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Abstract. This paper presents a high quality Non-Photorealistic Ren-
dering (NPR) framework. Our system focuses on artistic line drawing
generation and supports different contour and hatching line renderings.
All these lines are represented as individual spline primitives and ren-
dered as textured triangle strips. This paper mainly focuses on one pow-
erful feature of our system, namely stroke style synthesis. To give the
user a high degree of freedom in stylization, a sample stroke pattern can
be defined for each artistic line type and the style of these samples will
be transferred to all other individual lines. The samples can be given as
images and will be converted into an offset list. We use random Markov
fields and Q-learning to obtain new offset lists that can be used to perturb
our line primitives.

1 Introduction

Photo-realism has been in the focus of rendering for decades. Photo-realistic
rendering aims at creating images that are indistinguishable from real-world
photographs, which is made possible by the precise simulation of physics laws
— e.g. the Maxwell equations — during the rendering process [19]. The level of
accuracy of the representation of physics in the rendering code determines the
level of realism of the result.

Computer graphics also tries to mimic artistic expression and illustration
styles [4, 3, 14, 18]. Such methods are usually vaguely classified as non photo-

realistic rendering (NPR). While the fundamentals of photo-realistic rendering
are in optics that are well understood, NPR systems simulate artistic behavior
that is not mathematically founded and often seems to be unpredictable. There-
fore, the first step of NPR is to model the artist establishing a mathematical
model describing his style, and then solve this model with the computer. The
result will be acceptable if our model is close to the not formally specified artis-
tic behavior. During the history of NPR, many individual styles were simulated.
In order to exploit their potential, these algorithms should be integrated in a
complete system, and more importantly, their flexibility should be increased [22,
2, 11]. A critical problem of rendering is that while frames are calculated inde-
pendently the image sequence should not present flickering or inconsistency [13,
9, 7]. The rendering process should resolve this contradiction while presenting
natural randomness inherent in manual work [5, 1].
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This paper presents an automatic method to generate strokes for line art il-
lustration, e.g. for contour or hatch lines. In order to provide natural randomness,
we build a Markov model from sample strokes, and use this model to generate
automatic stokes. The generated strokes will be similar to the sample strokes in
a statistical sense, but they are not periodic and might have arbitrary length.

2 Previous work

Painterly rendering covers the image by brush stokes to produce a painted look.
Brush strokes may be fully random, sampled according to only the 2D image [9]
or using also 3D geometry [13]. The size and the texture of the brushes can vary
to simulate artist work who details only those objects that are put in the focus
of the image.

Line art illustration or pen-and-ink rendering uses textured line primitives to
describe the scene. These line primitives can emphasize object boundaries, called
silhouettes, and places where there is an abrupt change in surface geometry, e.g.
in ridges or contours.

Natural line stokes can be produced using hand made examples, as proposed
in [8], which is inspired by video textures [17, 16, 15].

In this paper we generalize the Markov process method proposed for video
textures and make it appropriate for animation generation. By simplifying the
original approach we provide interactive control and by pre-generating curves,
we eliminate flickering in animation sequences. The developed algorithm is built
into a post-production sofware.

3 Contour and hatch line generation

Contours depict the boundary of the visible shape of an object. The silhouette
separates the object from its environment, internal contours emphasize internal
features. Contours have an important role in presenting the shape of the object.
Contours show up in hand-made drawings, pen-and-ink illustrations, and may
be added to paintings as well.

Contours can be created in the rendered image using edge detection filters.
Since we wish to emphasize object boundaries, edge detection is worth executing
on the depth image rather than the color buffer. A significant drawback of this
approach is that the resulting contours are rather noisy and are made of inde-
pendent points and not as a well defined curve. Thus, it is very difficult to assign
a specific drawing style to the contour line. Fortunately, contours can also be
generated from the 3D object geometry. Silhouette curves contain points where
the surface normal is perpendicular to the viewing direction. We can also dis-
tinguish interior silhouettes from exterior silhouettes that give the outline of the
objects seen from the camera. Ridges and valleys are defined by surface points
where the surface normal changes abruptly.

To display contours we should extract them from the geometry, which is de-
fined by a triangle mesh. Silhouette contours can be defined as the edges that
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share a front and a back facing triangle. However this definition leads to a col-
lection of line segments that should be combined with a set of heuristics into
long smooth paths. Another solution is to reconstruct the surface normal of the
original, not tessellated surface from the discrete surface representation. First,
the normal vector is estimated at the triangle vertices as a weighted average of
the triangle normals. We use the angle of the triangles at this vertex as weights.
Then, the reconstructed normal inside the triangles is obtained as the bi-linear
interpolation of the reconstructed vertex normals. Taking the reconstructed nor-
mal, first we search for silhouette points on the edges of the triangles by checking
when the normal becomes perpendicular to the viewing direction (the zero cross-
ing of the scalar product of these two vectors). As these lines will enter and exit
at two of the edges of a triangle, continuous silhouette paths can be easily ex-
tracted. We can smooth these lines to better approximate the original surface.
Ridge and valley curves are extracted similarly, they are defined by the zero
crossing of the derivative of the surface curvatures.

Contours found so far must be processed further and cut those parts that
are not visible from the camera due to occlusions or being outside of the camera
frustum. To execute these operations, curves are vectorized and clipped onto the
view frustum, then rasterized and the visibility is checked in every pixel. We
can use depth buffer test or object and face ID test for visibility checking. If the
curve turns out to be invisible in a pixel, the curve is cut here.

Hatch lines can be rendered similarly to contours. Seed points are generated
with a density that mimics local shade [21]. Then hatch lines are extruded into
the main curvature directions.

4 Procedural repetition of hand-drawn patterns

NPR produces the final image as a set of line or curve primitives. These primitives
must look natural and similar to curves drawn by a human artist. To achieve this
goal, we take curve samples drawn by humans, analyze them statistically, then
use the statistical model to generate curves of arbitrary lengths that are similar
to the samples in a statistical sense. Our underlying statistical model is the
Markovian process [8]. During model building, this process is defined from the
information of the sample curves. A Markovian process is unambiguously defined
by the state transition probabilities, so in the first phase, we use Q-learning to
build the state transition probability matrices from the examples. Then, in the
generation phase, the probability matrices are exploited to generate curves that
have similar statistical properties than the original example curves.

In order to interpret a curve as a finite state discrete time stochastic process,
we sample it regularly and the index of the sequence is interpreted as the discrete
time variable, while the sampled function value, i.e. the offset from a smooth
curve, is the discrete state.

Denoting the function value at index i by yi, the state space of the process is
y1, . . . , yk where k is the length of the stroke. The original curve can be imagined
as a Markovian process with probability 1 transitions (Figure 1).
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Fig. 1. The original curve as a Markov process with deterministic transitions, and
randomizing the curve by allowing state transitions that to states that are close to
the original next state. The original curve is a Markov process where state transitions
are deterministic. By randomization, we allow transitions to all states based on the
difference between the original next state and the displacement value. For example
(the graph on the bottom), the next state of the first state in the original curve has
displacement value 10. So we reduce the probability of the transition to this state from
1 and the difference is distributed in state transitions depending on how far other states
are from value 10. In this example, values 9 and 11 are close, so we also allow transitions
to these states as well, while other values are far, so the transition probabilities to those
states are small (we depicted only higher probability transitions with arrows for clarity).
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We apply a probabilistic approach to allow the generation of brush strokes
that are similar to but also different from the specified curve. For a sample stroke
with the length of k, we create a Dij [n×n] distance matrix where n = k + 1
and ij denotes the distance between the offset of state i and j of the sample.

The main diagonal entries are always set to 0 as there is 0 distance between
a state and itself:

Dij =







0, if (i = j ∨ i = n)
∞, if (i 6= n ∧ j = n)
|yi − yj | , otherwise.

(1)

If we assigned probabilities to transitions in a way that the probability is
one where the distance between two states is equal to the value of the distance
matrix, then we would always generate the original curve (let us ignore the case
when two states have the same value). So we relax this requirement and give
non-zero probabilities to those transitions as well, where the distance is close to
the distance matrix value.

The highest transition probabilities are set to the states that follow the tra-
jectory of the reference curve, and lower ones are assigned to the others with
an exponential characteristic inversely proportional to their distance. The σ pa-
rameter defines the weight of this characteristic — as lowering it directs the
algorithm mostly towards ideal transitions, a higher value would favor paths
that are less likely to occur in the given sample:

Pij ∝ exp(−Di+1,j/σ). (2)

To be able to utilize a probabilistic approach, matrix Pij must be a proba-
bility matrix, i.e. its row sums must be 1:

∀i :

n
∑

i=0

Pij = 1.

This simple approach has two problems. On the one hand, it does not take
dynamics into account, but according to the properties of Markovian processes,
it considers only the current state when the state transition probabilities are
determined. However, human hand has mass and momentum, so when the curve
moves in a given direction, it is more likely that the curve continues into that
direction than turning to the opposite one. To handle this, we use the concept
introduced in video textures, and filter the distance matrix before computing
the transition probabilities.

On the other hand, this process will quite quickly reach the last state from
where there are no further state transitions, so our process is trapped and the
curve is terminated. To avoid this, we set the transition probability to the ter-
minating state to zero, and propagate this modification back to the Markovian
model. The propagation is governed by Q-learning.
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Fig. 2. Weighting the distance matrix resulting in a Markov process where each state of
the new graph is characterized by two values, the original value which is used when the
curve is drawn, and an average value that is taken when the distance from other states
is calculated. Using the average rather than the original value mimics the dynamics of
curve generation.

4.1 Brush movement dynamics

According to the attributes of the Markov random field approach, the state tran-
sitions are taken independent of the preceding states. To preserve the dynamics
of the artistic brush movement (i.e. to assume some momentum that cannot be
changed instantly), when examining state i, we also consider the preceding states
[i− 1, i− 2, . . . , i−m] by linearly weighting them (Figure 2):

D′

ij =

m
∑

k=0

wk Di−k,j−k. (3)

The weighting frame sizem can be parameterized freely for different, interest-
ing results. According to the experiences with our own reference implementation,
m = 4 and wk = 1/m are well suitable for most cases.

So far, we did not consider what happens at the edge of the matrix where
there are no m predecessors. Here, weight w should be increased to guarantee
that the total sum of distance values is preserved. Generally, we use the following
formula that handles edges as well:

wk =
1

min{min(i, j),m}+ 1
. (4)

4.2 Model building by Q-learning

The described method is unable to produce brush samples with infinite length
as there is a high probability that the algorithm follows the paths used in the
reference curve, it will soon reach the end of the sample curve, remaining stuck
in a “dead end”.

To avoid these “dead ends”, further examination of the reference curve is
advised. The utilization of Q-learning (or reinforcement learning)[10] makes it
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Fig. 3. Eliminating dead ends by setting the transition probability to the last state
to zero and propagating this effect back with Q-learning. In the original process, the
probability of transitioning to the last is 0.98. This is replaced by zero, but then the sum
of exit probabilities of the last but one state is not unity. This is fixed by normalization,
but we made an abrupt change in the model, so the probability of reaching this last but
one state should also be decreased. Q-learning is an iterative approach for updating
the whole graph.

possible to efficiently assign increased costs to the transitions that are expected
to lead to unfavorable states. Originally, Q-learning works by learning an action-
value function that gives the expected utility of taking a given action in a given
state and following a fixed policy thereafter.

The cost of a transition is defined as a metric that is proportional to the
absolute value of the displacement (offset) value between the two states. In order
to keep the process from entering the final state, we assign very large cost to
reaching the final state. The technique is proved to be convergent using the α < 1
learning rate parameter, therefore we can solve the problem with iteratively
applying

D′′

ij ← D′

ij + α min
k

D′′

jk (5)

after the D′′

ij ← D′

ij initialization until convergence is reached. Intuitively, Q-
learning assigns a cost to a transition that is the sum of the cost of this step and
the cost of the cheapest trajectory from the next state. In a more general form,
we also allow the computation of some power p of the previous costs:

D′′

ij ← (D′

ij)
p + α min

k
D′′

jk. (6)

After weighting and Q-learning, the state transition probabilities are com-
puted from the modified transition distances (or costs):

Pij ∝ exp(−D′′

i+1,j/σ). (7)
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5 Analysis of the example stroke

The example stroke of the artist is stored in a bitmap image. Before analyzing his
or her style to reuse it, the sample needs to be transformed to meet the definition
of the mathematical functions. For any values of the variable x in the freeform
brush sample, we have several yi offsets — actually, as any kind of real stroke
will have an own wideness, more yi values are expected. Since the algorithm’s
task is to analyze the original path of the sample, we can solve the problem by
the skeleton of the curve [6].

6 Curve generation

During the curve synthesis, new curve offset values are generated and used to
deform previously made geometrical models. The original and new curves will
both be represented with a Catmull-Rom spline.

We compute a new point with the help of the Pij probability matrix: for
any state k, the next state k + 1 can be determined by generating a random
number on the unit interval and picking the row k of the matrix: we are given a
row vector [Pk1, Pk2, . . . , Pkn] where kn denotes the transition probability from
state k to state n. Since the mentioned matrix is a stochastic probability matrix
discussed in section 4.2, for any k, the sum of the elements of the row vector will
be 1. For each next possible state we define an interval from the unit interval
that is proportional to its probability, and accept it as the next state if the newly
generated random number falls into its interval.

However, matching random numbers with the entries of the row vectors taken
from Pij can be rather troublesome. Consider a [1500× 1500] matrix, where the
main diagonal entries are between 0.99 and 0.999 for low σ parameters. There-
fore the main diagonal takes the 99% of the interval, and all other entries are
concentrated in the remaining 1%. The random number generator must be suffi-
ciently accurate to produce satisfactory results. In our reference implementation,
we used the Mersenne Twister algorithm with the accuracy of 53 bits [12].

The newly generated random offsets need to be used on previously drawn
contours. However, the distortion of the curves is trivial for a straight line by
simply adding the offset values to it, the same method cannot be used on bent
lines. A dedicated coordinate system is used to follow the path of the contours.
The solution is known as the TN (tangent-normal) coordinate system, where one
axis points to the tangent direction (T ), one towards the normal (N ). Before any
distortion the curves we must make sure that enough geometry detail is present
that is the curve is finely and evenly tessellated in image space. The user can also
set the image space length of the original sample pattern to be reconstructed.

7 Textured line drawing

Both contour lines and hatch lines arrive at the rendering phase as Catmull-Rom
splines defined by their control points [20]. Here, these 2D curves are drawn
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to provide a hand-crafted look while allowing interactive artist control. Hand-
drawn curves have roughly constant width on the image independently of the
object’s distance from the virtual camera. The width and the image of a stroke
depend on the artist’s device used to draw this stroke. Hand-drawn strokes are
not geometrically exact, they have inherent randomness. In order to present
natural looking line art, curves are fattened to polygons and rendered as textured
polygon strips where the texture simulates brush or pencil strokes. Textured
line drawing consists of two basic tasks. We have to fit a triangle strip to the
curve that represents the path of the stroke, and texture coordinates need to be
calculated for the triangles. Both tasks are performed in image space.

Fig. 4. Strip generation for a Catmull-Rom spline.

The goal of stripification is to create a triangle strip that fits to a curve. First,
the curve is decomposed to shorter segments of similar arc length. Computing the
derivative, i.e. the tangent vector at the end points of the segment and rotating
them by 90 degrees, we obtain the normal vectors of the curve. Translating the
end points in the direction of the normals, we can calculate the vertices of the
enclosing polygon strip (Figure 4).

Fig. 5. Three different textures simulating brushes and a curve textured with them.

The u texture coordinate for the resulting strip is computed from the arc
length. The v coordinate is 0 or 1 depending on whether the vertex is the trans-
lation of the curve point by the normal or in an opposite direction.



Procedural Generation of Hand-drawn like Line Art 511

8 Results

We integrated the contour and hatch line extraction, the artistic pattern regener-
ation and the line stripification and rendering into a movie production pipeline.
Two main commercial software packages were used: 3Delight (a RenderMan
compatible renderer) and Nuke (a postprocessing application with advanced 3D
capabilities). Line extraction was implemented in the renderer while all other
tasks — which require user interaction- were moved to the postprocessing ap-
plication. The user can freely draw the desired pattern with the built — in
capabilities of Nuke and the final deformed contour and/or hatching curves are
displayed interactively.

Figure 6 shows a torus where sample strokes modify the style of the silhouette
strokes.

Fig. 6. Silhouettes on a torus model.

Fig. 7. Torus rendered with different hatching styles.

Figure 7 demonstrates that a wide variety of artistic styles can be simulated
by using different brush strokes. Figure 8 depicts a pawn rendered with strokes
following the main curvature directions and with two different randomizations
based on two sample strokes. Figure 9 presents a Venus where both silhouettes
and hatch lines are generated by the proposed model.
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Fig. 8. Pawns rendered with strokes following the main curvature directions (left) and
with two different randomizations based on two sample strokes.

Fig. 9. Hatching and silhouettes of the Venus model.
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9 Conclusions

This paper presented an NPR system and its application in the movie rendering
pipeline. Our system implements NPR effects like contouring and hatching. This
project also proves that NPR effects can be made flexible enough to allow the
artist to express his own ideas and produce images meeting his expectations.
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19. László Szirmay-Kalos. Monte-Carlo Methods in Global Illumination — Photo-
realistic Rendering with Randomization. VDM, Verlag Dr. Müller, Saarbrücken,
2008.
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