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Abstract. The Self Affine Feature Transform (SAFT) can both analyze
geometric image details and match similar regions of photographs. This
article presents connections between the Harris detector based Affine
Adaptation (Harris-Affine) and the SAFT descriptor. Based on these, a
novel evaluation of the matrix of the SAFT descriptor is presented. Pos-
sible applications of the shown relations during affine shape adaptation
are also highlighted.

1 Introduction

This article presents interesting relations between the Self Affine Feature Trans-
form (SAFT) and the Harris detector based Affine Shape Adaptation (Harris-
Affine), utilizing special properties of the Gaussian window. It will be shown,
that the linearized dependence of the Harris matrix from the parameters of the
used integration kernel is encoded in the SAFT matrix. For moderate affine
transformations, it can be used for an alternative evaluation of the Harris-Affine
iterative method. It is expected to improve the speed of the method. The de-
scribed relations are used to present a new evaluation of the SAFT descriptor.

The article is organized as follows: A short introduction is given from related
research work. Then the two methods related to the article (SAFT and Harris-
Affine) are shown with more details. The equivalence of the SAFT descriptor and
the linearized dependence of the Harris matrix for infinite Gaussian windows are
shown. The last section of the article presents an alternative evaluation of the
SAFT matrix together with test results.

1.1 Related Work

The Self Affine Feature Transform (SAFT) was introduced by Prohaszka in 2008
[1]. It can extract geometric information from 2D grayscale images invariantly
from regular affine transformations. It can be used also to compress image de-
tail information into a 54-dimensional feature vector, which consist of 3 18-DoF
SAFT descriptor evaluated using different image frequencies. This enables it to
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be used for photograph registration also, which is shown in [2] Its purely analyti-
cal, continuous formulation enables a wide variety of post-processing algorithms
to be used on the descriptor matrix [3], and easy implementation on GPUs. These
properties make SAFT be different from standard feature descriptors, which are
mainly defined by algorithms, often having branches and discrete tables. Wide
spread feature descriptors use combined domain and range histograms of gradi-
ents: SIFT [4], GLOH [5]. SAFT relates to several moment extracting methods,
for example RGB moments used in [6], however SAFT uses combined domain
and range moments of gradients.

Affine shape adaptation is used to detect regions of an image which are stable
against affine transformation. This task was solved for similarity transformations
by the Scale-Space theory [7, 8], its extension gives scale invariance to the Scale
Invariant Feature Transform [4]. Lindeberg and Garding gave affine extension
of the Scale-Space algorithm and proposed an iterative algorithm to solve the
above described task [9]. Mikolajczik and Schmid made improvements on the
method [10] which is referred as Harris-Affine region detector in the comparative
article [11]. MSER is a completely different affine invariant region detector [12]. It
analizes image intensity as a height-map. Islands with steep-shores are detected
when the height map is flooded with water.

2 The SAFT Detector

This section briefly summarizes previous results about the SAFT detector, which
are essential to understand this article. More details can be found in [1] and [2].

2.1 Nomenclature

To distinguish from scalar variables, bold lower-case letters are used for vectors
(v) and bold capitals for matrices (M). Vectors are column vectors by default,
row vectors appear as transposed columns. ⊗ refers Kronecker product of matri-
ces. Its precedence is between ∗ and +. Readers not familiar with ⊗ need only
a very short reading about it. Homogeneous quantities are denoted by subscript

H, to aid differentiating between homogeneous and standard representations.
Projective equivalence of homogeneous representations is notated by ∼=.

Let us consider the function f(x) over the domain S, x ∈ S (both f and x
can be column vectors or scalars).

The homogeneous 2nd range-, domain- or range-domain-moment of f is de-
fined by: ∫ [

v(x)
1

] [
v(x)T 1

]
⊗ h(x)dx, (1)

where {v(x);h(x)} can be one of the following: {[f(x)]; 1}, {[x]; f(x)} or
{[f(x)TxT]T; 1} respectively.

Notice that the Kronecker product (⊗) usually simplifies to multiplication by
scalar, except for domain-moments if f is vector valued. Range-moments repre-
sent function value histograms, while domain-moments represent the distribution
of functions on the input space (consider a PDF).
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The image I(x, y) is integrated according to the weighting function wA(x, y)
on the domain A. Image gradients are in vector g(x, y) = [ ∂I∂x

∂I
∂y ]T. The : (colon)

operator appearing in matrix subscripts denotes MATLAB R©, OCTAVE style
multiple indexing.

The size of a round Gaussian filter is described by σ2, which is equal to the
diagonal elements of its auto-correlation matrix Σ. The quadratic-mean radius
of such a filter is r =

√
Nσ, if the filter is N -dimensional.

2.2 2D Affine Flows

Fig. 1. Typical affine flows, and corresponding Q matrices.

Affine flows (see Figure 1 for planar examples) in any dimension can be
described as local velocity v is a linear function of homogeneous position pH:

v = QpH , (2)

where Q is a 2 × 3 matrix. The elements of Q are the linear parameters of the
flow. They can be collected into the parameter vector q in column major order:

v = L2(pH)q, L2(pH) = pT
H ⊗ I2×2 , (3)

L2 =

[
x 0 y 0 1 0
0 x 0 y 0 1

]
. (4)

The properties of affine flows are preserved during regular affine transformations.
Affine flows of small strength are identical to infinitesimal affine transforma-

tions.
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2.3 Image Invariance against Affine Flows

The affine Lucas-Kanade (L-K) detector estimates the optimal affine transfor-
mation between two images I and I ′ [13]. If this affine registration succeeds, the
dependence of the registration error against small disturbances of the optimal
transformation will be the quadratic function of affine flow parameters. This
quadratic function is hold by the local working variables of the L-K detector,
and can be managed to be returned also. The investigated region is measured
at sample locations which are indexed by k ∈ N. Each measurement has a local
error ek, which is a linear function of flow parameters. The square of these errors
are summed symbolically resulting the quadratic error function:

ek = gT
kvk − (I(pk)− I ′(pk)), e2(q) =

∑
k

e2k(q) , (5)

e2(q) =
[
qT 1

] [M n
nT o

] [
q
1

]
, ∇e2 = 2qTM + 2nT ⇒ qopt = −M-1n , (6)

e(q)2 − e2opt = ∆qTM∆q, ∆q = q− qopt· (7)

When the two images are identical (I = I ′), this quadratic function describes
the sensitivity of this single image against infinitesimal affine transformations.
M, the quadratic matrix of this error function is called the Self-Affine Feature
Transform (SAFT):

M =
∑
k

Mk, Mk = LT
kCkLk = pHkpH

T
k ⊗ gkg

T
k =

x2Ck xyCk xCk

xyCk y
2Ck yCk

xCk yCk Ck

 , (8)

where Ck = gkg
T
k . Due to this summation, M preserves positive semi-definite

and block-symmetric properties of Mk, therefore it has 18 independent elements.

M can be partitioned according to the following:

M =

[
A B
BT C

]
, (9)

where the 2 × 2 matrix C =
∑
k gkg

T
k is the matrix of the 2D Harris corner

detector, also known as the second moment matrix (of gradients).

For example, images of concentric circles, polygon vertices and lines are in-
variant against rotation, scaling around the vertex and against translation re-
spectively. See Figure 2. This can be expressed by algebra as the parameter
vector of these flows is in the null-space of the corresponding M matrix. See
[1] for more details, where several methods are given. Figure 3 demonstrates
localization of mean circle on images and localization of scaling center.

Regular and degenerate conics can be identified in closed formulation, Fig-
ure 4 shows cases when rank(M) = 4.
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Fig. 2. Concentric ellipses and streamlines of their invariant flow.

Fig. 3. SAFT can be used to find optimal center of rotation (a,b) or scaling (c,d) in
closed form.

Fig. 4. Conics resulting rank 4 M matrices are precisely reconstructed.
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2.4 Registration of photographs by SAFT

Main steps of the registration of two photographs are:

– Localization of keyframes
– Compressing visual contents of keyframes into descriptor vectors
– Selecting matching candidates based on descriptor vector distances
– Robust determination of transformation model by validating matching can-

didates based on their geometric arrangement.

SAFT offers an alternative solution for descriptor extraction. Multiple band ap-
proach is used, the 18-DoF SAFT matrix M has to be evaluated using different
frequencies of the image signal. 3 bands are considered to be enough. Preliminary
parametrization of the 3 bands described in [2] has a performance gap relative
to the SIFT descriptor, which was preliminary expected based on the difference
of descriptor vector size (54 for SAFT and 128 for SIFT). Further optimization
resulted parameter-triplets which can perform slightly better than SIFT dur-
ing large disparity binocular registration. The involved evaluation of the SAFT
matrix uses Finite Impulse Response (FIR) Gaussian windowing.

3 Harris-based Affine Shape Adaptation

Lindeberg described a possible iterative algorithm to localize regions which are
fixed for affine transformations, based on the second moment matrix of gradi-
ents (C) [9]. Mikolajczyk made some improvements on the method [10] and give
detailed performance tests in [11]. The basic idea behind the method is that
the images are supposed to contain regions which are affinely distorted between
views. Results of Scale-Space theory are generalized to the affine case: No prelim-
inary information can be used about the size (and shape) of the differentiating
and integrating kernels used during the processing of the image. Many sizes (and
shapes) has to be used to extract local image features. Only the output of those
filters can be accepted, whose kernel sizes (and shapes) are validated by output
results. This validation for the Harris-Affine method requests that

– the shape of the differentiating and integrating kernels must be the same.
– The second moment matrix C (matrix of the Harris detector) must have a

shape according to the used kernels.
– the size and position of the integrating kernel must yield to local maximum

of a scalar which is a function of normalized second moment matrix σ2
difC,

for example trace(σ2
difC).

– the ratio of the size of the integration and differentiating kernels (σint/σdif )
can be fixed, in this case this ratio is a parameter of the method.

When an elliptic region of the images satisfies these conditions, then any
(non-singular) affine transformed view of it satisfies the conditions, as long as
sampling effects does not play role (the lower σ parameter of the differentiating
kernel is larger than 1 . . . 2 pixels).

The task is to find this kind of fixed-points of affine transformations of the
image quickly. Highlights of the proposed iterative methods are:
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1. initiating kernel shapes to circular
2. finding local maximum in scale and position
3. evaluating C using actual kernels
4. updating kernel shapes
5. go back to 2 until convergence occurs or fails.

The most intensive task during this iteration is to evaluate the Harris matrix
C using the same differentiating kernel but slightly displaced integration kernels
while seeking maximum on the plane. This is repeated for at least 3 different
value of scale.

4 Equivalence

This section proves, that the SAFT descriptor is equivalent to the linearized
model of the Harris-Affine method, if distortions of the differentiating kernel are
not taken into account.

If the SAFT matrix M is evaluated on an origin-centered unit deviation
Gaussian window, then its components can be described as integrating matrix

C with weighting functions xpyq 1
2π e
−[x y][x y]T/2. Due to the special properties

of the Gaussian function, these weighting functions corresponds to planar deriva-
tives of the Gaussian window of orders p and q. Moreover, these functions also
correspond to the infinitesimal change of the weighting function with respect to
its parameters like shift, scaling and affinity in different directions:

C(TH) =

∫
ggTe−p

T
HTH

TDiag([1 1 0])THpH/2dA∫
1 · e−pT

HTH
TDiag([1 1 0])THpH/2dA

, (10)

where pH = [x y 1]T. The shape and position of the integration kernel are
described by

TH =

[
R t
0 0 1

]
.

The points of the main ellipse of the integration kernel transforms to the unit
circle by multiplying their column vector representation from left by TH. Then
(10) simplifies to:

C(TH) =
|RTR|
2 · π

∫
ggTe−p

T
HTH

TDiag([1 1 0])THpH/2dA. (11)

The dependence of C from t = [tx ty]T (given R = I2×2) is the following:

∂C/∂tx =
1

2π

∫
−ggTxe−p

T
HI2×2pH/2dA = −2xC(I3×3)/2 (12)

∂C/∂ty =
1

2π

∫
−ggTye−p

T
HI2×2pH)/2dA = −2yC(I3×3)/2,
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If we introduce scalars k, c, s to encode changes of the shape of the applied
Gaussian bell according to

RTR = I2×2 +

[
k + c s
s k − c

]
, (13)

then the derivatives of C with respect to these parameters evaluated at t = [0 0]T

and R = I2×2 are:

∂C/∂k =
1

2π

∫
ggT(2−(x2 +y2)/2)e−p

T
HI2×2pH/2dA = (4−(x2 +y2))C(I3×3)/2,

(14)

∂C/∂c =
1

2π

∫
−ggT(x2 − y2)/2e−p

T
HI2×2pH/2dA = −(x2 − y2)C(I3×3)/2, (15)

∂C/∂s =
1

2π

∫
−ggTxye−p

T
HI2×2pH/2dA = −2xyC(I3×3)/2. (16)

Therefore, the SAFT matrix of infinite Gaussian windows describes the value
and dependence of the Harris matrix C on the parameters of the infinite Gaussian
integration kernel, supposed that the same coordinate frame is used during the
integrations.

Combining these formulae with the coordinate transformation rules of SAFT,
we obtain results for the dependence of the Harris matrix C on image distortions,
however, the distortion of the differentiating kernel is not taken into account.
Any usage of SAFT (either information extraction or matching) has some kind
of robustness which gives (different levels of) robustness of computation results
against anisotropic distortions of the differentiating kernel relative to image con-
tents.

4.1 Shape Adaptation

This subsection describes, how the above described equivalences can be utilized
during affine shape application. Standard shape adaptation solutions evaluate C
using a kernel shape, then overwrite the applied shape corresponding to the ele-
ments of C. Depending on the window’s vicinity, this step in shape parameters
c, s can be considerably smaller or higher than the optimal one. (Consider the
shape of the letter ’H’, and a window which contains only the vertical line of it.)
Therefore, it is advantageous to restrict shape change between image integra-
tions. This restriction can be that the transformation between successive kernel
shapes can be composed of a rotation and an affinity of a ratio not higher than
2±1/2.

Let us collect the independent elements of matrix C∗ (with any index) into
vector c∗ = [C∗1,1 C∗1,2 C∗2,2]T. In the following equation g2x

gxgy
g2y

 = Γ

cs
1

 =
[
cc cs c0

] cs
1

 ≈ c(c, s) (17)
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Γ contains the linearized dependence of C from shape changes described by c, s,
c0 = c(I3×3), cs = ∂c/∂s(I3×3) and cc = ∂c/∂c(I3×3).

The shape described by c must coincide with the shape of the integration
window ( described by [1 + c 2s 1− c]), yielding the eigenvalue problem:

Γ

cs
1

 = λ

 1 0 1
0 2 0
−1 0 1

cs
1

 (18)

The exact solution could be obtained by calculating the eigenvectors of 1 0 1
0 2 0
−1 0 1

-1

Γ.

Since the model utilized is already a linear approximation, a fast approximation
of the eigenvectors is appropriate.

To do so, an iteration has to be started by evaluating the SAFT matrix using
the current kernel shape. The obtained matrix has to be coordinate transformed
to the frame representing the kernel shape used. Then c = 0 and s = 0 has to be
set. The matrix Γ must be normalized in each step as Γ[c s 1]T has unit length.
Then, the two sides of (18) can be solved for minimum squared difference. When
the shape change during this iteration exceeds the above described limit, new
SAFT measurements have to be carried out on the image. This modification can
be performed by integrating only 9 required components of M instead of 18. If
the image contains a fixed-point exactly lying under the integration kernel of
SAFT, then this is signaled by

M5,6 = 0 and M5,5 = M6,6. (19)

According to [1], the SAFT matrices of regular shapes satisfy these equations.

Local maxima of trace(C) on the plane: The trace of C has a maximum with
respect to translations, if ∂trace(C)/∂x = 0 and ∂trace(C)/∂y = 0. These con-
ditions are identical to

M1,5 +M2,6 = 0, M3,5 +M4,6 = 0. (20)

Moreover, if the trace is normalized with respect to different scales as the effect
of the differentiating filter not being taken into account, only the area growth
of the integration kernel is observed, then a maximum of normalized trace can
exist if ∂trace(C)/∂k = 0. This corresponds to

4∑
l=1

Ml,l = 4(M5,5 +M6,6). (21)

The SAFT matrix of regular shapes in the origin (according to [1]) satisfies these
equations if the coordinate unit is chosen appropriate.
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5 Alternative evaluation of SAFT

Let us investigate the 1D function:

f(x) = xG(x, σ),

where G(x, σ) = 1/(
√

2πσ2)e−(x/σ)
2/2 is the 1D Gaussian function. f(x) can be

evaluated by the above formula, or approximated by the multiple of the difference
of two Gaussian windows separated in the x direction:

f ≈ c(G(x− d/2, σ)−G(x+ d/2, σ))

The smaller the displacement d is, the higher multiplication must be used and
the more accurate result will be obtained. In the following we investigate what
happens if we use as large a displacement as it does not distort the resulting
function’s shape too much. The purpose in doing so is that the above integral
of any feature vector interpreted on points of the image could be integrated by
using displaced Gaussian kernels of variance σ0, followed by taking their linear
combinations. This can be used to to evaluate integrals of kernels G((x− d), σ)
and also (x− d)G((x− d), σ). Moreover, utilizing that

∂G(x, σ)/∂σ = 1/σ((x/σ)2 − 1)G(x, σ)

functions like (x − d)2G((x − d), σ) can also be evaluated. The motivation to
evaluate weighting functions in this way is that hopefully, a wide range of shifts
(d) and sizes (σ) can be quickly approximated using the linear combinations of
a few equally spaced integrals.

Extending this to 2D Gaussian functions, components of SAFT can be ap-
proximated by linear combinations of C integrated on different places. Fig-
ure 5 shows approximation of SAFT components, and differences from the exact
weighting functions. Figure 6 shows arrangement of kernels used to integrate C,
which was used to approximate M of an integration kernel only slightly wider.
To approximate M on a window of σint, this setup uses 7 Gaussian windows of
σ0 = 0.955 · σint, separated at a distance of dsmpl = 0.725 · σint and arranged in
a hexagonal grid. The maximum difference of the weighting functions and their
approximation is 4.2%, calculated as a ratio of the quadratic mean (effective)
value of the functions and the difference from their approximations. This evalua-
tion enables the approximation of M on many similar integration windows using
only a few equally spaced integrals of C.

5.1 Test Results

This section describes the comparison of standard and alternative evaluation of
SAFT. This comparison could be made based on matching or geometric abil-
ities of SAFT. The alternative evaluation is an approximation, which can be
considered as adding slight disturbances to the exact SAFT matrix. Matching
abilities are robust to small disturbances and performance is signaled by a scalar
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Fig. 5. 6 Weighting functions of SAFT: corresponding to 1, x, y (1st column) and
x2 + y2, x2 − y2, 2xy (2nd column). For each weighting function, accurate(a), ap-
proximated(b), difference(c) and accurate compressed to have same effective value as
difference(d) is shown.

measure of inlier ratio. Extraction of geometric information is directly affected
by disturbances, which are shown by comparing the extracted geometric infor-
mation superimposed on the images. Therefore, the latter will be used.

During the tests, the image is blurred with σdiff = 1.3pixels, then image
gradients and and [g2x gxgy g2y] (Harris-image) are computed on each pixel. C

is then integrated with basis functions of G([x y]T, σint) · [x2 xy y2 x y 1] to
obtain the 3 × 6 matrix Me which contains the independent elements of exact
SAFT matrix M. To obtain the approximation, the Harris-image is blured with
σ0. The result is sampled at 7 positions corresponding to Figure 6, with distance
between samples of dsmpl. The obtained data is organized into a 3 × 7 matrix
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Fig. 6. Hexagonal arrangement of 7 Gaussian window used for the approximate eval-
uation of SAFT matrix M.

Ma, which is transformed by

M′
a = MaT,T =



1.9326 0.0000 −0.6123 −0.4810 −0.0000 0.0581
0.0301 −1.1034 1.2977 −0.2427 0.4180 0.0585
0.0301 1.1034 1.2977 −0.2427 −0.4180 0.0585
−2.9944 −0.0000 −2.9744 0.0000 −0.0000 0.6516
0.0301 1.1034 1.2977 0.2427 0.4180 0.0585
0.0301 −1.1034 1.2977 0.2427 −0.4180 0.0585
1.9326 −0.0000 −0.6123 0.4810 0.0000 0.0581


.

to obtain independents elements of the approximated SAFT descriptor. T was
determined by minimizing squared differences between approximated and orig-
inal basis functions, see Figure 5. Then M is reconstructed from both Me and
M′

a and several geometric information is extracted.
Figure 7 shows these geometric items superimposed on the original images.

Considerable difference is seen only on subfigures 6,7 and 8 regarding the de-
tected parabolae (blue). Inaccuracy of the exact method is due to the small
size of the Gaussian window used. The approximation performs worse in case 6,
but better for image 8. The approximation is not distinguishable from the exact
method in other cases shown. It can concluded that the alternative method us-
ing 7 samples can be used for practical applications. Applications which require
accurate geometric information extraction should use more samples, but further
investigation has to be made regarding accuracy.

5.2 Possible applications

Several modifications of algorithms related to SAFT can be based on this results.
For example, the Harris image can be blurred (with σ0) and sampled over a
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Fig. 7. Comparison of extracted geometric quantities. (a): Original Image
(b,c):Gradient strength image windowed with applied Gaussian filter (of σ =
0.2 imagewidth). Superimposed geometric quantities are calculated by SAFT matrix
extracted by definition (b) and by approximation (c). Green: Potential lines of accumu-
lated velocity distribution (WH). Red: Center of best rotation and mean radius. Blue:
Approximated conic for shapes of rank(M) = 4.

hexagonal grid of lattice size dsmpl/2. Then, the SAFT matrix can be evaluated
at any position with 21 read operations and with a 7× 6 matrix-multiplication.
Applications which require calculation of the SAFT matrix over overlapping
windows of the same size include vectorization of pixelized images and search
for SAFT-characteristic features or regions fixed against affine distortions (which
are characterized by (19), (20) and (21)). When the whole image plane has to
be analyzed, the blurred Harris-image can be obtained by a method similar to
building of Gaussian Scale Spaces. Even the evaluation of the SAFT matrix of
the same differentiating kernel but larger integrating kernels can be speed up by
using blurred Harris-images. It is useful only if many SAFT matrix has to be
extracted, so the fastening of the calculation of individual SAFT descriptors is
larger than the computational demand of calculating the blurred Harris-images.
However, these calculations fit to the abilities of GPUs, which perform uniform
calculations over uniform data-sets much more efficiently than CPUs. Extraction
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of thousands of SAFT descriptors for photograph matching and affine-shape
adaptation are expected to utilize this possibility.

6 Conclusions

The connection of the Harris detector-based Affine Adaptation (Harris-Affine)
and the Self Affine Feature Transform (SAFT) was analyzed in this paper. It
was shown, that due to the derivative rules of planar Gaussian functions, the
information enclosed to the SAFT descriptor describes the linear dependence of
the Harris matrix (or second moment of gradients) from the 5 free parameters
of the used Gaussian integration kernel. It was shown that this relation can be
used to decrease the computational requirement of the Harris-Affine iteration,
however, further research has to be made in this direction. Based on the connec-
tions shown, an alternative method was introduced which evaluates the SAFT
matrix. Application which can utilize this alternative descriptor extraction were
enumerated. As aconsequence, properties of the SAFT matrix of regular shapes
were connected to affine-adaptation.
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