
5. MODELLING OF NOISE

Motivation:

- analytical treatment can be very complex

- having only physical, intuitive picture

- verifying theoretical solutions

- testing with real, physical noise sources

Simulation is very powerful, however neglects

several real facts: always check with

measurements, if possible.
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5.1. Analog simulation

Analog computation: uses analog operational

elements

- quantities -> voltage, current

- equations -> realized by electronics

5.1.1. Operational units

5.1.1.1. Operational amplifier
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Ideal case:

- Vout=A(V+-V-), A=∞

- input resistance =∞

- input currents = 0

Real:

- A(f), at DC: 104..107

- offset voltage (<mV), input currents (nA),

input resistance (>MΩ)

- temperature dependence, etc.
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5.1.1.2. Amplification

- inverting:

Vout/Vin=G=-R2/R1

- non-inverting

Vout/Vin=G=1+R2/R1
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5.1.1.3. Addition

If R1=R2=R3
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5.1.1.4. Subtraction

if R1=R2=R3=R4:
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5.1.1.5. Integration, differentation
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5.1.1.6. Log, exp functions
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5.1.1.7. Multiplication, square root

Possibilities:

- using exp/log functions

- preferred: special circuits

5.1.1.8. Function approximation

Special functions:

- build from previous operations

- approximate with Taylor series

- special circuits
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5.1.2. Noise generation methods

5.1.2.1. White noise

- cooled or warmed resitor

- biased zener and amplification

- biased transistor EB junction

- high frequency cutoff always present
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5.1.2.2. Lorentzian noise

Filtered white noise:

Corner frequency: f=1/2πRC

Correlation time:τ=RC

5.1.2.3. 1/f2 noise

- integrated white noise

- to avoid divergence: low frequency cutoff
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5.1.2.4. 1/f noise

- natural amplified noise of transistors and

other devices

- weighted sum of Lorentzians:
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- special filtering, e.g.:
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Properties:

- limited frequency range

- both low and high frequency cutoff:
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5.1.3. Solving differential equations

General recommendations:

- introduce new variables

- convert to integral equations

- check stability and precision

New variables:
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Example #1:
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Example #2:
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Note: Higher order, coupled and non-linear

equations also can be solved

5.1.4. Practical considerations

- frequency range

- precision

- stability

- voltage range (truncation, noise)

- ...
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5.2. Numerical simulations

Numerical simulations are very efficient:

- all advantages of digital representation

- arbitrary precision (at the expense of

speed)

- only software to be "realized"

- fast improvement of hardware (computers)

- extensive, tested libraries for wide range of

problems

- can be mixed with analog modellings
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Some disadvantages:

- artificial systems

- software can be very complex for simple

problems

- programming language limitations

- sometimes computation speed is low

5.2.1. Monte Carlo methods

- solution of matemathical and physical

problems using random quantities
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5.2.2. Generating random numbers

Properties:

- pseudo-random numbers: deterministic

- reproducable

- tests, theory always required

Recommendations:

- do not use built-in generators

- higher order bits are "more random"

- do not use floating point arithmetic
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5.2.2.1. Linear congruential method

Max. period: m (not neccesarrily good) if:

- c is relative prim to m

- (a-1)/p=int, for all p prim divisor of m

- (a-1)/4=int, if m/4=int

Some tested values:

a=1664525, m=232

a=69069, m=232

a=1812433253, m=232

BAD!!! : a=65539, m=231
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5.2.2.2. Additive method

- experimentally tested

- no proper theory

- fast, simple, long period > 255

5.2.2.3. Shuffling random numbers

Aim: improve randomness

Method: shuffling
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Initial state

- xn random numbers to be shuffled

- k fixed, v0,...,vk-1 filled

- y=xk

Algorithm (one cycle):

- j=ky/m

- y=vj

- vj=xn, next random value
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5.2.2.4. Normal distribution

Using central limit theorem

Other methods also, e.g.:
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5.2.2.5. Arbitrary distribution

If y denotes a random variable with uniform

distribution over 0..1, and F(x) is the desired

distribution:

x=F-1(y)

Sometimes it can be complex, e.g.: normal

distribution

5.2.2.6. Generating noises with different

spectra

White noise:

- random generators provide white noise
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Other noises:

- digital implementation of analog methods

(digital filters)

- FFT:

wi -> FFT -> H(f) W(f) -> IFFT -> yi

- special methods

Lorentzian noise:

- limited random walk

- xn+1=c xn+wn, 0<c<1

1/f2 noise:

- random walk: xn+1=xn+wn
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1/f noise:

- weighted sum of Lorentzians:

Example:

- Gaussian amplitude distribution

- swithcing times: Ti=To 2i
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5.2.3. Random decisions

Generate a random event with probability p:

- generate a random number x in [0,1)

- if x<p then generate the event

5.2.4. Some applications of MC

MC methods have extremely wide range of

applications from integration, solution of

algebraic and differential equations to

simulation of complex physical systems.
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5.2.4.1. Integration

I≈Nunder/Ntotal*A rect
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5.2.4.2. Random walk

Discrete modelling of Brownian motion:

xi+1=xi+wi

where wi is a random variable, +1 or -1 with

probability 0.5

This can be considered as a numeric

integration of wi.
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Distribution of amplitude after n steps:

For n=100:
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5.2.4.3. 2D Ising model

A simple model of magnetism: Ising model

- elementary magnets: spins

- interaction between neighbouring magnets

only

- temperature -> energy for altering spins
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Hamiltonian:

Si=±1; <i,j>: sum on nearest neighbours

Monte Carlo simulation:

1. Select a set of values Si

2. Consider a given spin Si

3. Calculate the local energy for this spin:
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4. Si=-Si

5. Calculate the new local energy:

6. Evaluate∆E=E’-E

7. Evaluate the transition probability:

8. Choose a random number x: 0<x<1

9. if W(Si->-Si) < x, then change Si to -Si

10. Repeat steps 2-9 for all different spins
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5.3. Mixed signal simulations

Sometimes it is advantageous/neccessarry to

use analog/measured signals (e.g. noise) in

modellings.

Possibilities:

- analog simulations

- using digital circuits also: mixed signal

modellings

5.3.1. Digital signal processing

Mixed signal processing requires:

- sampling and reconstruction of analog

signals
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- knowledge of properties and limitations of

digital signal processing

5.3.1.1. A/D and D/A conversion

Analog signal -> A/D -> digital signal

Digital signal -> D/A -> analog signal

5.3.1.2. Digital signal processors

Digital part of the system:

- basic logic circuits

- complex logic circuits

For more efficient processing

- computers and software

- DSPs (digital signal processors) and

software
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5.3.1.3. Digital noise generators

Using a random generator and a D/A converter

- simple logic circuits and D/A

- DSPs and D/A

5.3.2. Aliasing in numerical modellings

- Aliasing occurs, when the sampling

frequency fs≤2*f max, the maximum

frequency in the signal

- In numerical modellings there is an fs!
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An example: 1/2 duty cycle square wave:

5-40


