues of M = UDUT
as Al = Apin/Ai.

One might be interested about the invariance of analyzed 3D data against
rigid affine flows (which has only rotational and translational components). These
flows lie in a subspace of q:

.
S.S,S. 0 ] (13)

q= Trotq'r'ot ) T'I"Ot = |:0 00 ISXS

where S, is the cross-product matrix of the first unit-vector & = [1 0 0]T, etc.
Invariant rigid flows can be obtained by taking the null-space of the matrix
M, = TIOISMTmt. This method is the 3D extension of the planar version
described in eq. (27), section 7.4 of [2], which is demonstrated in Figure 3/a,b.
The above formulation is also equivalent to the results presented in [7], where

practical examples can be found which show the abilities of this method.

3.3 Application of SAFT-3D

It is out of the scope of the current article to give a detailed, exhaustive descrip-
tion of the problems that can be solved by SAFT-3D, together with numerical
test results. Only a few problems are presented, and brief test results are given
only for the most important application.
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SAFT-3D can be either applied on vectorized or volumetric 3D data. For vec-
torized data, for example 3D scanned 2.5D ’landscape’ surfaces or triangle grids,
we can measure accurate position. Unit-length normals of faces are used instead
of gradients. 'Grayscale’ volumetric data can also be used, which are mainly
collected during medical diagnostics and contain natural, non-geometric shapes.
However, we expect that ribs, skulls, long bones, cylindrical and spherical joints
can easily be identified by SAFT-3D, since their boundary has a density gradi-
ent above average, and their shape is somewhere between natural and geometric.
Volumetric data of engineering objects can be considered ’binary’ or having only
distinct density values. For volumetric data, the dataset should be blurred be-
fore evaluating the gradient operator. Some inconvenience emerged during tests,
which could be eliminated by measuring gradient strength and direction based
on different filters, as [2] suggests.

SAFT-3D can be used to reverse-engineer datasets of the above types. For
any interest region of different sizes, the SAFT-3D matrix has to be summed.
This multi-summation can be sped up by extending the area-integral technique
used in SURF [10] to 3D. After gaining M matrices, either the eigen-system
has to be taken, or other post-processing techniques used for SAFT-2D can be
applied after the straightforward modification of them. Geometric shapes yield
rank-loss of the SAFT-3D matrix.

Definition 1. Defect of a matriz: The difference between the number of ele-
ments in the diagonal of a matriz and the rank of the matriz (rank-loss) will be
called as the defect of the matriz.

Let us investigate the analysis of a torus. Only one defect will be observed, a
rotation around the axis of the torus. Then, any plane can be selected, which con-
tains the axis, or multiple planes of this type has to be averaged along rotational
streamlines. The emerging 2D cross-section might be analyzed with SAFT-2D.
we will see that the cross section is rotationally symmetric, since we analyze a
torus.

The averaging and projecting to the actual hyperplane can be repeated again.
If the torus is a toroidal tube or made of tubes with different densities, we can
get the thickness of each component analyzing the resulting 1D averaged image,
which was projected according to the streamlines of the single 2D invariant flow
of rotation. This last step can be applied during standard, 2D SAFT analysis
also, if the 2D SAFT matrix has one single defect.

As SAFT descriptors behave affine invariant, elliptically distorted multiple-
walled toroidal tubes, or elliptical tubes bent to hyperbolic shape can be analyzed
and parametrized efficiently with the above described method. Single or multiple
cylindrical or cone surfaces are sharply identified by SAFT-3D.

It is clear, that decomposing a 12 x 12 matrix is a little bit slow, especially,
if this has to be repeated more thousand times. There are much faster methods,
which can retrieve the parameters of a cylindrical surface, for example. However,
these methods can not handle general surfaces of translation or rotation, at
least not uniformly together with simple spheres, cylinders, planes and quadric
surfaces.
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Extending the method in [7], region growing algorithms can try to link simple
primitives together until the unified shape’s SAFT-3D matrix still have some
defects. When no compound shape can be grown to preserve any invariance,
then the given area can be treated as a 3D primitive. These parts can be linked
together into a tree describing the analyzed surface.

3.4 Enumeration of Basic Types

Fig. 6. Typical shapes which result different defects of M and C.

To test basic properties of SAFT-3D, various volumetric objects were gener-
ated and tested. Figure 6 shows the boundary surfaces of these objects. A wider
enumeration of typical surfaces follows below, which uses the following notation
at the end of the description of each item: {rank(M); rank(C); rank(M,..;) }. Note
that rank(M,.,¢) is not affine-, but only similarity-invariant.

General objects do not have any singular flow, see Figure 6/a:{12; 3; 6}.

Examples to surfaces of single defects are:

— Elliptical revolution of a general curve, Figure 6/b,c:{11; 3;5}.
— General curve projected from one point, {11;3;6}.

Examples to surfaces of multiple defects are:

— 3D corner or vertex: a triangle projected from one point, this is the vicinity
of a 3-vertex of a polyhedron. It has 3 invariant flows, 3 (skew) affinities with
respect to the vertex, along faces, Figure 6/d:{9;3;6},
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— Extruded curve: 4 invariant flows, each is parallel to the line of extrusion,
but depends differently on x,y, 2, 1, Figure 6/1:{8;2;5}.
— regular quadrics

e ellipsoids: 3 defects: 3 elliptical rotations Figure 6/e:{9; 3;3...6}

e elliptical revolution of straight lines (hyperbolae Figure 6/f,g:{9;3;5}
and cones, Figure 6/h:{8;3;5}).

— Degenerate quadrics:

e Skew prismatic surfaces of conic sections, they have generally 5 invari-
ant flows: 4 flows parallel to the axis and a conic flow and one in the
plane of the conic section, Figure 6/j:{7;2;4 or 5}. A single extruded
parabola, or extrusion of a broken line, or two intersecting (half-) lines
(Figure 6/k:{6;2;5}) has 2 additional freedoms also, yielding a total 6.

e Planar surface, it has 9 defects, 3 flows are fixed only: translation of the
plane and tilting the plane. Figure 6/1:{3;1; 3}

3.5 Test Results

3/1/3

5/1/4

Fig. 7. Automatic detection of different types of surfaces. Virtual surface of the part
of a universal joint was analyzed. Numbers next to color guide balls show rank of
M, C and M, respectively. Red-Green-Blue colors are assigned also by these ranks.
(Eigenvalues less than 0.001 - E4¢ are considered to be zero.)

The test performed to show basic abilities of SAFT-3D was intended to sim-
ulate reverse-engineering applications. The surface of a mechanical part (part
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of a universal joint) was analyzed. The surface data was obtained from design
data, not by 3D scanning. It consists of approximately 52000 vertices. SAFT-3D
analysis was performed for the vicinity of each vertex. Such an analysis included
40 vertices in average. The color of the central vertex was assigned based on
the rank of M, C and M,.,; respectively, see Figure 7. During rank calculation,
eigenvalues less than 0.001 - E 4 were considered to be zero. The darker the
surface is, the more invariant flow it has. The darkest patches are flat, which has
a signature of 3/1/3. Differences of measured ranks from theoretical values (for
example, cylindrical surfaces would yield 5/2/4 vs. 7/2/4) are due to the small
size of the investigated volume (relative to the cylinder radius) and can change
by rank-threshold parameter. It can be seen that surfaces of the same type can
be effectively merged together.

4 Projective 2D Extension of SAFT

Since infinitesimal affine transformations generate affine flows, we can define
projective flows on the unit sphere whose streamlines are obtained by repeated
infinitesimal projective transformations. Projective flows obtained by this con-
struction can be used to define the Self-Projective Feature (SPF), the projective
extension of SAFT.

In projective geometry, we cannot simply express the velocity at a given
point, but can express the direction of it:

VH = QHPH - (14)

However, this relation is enough to trace a streamline on a unit (hemi-) sphere.
It is easy to prove that the projection of streamlines of translation free 3D affine
flows on the surface of the unit sphere gives the streamlines of projective flows.

Any image drawn on the surface of the unit (hemi-) sphere must be extruded
along beams going through the origin. This 3D volumetric data can be analyzed
(theoretically) by SAFT-3D. We are not interested in 3D translations, so only
M* = A, the upper-left 9x9 portion of M is interesting to us. It is trivial that the
volume will be invariant against the scaling 3D flow q* =[1 0 0 0 1 0 0 0 1]'.
The error function in the null-space of this flow parameter vector describes the
Self-Projective nature of the image.

Alternatively, we can express the resistance of an image against projective
flows:

€L = gHZVHk . (15)
M} = PHrPHL © 8HL8HE » (16)

where gy, is perpendicular to pny, so it is calculated on the surface of the unit
sphere, not on the plane of z = 1.
General perspective projections of affine flows yield projective flows:

€ QHProjective + Izxg = HPG(I3><3 +e- QHaffine)H;;a{z? |6 € R' <<1, (17)
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Fig. 8. Projection of concentric ellipses, best fitting invariant affine and invariant pro-
jective flow.

where H,, is the affine-to-projective transformation (pn, = Hy,qpH,,). This high-
lights a typical advantage of them over affine flows. If we photograph concentric
circles with a highly perspective arrangement, the resulting image’s edges fit to a
projective flow, but not to any affine flow. Consider that the CoG of the resulting
ellipses do not cover each other, as in Figure 8. The above statements hold for
the perspective projections of other image details which are invariant to one or
more affine flows.

During basic implementation, I found that results depend on whether the
investigated detail is projected to the ’arctic’ areas of the unit hemisphere, or
nearly to the whole hemisphere. I achieved best results if the detail was scaled
as if it projected to £45° from the z axis. The following Matlab code calculates
M*:

%InG: n*m image giving gradient strength (sharp)
%InD: n*m image giving gradient direction (blurred)
%T_pu: unit-to-pixel transformation
T_up=inv(T_pu) ;

M=zeros(9,9);

for y=1:n-1
for x=1:m-1
pu=T_up*[x+0.5;y+0.5;1];
pu_=pu/norm(pu) ;

#Matrix which flattens anything at pu:
Flatten_u=eye(3)-pu_*pu_.’;
RG_=InG(y:y+1,x:x+1);

RD_=InD(y:y+1,x:x+1);

Yderivatives:
dxG=[ 1 1]*(RG_)*[-1;1]%0.25;
dyG=[-1 11*(RG_)*[ 1;1]1%0.25;
dxD=[ 1 1]1*(RD_)*[-1;1]%0.25;
dyD=[-1 1]1*(RD_)*[ 1;1]%0.25;
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gpG=[dxG,dyG,0] ;
gpD=[dxD,dyD,0] ;
1G=norm(gpG) ;
1D=norm(gpD) ;

if (1D*1G>0)

gp=gpD/1D*1G;

gu=gp*T_pu;%!!!! gradient is contravariant!
%it is transforming by inverse transformation
%with respect to locations.

#Projection on sphere:
gu_=Flatten_u*gu.’;
M=M+kron(pu_*pu_.’ ,gu_gu_.’);

end
end
end

The projective 3D extension can be obtained by straightforward combination
of Section 3.2 and Section 4. The A sub-matrix of the 4D extension has to
be analyzed. However, Euclidean 3D transformations are likely to apply during
3D data acquisition, while 3D projective distortions do not occur. Beyond the
mathematical interest, no practical importance is seen. Therefore, the detailed
formulation is left to the reader interested in this topic.

5 Conclusions

We introduced SAFT-3D, the spatial extension of the planar SAFT descriptor in
this paper. It can be used to process 3D data and detect surfaces, which are very
common in engineering. Results analyzing typical surfaces were shown. Since
the formulation of SAFT-3D is almost identical to the planar version, hence
many post-processing algorithms of the planar versions can be applied with mi-
nor modification only. Pre-processing methods suggested to SAFT-2D are useful
for SAFT-3D also. As main contribution, the article showed, that the discussed
image and volume processing methods are geometrically and algebraically equiv-
alent, thus any connecting method used in the planar case might be applied in
3D and vice versa.

The paper also formalizes the Self-Projective Feature, which can handle per-
spective projected image contents which are originally self-affine invariant.
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