Kettős inga kaotikus mozgásának vizsgálata virtuális méréstechnikával

SZAKDOLGOZAT

Készítette:
Vadai Gergely
Fizika BSc szakos hallgató

Témavezetők:

Dr. Gingl Zoltán egyetemi docens
SZTE Kísérleti Fizikai Tanszék

Dr. Gyémánt Iván egyetemi docens
SZTE Elméleti Fizikai Tanszék

Szeged, 2010
Tartalomjegyzék

1 Bevezetés, célkitűzés...4

2 Elméleti áttekintés..6
 2.1 A kaotikus mozgások elméleti vizsgálati módszerei ...6
 2.1.1 Kaotikus mozgások jellemzői, feltételei ..6
 2.1.2 A kettős inga..7
 2.1.2.1 Mechanikai leírás...7
 2.1.2.2 Konzervatív eset..8
 2.1.2.3 Megfontolások a disszipatív esetre...9
 2.2 A mozgás elemzése virtuális méréstechnikával..11
 2.2.1 Virtuális mérőműszerek...11
 2.2.2 Alkalmazott szenzorok működési elvei ..12
 2.2.2.1 Gyorsulásszenzor...12
 2.2.2.2 Digitális elfordulásmérő..13
 2.2.3 A szoftver által használt zajszűrési módszerek..14
 2.3 Valódi kettős inga vizsgálata és alkalmazásai..15
 2.3.1 Mérések valódi kettős ingával..15
 2.3.2 A kettős inga, mint demonstrációs eszköz...15

3 A rendszer felépítése...16
 3.1 A vizsgált kettős inga..17
 3.2 Az adatgyűjtő eszköz..17
 3.3 Gyorsulásszenzor – a felső rúd vizsgálata...18
 3.4 Digitális elfordulásmérő – az alsó rúd vizsgálata..19
 3.5 Mérőszoftver..19

4 Eredmények..20
 4.1 A rendszer elért képességei...20
 4.1.1 A felső rúd koordinátáinak kijelzése..20
 4.1.2 Az alsó rúd koordinátáinak kijelzése...22
 4.1.3 A rudak szögelfordulásának spektrumai...24
 4.1.4 Kezdőfeltételekre való érzékenység látványos demonstrációja.................................25
 4.1.5 Fázisportrék, fázistér-metszetek kijelzése...26
4.2 Demonstrációs alkalmazhatósága .. 27
4.3 A rendszer vizsgálata során levont elméleti következtetések .. 27
 4.3.1 Offline vizsgálat ... 27
 4.3.2 Ljapunov-exponens kimérése ... 29
 4.3.3 A fázistér egy metszetének vizsgálata közel azonos kezdőfeltételek esetén ... 31
4.4 A rendszer által nyújtott további lehetőségek ... 33

5 Összefoglalás .. 34

6 Köszönetnyilvánítás .. 35

7 Irodalomjegyzék ... 36

8 Nyilatkozat ... 37
1 Bevezetés, célkitűzés

Az utóbbi évtizedekben a modern fizika egy jelentős ágává vált a nemlineáris rendszerek kaotikus jellegének vizsgálata. A gyakorlati kérdések, mint például a meteorológiai előrejelzés, stabilitásvizsgálat, illetve a fraktálok megjelenése a matematikában és egyben a káosz definíciójában is, az egyszerű dinamikai rendszerek elméleti vizsgálatának egy új szakaszát nyitották meg.

A kaotikusság, mint egy rendszer viselkedésének tulajdonsága, nem kóderendő össze a hétköznapi értelemben vett rendszertelenséggel. Mivel a matematikában régóta ismert, hogy egyszerű rendszerek viselkedése is időben előrejelezhetetlené válhat, a káosz vizsgálata az alacsony dimenziójú rendszerekre redukálódott.

A legegyszerűbb hamiltoni rendszerek, amelyek mozgása bizonyos kezdőfeltételek mellett kaotikus tulajdonságokat mutat, fázistere 4 dimenziós, így kézenfekvő volt ilyen rendszereket tanulmányozni a káosz mélyebb megismeréséhez. Ennek a feltételnek tesz eleget a kettős inga, így elméleti vizsgálata igen nagy teret kapott az utóbbi évtizedekben, és a kaotikus dinamika legismertebb demonstrációs eszközévé vált.

Ahogy a vizsgált rendszerek is két fő csoportra bonthatóak, a kaotikus dinamika leírása is szétválasztható konzervatív és disszipatív esetre. A konzervatív eset elméleti vizsgálata a numerikus számítások megjelenésével megvalósíthatóvá vált, így a súrlódásmentes kettős inga mozgásának fontos jellemzői a legkülönbözőbb kezdőfeltételek esetén is ismertté illetve számíthatóvá váltak a könnyen készíthető és elérhető forráskódok segítségével.

Egy valódi kettős inga mozgásának érzékelésével ezen elméleti eredmények demonstrálhatóvá váltnak, illetve vizsgálhatóvá válak hogy a súrlódás miként befolyásolja azokat. Munkám során az ezt végrehajtó mérőrendszert készítettem el. Célkitűzésem olyan rendszer fejlesztése volt, mely könnyen elérhető szenzorok segítségével, megfelelő pontossággal lehetővé teszi a kaotikus mozgás valós idejű vizsgálatát, így az eddigi létező rendszereknél kényelmesebb és alkalmasabb demonstrációs és mérőeszközök bizonyuljon. A rendszer a két ingarész elfordulását
gyorsulásszenzorral illetve digitális elfordulásmérővel méri, ezek jelei pedig az általunk fejlesztett adatfeldolgozó egységen keresztül jutnak a számítógépbe. Az általam fejlesztett szoftver segítségével ezen elfordulás, illetve az ezekből numerikusan számított szögsebesség adatok és az ezekből számított további menyiségek és metszetek így valós időben kijelezhetővé és tanulmányozhatóvá válnak.

A rendszer segítségével tehát a fázistér elemeit a valódi kettős inga mozgása során végig követve lehetőség nyílik a kaotikus dinamika jellegzetességeit bemutatni és vizsgálni. Így az inga látványos mozgásán felül demonstrálhatóvá és bizonyíthatóvá válnak a kaotikusság feltételei (pl.: a kezdőfeltételek kicsiny változására a mozgás radikális megváltozása, Ljapunov-exponens), illetve szemléltethetővé válnak az elméleti vizsgálat elemei (pl.: az ingák fázisportréi és a fázistér metszetei).

Ez utóbbiak azonban a szemléltetésten túl is érdekesnek bizonyulhatnak, hiszen a disszipatív és konzervatív rendszer viselkedése közötti kapcsolat számos kérdést vet fel, melyekre a rendszer által mérhetővé vált eredmények választ adhatnak. A súrlódásos eset fázistér-metszetének vizsgálata az energiacsökkenés függvényében vizsgálhatóvá teszi azok viszonyulását a súrlódásmentes eset Poincaré-metszeteihez képest. Az energiacsökkenés jellegéből felírhatóvá válnak a rendszer differenciálegyenletének súrlódási tagjai, így azok használatával lehetőség nyílik a disszipatív eset numerikus tanulmányozására is.
2 Elméleti áttekintés

2.1 A kaotikus mozgások elméleti vizsgálati módszerei

A következőkben igen röviden tisztázom a kaotikus dinamika alapvető megfontolásait, majd ezek részletesebb használatát és fontosságát a méréseim szempontjából konkrétan a kettős inga problémáján mutatom be.

2.1.1 Kaotikus mozgások jellemzői, feltételei

A hétköznapi értelemben vett „kaotikus” jelzőt sokszor a nagy szabadsági fokú rendszerek bonyolultságának kifejezésére használják, fizikai értelemben azonban fontos leszögezni, a „determinisztikus káosz” az egyszerű, kevés változóval leírható rendszerek időbeli viselkedését jelenti.

A kaotikus mozgás fő tulajdonságai [2]:
– időben szabálytalan, aperiodikus,
– érzékeny a kezdőfeltételekre, hosszútávon előrejelezhetetlen,
– fázistérbeli képe komplex, rendezett: fraktálszerkezetű.

Ezen tulajdonságok általában egymásból következnek.

A kaotikus dinamika vizsgálata nagyban függ a vizsgált rendszer, és így a káosz típusától, más-más:
– konzervatív (súrlódásmentes),
– disszipatív (súrlódásos) rendszer esetén.

Továbbá mindkét fenti esetben megkülönböztetünk az időfejlődés szerint:
– permanens (időben állandósult),
– tranziens (átmeneti, vagy csak kivételes kezdőfeltételek esetén állandósuló) káoszt.

Így a káosz fő tulajdonságai mérőszámokkal:

<table>
<thead>
<tr>
<th>Szabálytalanság: topologikus entrópia</th>
<th>Konzervatív eset</th>
<th>Disszipatív eset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Előrejelezhetetlenség: átlagos Ljapunov-exponens</td>
<td>(\lambda > 0)</td>
<td>(\lambda > 0)</td>
</tr>
<tr>
<td>Fázistérbeli rendezettség: fraktáldimenzió</td>
<td>(D=2), de kövér fraktál</td>
<td>(1 < D <) fázistér dimenziója</td>
</tr>
</tbody>
</table>

2.1. táblázat: A káosz feltételei a kaotikusság mérőszámaival. Forrás: [2]
A kaotikus viselkedés feltételei szerint a rendszernek szükségképpen:
- legyen nemlineáris,
- mozgását legalább 3 független, elsőrendű autonóm differenciálegyenlet írja le.

A tapasztalat azt mutatja, hogy a kaotikusság a három- illetve többsdimenziós rendszerek általános tulajdonsága, ezért vált a modern fizika egyik fontos ágává az alacsony dimenziójú rendszerek dinamikai vizsgálata.

2.1.2 A kettős inga

Az előbbiekből következően a legegyszerűbb kaotikus viselkedést mutató hamiltoni rendszer fázistere 4 dimenziós, hiszen az definíció szerint csak $2f$ dimenziójú lehet, ahol f a rendszer szabadsági fokait jelenti. Ilyen egyszerű rendszer a kettős inga, amely így a kaotikus dinamikai vizsgálatok egyik kitüntetett alanyává vált.

2.1.2.1 Mechanikai leírás

A rendszer kinetikus energiáját a rudak tömegközéppontjaira felírva a középpontok transzlációs és forgási energiájának összegeként kapjuk:

$$T = \frac{1}{2} m_1 \cdot v_1^2 + \frac{1}{2} m_2 \cdot v_2^2 + \frac{1}{2} I_1 \cdot \dot{\theta}_1^2 + \frac{1}{2} I_2 \cdot \dot{\theta}_2^2$$ (1.1)

ahol:

$$I_i = \frac{1}{12} m_i \cdot \left(\frac{l_i}{2} \right)^2$$ (1.2), az i-ik rúd tehetetlenségi nyomatéka,

$$v_i^2 = x_i^2 + y_i^2$$ (1.3), ahol a koordináták:

$$x_1 = \frac{l_1}{2} \sin \theta_1$$ (1.4), \hspace{1cm} $$x_2 = l_1 \sin \theta_1 + \frac{l_2}{2} \sin \theta_2$$ (1.5),

$$y_1 = -\left(\frac{l_1}{2} \cos \theta_1 \right)$$ (1.6), \hspace{1cm} $$y_2 = -\left(l_1 \cos \theta_1 + \frac{l_2}{2} \cos \theta_2 \right)$$ (1.7),

A rendszer potenciális energiája:

$$V = m_1 \cdot g \cdot y_1 + m_2 \cdot g \cdot y_2$$ (1.8)

ahol a nullszint az x-tengely (2. ábra), azaz ahol $\theta_1 = \pm 90^\circ$

Megjegyzés: $h_i = \frac{l_i}{2}$, \hspace{1cm} $g = 9.81 \frac{m}{s^2}$ a nehézségi gyorsulás.

A numerikus számítások során legtöbbször két súlytalan pálcán lógó golyóval számolnak, mi azonban ezt, mivel valós ingát vizsgálunk, nem tehetjük meg. A fent ismertetett képlet természetesen továbbra is csak közelítés, hiszen nem veszi figyelembe a csapágyak, tengelyek, illetve az esetünkben felszerelt szenzorok és panelek tömegét, továbbá hogy a forgástengely sem a rudak legvégén helyezkedik el. Iránymutatásra azonban ez a kép is alkalmas, de szükség szerint a rudak tehetetlenségi nyomatékait megmérve javítható.

2.1.2.2 Konzervatív eset

A kaotikus mozgások egyik legfontosabb jellemzője konzervatív esetben a Poincaré-metszet (vagy Poincaré-diagram, Poincaré-leképezés) A leképezés lényege, hogy az (esetünkben 4 dimenziós) fázisteret egy síkkal metsszük el, azaz két fázistérbeli koordináta értékét csak a többi koordináta egy bizonyos kitüntetett értékénél vesszük fel.

Az adott rendszerre azonban leginkább a metszeteken látható „reguláris szigetek” jellemzőek. Az energia növelésével felbomló szigetek a rezonáns töruszok, míg a megmaradóak az ún. KAM-töruszok metszetei. [6]

A súrlódásmentes kettős inga differenciálegyenlete numerikusan könnyen megoldható, így az utóbbi évtizedekben számos publikáció és program született, a különböző Poincaré-metszetek, bifurkációs diagrammok illetve a Ljapunov-exponens meghatározásával. [7]
2.1.2.3 Megfontolások a disszipatív esetére

Súrlódásos, disszipatív esetben a káosz fontosabb mérőszámai (lásd 2.1. táblázat) a topologikus entrópia, a Ljapunov-exponens és a fázistér bonyolultságát jellemző fraktáldimenzió. Valós esetben is vizsgált rendszerek általában az egyik leginkább mérhető mérőszám a Ljapunov-exponens. [2]

Két, közel azonos helyzetből indított mozgás fázistérbeli pályájának távolsága exponenciálisan nő, ennek mértékét fejezi ki a lokális Ljapunov-exponens:

\[\Delta x(t) \sim \Delta x(t_0) e^{\lambda t}, \] \hspace{1cm} (2.1) \hspace{1cm}

ahol: \(\Delta x(t) \) a fázistérbeli távolság \(t \) időpontban,

\(\lambda \) a **lokális Ljapunov-exponens**, melynek átlaga,

\(\bar{\lambda} \) az átlagos **Ljapunov-exponens**.

Ha több, közel azonos helyzetből indított mozgás során az átlagos Ljapunov-exponens pozitívnak adódik, kaotikus mozgásról beszélünk.

2.3. ábra: Súrlódásmentes kettős inga Poincaré-metszeteinek alakulása az energia függvényében.
Forrás: [5]
Felmerül a kérdés, milyen módszerekkel vizsgálhatjuk meg hogy a súrlódás miképp módosítja a káosz megjelenését. A következőkben ilyen lehetőségekre mutatok rá, illetve munkám során azt is megvizsgálok, az általam kifejlesztett rendszer erre miképpen alkalmas, illetve a vizsgálatokat miként érdemes végezni.

A Poincaré-metszet kifejezést egy adott energián történő mozgás esetében, azaz súrlódásmentes esetben szokás definiálni, azonban a súrlódásos eset fázistér-metszeteinek vizsgálata is érdekes kérdéseket vet fel:

2. Miként viszonyulnak a közel azonos kezdőfeltételekkel indított súrlódó mozgások fázistér-metszetei egymáshoz, illetve azok a kezdeti paraméterek által meghatározott energián történő súrlódásmentes mozgás Poincaré-metszetéhez, periodikus, kvázi-periodikus és kaotikus esetben?

3. Hogyan „vándorol” a súrlódó mozgás fázistér-metszéspontja, a metszés pillanatában aktuális energiára számított súrlódásmentes Poincaré-metszetén? Fontos megjegyezni, hogy különböző kezdőpontú indítások vándorlását nehéz összehasonlítni, hiszen a fázistérmetszetet más-más energián metszhetik.

A 2.1.2.1. fejezetben vázolt formula segítségével az energia csökkenése a szögkitérések és szögebességek ismeretében követhetővé válik, tehát:

4. Az energiacsökkenéből a mozgást leíró differenciálegyenlet súrlódó tagjait meghatározva az előző problémák numerikusan is szimulálhatóvá válnak, megkönnyítve a különböző kezdőfeltételek esetén történő kaotikus jellemzők feltérképezését.

A következőben vázolt mérőrendszer, illetve eredményeim a fenti vizsgálatok megvalósítását, és annak módját teszik lehetővé, mutatják be.

A fenti pontok vizsgálhatóságára vonatkoztatott mérések a 4.3. fejezetben, az ezekből levont következtetések, és az azokból következő további a lehetőségek pedig a 4.4. fejezetben kerülnek ismertetésre.
2.2 A mozgás elemzése virtuális méréstechnikával

A kettős inga mozgásának felvételét a mind demonstrációs, mind mérési szempontból ideálisnak mutatkozó virtuális méréstechnikával oldottam meg, az alábbiakban ennek alapjait foglalom össze, részletesebben a mérés során használt szenzorokat ismertetve.

2.2.1 Virtuális mérőműszerek

Egy fizikai mennyiség mérése során általánosan az adott objektumot gerjesztenünk kell, (pl.: aktuátorok segítségével), amely gerjesztésre adott válaszának a kívánt részhangzatát vezetjük a mérőműszerbe, legtöbbször mérő-átalakítókon (szenzorokon, detektorokon) keresztül. A mérési adatok kezelésének leegyszerűbb módját a digitális technika adja, ezért általában szükségünk van egy analóg-digitál (illetve digitál-analóg) konverziót végző eszközre (AD illetve DA konverterre).[8]

A hagyományos mérőműszerek általában egy adott méréshez, illetve paraméter méréséhez készített, a jelek kondicionálását, feldolgozását és a felhasználói kezelőfelület egy egységben tömörítő eszközök. Ebből következik egy jelentős hátrányuk, miszerint csak speciális esetekben teljesíthető a felhasználó igényeit.

Erre jelent megoldást a virtuális méréstechnika, amely során a szenzorokból érkező analóg jeleket AD konverterek alakítják számokká, melyeket a PC-be jutva a virtuális mérőműszer dolgozza fel. Ez egy olyan szoftver, amelyet egy konkrét méréshez készíthetünk, azonban pont abban rejlik a technika univerzalitása, hogy:

– az adott programot a felhasználó a felmerülő igények szerint bármikor könnyen módosíthatja,
– ugyanazon szenzorok jelei tetszőleges számú, különböző célra írt szoftverekkel feldolgozhatóak, így egy eszköz segítségével számos különböző mérés, kísérlet végezhető.

Az előbbiekből láthatóan a virtuális méréstechnika egy költséghatékony, kényelmes és elegáns módja a mérések illetve iskolai demonstrációs kísérletek kivitelezésének.
2.2.2 Alkalmazott szenzorok működési elvei

A virtuális mérőműszerek a szenzorok által mért jeleket dolgozzák fel. Az adatgyűjtő egységtől függően több, analóg és digitális jelet szolgáltató érzékelők is használhatóak. Az alábbiakban csak a munkám során használt két érzékelő mérési elvét, illetve fontosabb jellemzőit ismertetem.

2.2.2.1 Gyorsulásszenzor

A méréseim során használt egyik érzékelő egy analóg kimenetű, ADXL 150 típusú egytengelyű gyorsulásszenzor volt, melynek főbb jellemzői a 2.2. táblázatban láthatóak. A gyorsulásszenzor következő elven működik:

A 2.5. ábrán látható test a két végénél rugalmasan a tokozásához van rögzítve, így gyorsulás esetén az ahhoz képest a rugók hajlása következtében elmozdul. Vele együtt ekkor elmozdul a közepén elhelyezkedő kiálló felület is, amely két, a tokozáshoz rögzített lemez között helyezkedik el, így síkkondenzátort alkotva. A mozgás során lejátszódó kapacitás-változásból pedig következtetni lehet a gyorsulásváltozásra.

<table>
<thead>
<tr>
<th>Méréstartomány</th>
<th>±5 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nemlinearitás</td>
<td>0,20%</td>
</tr>
<tr>
<td>Felbontás</td>
<td>$38 \frac{mV}{g}$</td>
</tr>
<tr>
<td>Zajsűrűség</td>
<td>$1 \frac{mg}{\sqrt{Hz}}$</td>
</tr>
<tr>
<td>Sávszélesség (-3 dB)</td>
<td>1000 Hz</td>
</tr>
<tr>
<td>Tápfeszültség</td>
<td>5 V</td>
</tr>
</tbody>
</table>

2.2. táblázat: Az ADXL 150 gyorsulásmérő főbb jellemzői. Forrás: [10]

Bár a szenzor gyorsulást mér, munkám során közvetetten a kettős inga felső rúd elfordulásának mérésére szolgált, melynek elve a 3.3. fejezetben kerül részletesebb ismertetésre. A kiadott feszültségérték és a számított szögelfordulás közötti kapcsolat nemlineáris, így a mérés során zajszűréskel kellett alkalmazni. A munkám során zajszűrési módszerek a 2.2.3. fejezetben kerülnek bemutatásra.
2.2.2.2 Digitális elfordulásmérő

Az alsó inga szögkitérésének mérésére használt AEDB-9140 típusú digitális elfordulásmérő (felszerelve: lásd 3.4. ábra) érzékelőjén egy LED és vele szemben elhelyezett 6 fotodióda van, melyek között egy, a kerületén 500 kis barázdát tartalmazó tárcsa forog el, a fényt meg-meg szakítva. Az így generált digitális jelalak (lásd 2.7. ábra) egy körbefordulást, azaz 360 fokot 1000 részre oszt, tehát a felbontása: 0,36 fok.

A szenzornak 3 kimenete van, az A és B csatorna közötti fáziskésés eredményezi hogy a jel periódusszáma a tárcsa bevágásai számának kétszerese lesz, míg egy harmadik, Index csatorna jelzi a körbefordulást (lásd 2.7. ábra).

A szenzor a mérés során történő felhasználása részletesen a 3.4. fejezetben kerül részletesebb ismertetésre.
2.2.3 A szoftver által használt zajszűrési módszerek

Zajszűrés mozgóátlag számításával

A zajszűrés egyik legegyszerűbb a mozgóátlag használata, amellyel az i-ik pont értékét a következőképpen számítjuk:

\[x_i = \frac{1}{N} \sum_{j=0}^{N-1} x_{i-j} \] (2.2)

ahol \(N \) azon utolsó pontok száma, amelyre az átlagolás történik.

A mozgóátlag átviteli függvénye a négyszögimpulzus Fourier-transzformáltja, azaz a sinc függvény abszolút értéke, tehát:

\[H(\omega) = \frac{\sin(N \cdot \omega \cdot \pi)}{N \cdot \omega \cdot \pi} \] (2.3)

ahol: \(\omega \) a körfrekvencia.

Zajszűrés Bessel-aluláteresztő szűrővel

A Bessel-szűrő egy az elektronikában és jelfeldolgozásban gyakran használt lineáris szűrő, melyet átviteli függvénye határoz meg [12]:

\[H(s) = \frac{\Theta_n(0)}{\Theta_n \left(\frac{s}{\omega_0} \right)} \] (2.3)

ahol \(\Theta_n(s) \) az inverz Bessel-polinom, \(\omega_0 \) pedig a levágási körfrekvencia.

A 2.8. ábrán látható, hogy a 10-es mozgóátlag jóval kevésbé szűri ki a nagyfrekvenciás jeleket, mint a másodrendű Bessel-szűrő, azonban valós idejű alkalmazás esetén jóval gyorsabb megoldást nyújthat (az ingánál való alkalmazhatóságát lásd 4.1.1. fejezet).
2.3 Valódi kettős inga vizsgálata és alkalmazásai

2.3.1 Mérések valódi kettős ingával

Napjainkban a kettős illetve hámas ingákat a káosz megjelenésének megakadályozását célzó kutatásokhoz használják, az elfordulást ugyancsak potenciométerekkel mérve (amely az alkalmazott gerjesztések miatt ez esetekben nem jelent különösebb gondot) [14].

2.3.2 A kettős inga, mint demonstrációs eszköz

Mivel az egyik legegyszerűbb kaotikus rendszer, és mozgása rendkívül látványos, a kettős inga a káosz-fizika klasszikus demonstrációs eszköze lett. A mozgás előrejelezhetetlenségét a gyors és sokszor meglepő mozgás önmagában is sugallja, a kezdőfeltételekre való érzékenységet pedig egy könnyen építhető „iker-kettősinga” is képes demonstrálni [2].

Az inga mozgásának pontosabb kísérleti tanulmányozása lehetővé teszi az érdeklődő számára a modern fizikai vizsgálati módszerek megismerését és elsajátítását, ezért az utóbbi években több esetben egyetemi laborgyakorlat illetve emelt szintű középiskolai mérések tárgyává vált a kaotikus inga mozgása [3], [8], [15], [16]. Vizsgálata kamerával és képelemző szoftverrel igen körülményes, speciális felszereltséget és ismereteket igényel, a potenciométerrel való mérés pedig jelentősen csökkenti a mozgás időtartamát, illetve a kaotikusság megjelenését. Vektorszkóp segítségével a mozgás befolyásolása nélkül felvethető az ingarészek elfordulása, azonban a műszer speciális szoftverei jelentős hátrányt jelenthetnek egy meggyőző, látványos mérőprogram elkészítésében. A már említett középiskolai mérés a Fizikai Szemlében történő megjelenése jól mutatja, mikény hozhatja közelebb a kaotikus jelenségek vizsgálata a tanulókat a tudományos szemléletmódhoz.

A virtuális mérés technika fentebb említett univerzális jellege miatt annak használata ez esetben megfelelő, költséghatékony és elegáns megoldásnak mutatkozik. Az inga látványos mozgása közben a fázistér-koordinátákát, metszeteket és fázisportékat valós időben bemutatva lehetőség nyílik a kaotikus mozgás jellegzetességét és annak vizsgálati módszereit egyszerre demonstrálni. Lehetőség nyílik továbbá a kaotikus mozgás analízisét online, a 2.3.1. fejezetben bemutatottaknál jóval részletesebben elvégezni, megvizsgálva a 2.1.2.3. fejezetben felvetett új kérdéseket.
3 A rendszer felépítése

A rendszer felépítése

Az alábbiakban bemutatom a dolgozat tárgyát képező mérőrendszert, és a vizsgált kettős ingát (lásd 3.1. ábra). A rendszer feladata a két rúd szögelfordulásának felvétele és valós idejű kijelzése, illetve az azokból számolt mennyiségek és metszetek ábrázolása. Erre kézenfekvő megoldás volt a virtuális méréstechnika (lásd 2.2. fejezet) alkalmazása, amely segítségével a fejlesztés nagy része szoftveresen történhetett, és az online mérés könnyedén beszerezhető szenzorok segítségével megvalósíthatóvá vált.

A rendszer főbb elemei a mérést végző gyorsulásszenzor és a digitális elfordulásmérő, az AD-konverziót végző adatgyűjtő eszköz, és a LabVIEW környezetben írt mérősofтвер. Az következő pontokban ezeket mutatom be részletesebben.

3.1. ábra: A kettős inga és a mérőrendszer

Az alábbiakban bemutatom a dolgozat tárgyát képező mérőrendszert, és a vizsgált kettős ingát (lásd 3.1. ábra). A rendszer feladata a két rúd szögelfordulásának felvétele és valós idejű kijelzése, illetve az azokból számolt mennyiségek és metszetek ábrázolása. Erre kézenfekvő megoldás volt a virtuális méréstechnika (lásd 2.2. fejezet) alkalmazása, amely segítségével a fejlesztés nagy része szoftveresen történhetett, és az online mérés könnyedén beszerezhető szenzorok segítségével megvalósíthatóvá vált.

A rendszer főbb elemei a mérést végző gyorsulásszenzor és a digitális elfordulásmérő, az AD-konverziót végző adatgyűjtő eszköz, és a LabVIEW környezetben írt mérősofтвер. Az következő pontokban ezeket mutatom be részletesebben.
3.1 A vizsgált kettős inga

A kettős inga az 1.1. ábrához hasonlóan, Shinbrot és társai [1] cikkének útmutatása alapján készült el. A súrlódás csökkenése miatt a felső rúd két lapból áll, melyek között középen az alsó el tud fordulni. Az alumíniumból készült inga csapágyakkal forog a tengelyen, amely egy állvánnyal az asztalhoz van rögzítve. A minél erősebb rögzítés fontos a mozgás időtartamát illetően, ügyelni kell, hogy minél kevesebb energiát veszítsen a rendszer.

A felső rúdon egy csavarokkal kalibrálható panelen helyezkedik a felső inga elfordulását mérő gyorsulásszenzor, ide kapcsolódik vezetékekkel az alsó szenzor és az adatgyűjtő eszköz is.

Az inga főbb paraméterei:

\[
\begin{align*}
 l_1 &= 0,273 \text{ m}, & \text{a felső rúd hossza}, \\
 l_2 &= 0,215 \text{ m}, & \text{az alsó rúd hossza}, \\
 w_1 &= w_2 = 0,025 \text{ m}, & \text{a rudak szélessége}, \\
 z_1 &= 0,01, & \text{a felső rész egy lemezének vastagsága}, \\
 z_1 &= 0,02, & \text{az alsó rúd vastagsága}, \\
 m_1 &= 0,3686 \text{ kg}, & \text{a felső rúd tömege}, \\
 m_2 &= 0,2903 \text{ kg}, & \text{az alsó rúd tömege}.
\end{align*}
\]

3.2 Az adatgyűjtő eszköz

Az adatgyűjtő eszköz feladata a „kommunikáció” lebonyolítása a szenzorok és a virtuális mérőműszer (szoftver) között. Jelen esetben ezt a feladatot, egy EduDaq, 16 bites, 4 csatornás, leválasztott USB adatgyűjtő műszer végzi, melyet az SZTE Zaj és nemlinearitás kutatócsoportja fejlesztett ki [17].

Az eszközben két AD-konverter dolgozza fel az adatokat, melyek két-két csatornát tudnak kezelni. A műszer képes analóg és digitális jelek feldolgozására (ez tette lehetővé a két szenzor használatát az mérés során). A műszer USB porton kommunikál a virtuális mérőműszerrel, amellyel be lehet állítani többek között a mintavételezési frekvenciát a műszer és a szoftver között, a mintavételi rátát a műszer és a szenzorok között, az egyszerre küldött adatok hosszát, stb.

A méréshez szüksége jelfeldolgozás nagy része tehát a virtuális műszerre marad, a mérőrendszer működése nagyrészt a szoftverektől függ, így az bármikor módosítható.
3.3 Gyorsulásszenzor – a felső rúd vizsgálata

A gyorsulásszenzor sok esetben alkalmas lehet szögmérésre, és nagy előnye hogy nincs kontaktusban a forgó részekkel, tehát nem befolyásolja a vizsgálni kívánt mozgást. A gyorsulásmérő, ha a mérési irányt kijelölő tengelye függőleges, látszólagos nyugalmi helyzetben is mér gyorsulást: a nehézségi gyorsulást. Ha a szenzor α szöggel elfordul (és nem végez transzverzális mozgást), a mért gyorsulásérték $\cos \alpha$-val lesz arányos.

A felső rúd elfordulását ADXL 150 típusú szenzor méri, amelyet egy alumínium híd segítségével lett a tengely fölé helyezve (lásd 3.3. ábra). A kalibrálást műanyag csavarok segítségével lehet elvégezni. A hidon az érzékelő egy panelen helyezkedik el, amelyen az alsó szenzor felhúzó ellenállásai is találhatóak. A szenzor úgy van elhelyezve, hogy $\Theta_1 = 0$ esetén a gyorsulásra érzékeny tengelye vízszintes legyen. Az ingat $\Theta_1 = \pm 90^\circ$ kitérítve a szenzor a maximum illetve minimum értéket méri, így lehet tehát a szenzort kalibrálni (lásd 3.4. ábra).

Mivel az alkalmazott szenzor egytengelyű, így természetesen csak $\Theta_1 = -90^\circ \text{tól} + 90^\circ \text{ig}$ képes szöget mérni. Megfelelő feltételeket szabva kiterjeszthető az érzékelés 360° -ra, illetve további fejlesztéként két tengelyű szenzor alkalmazása kiküszöbölne ezt a problémát, azonban számunkra ez a mérési tartomány is elég, mert, mint látni fogjuk, a mozgás ezen belül is lehet khaotikus. Egy egyszerű algoritmusmal megoldhatóvá vált, hogy a programban jelezve a 90° feletti indítást, az első vízszintes tengelyen való áthaladásig a műszer 90° felett jól mérjen.

Mivel feszültségérték és szögérték közötti kapcsolat nemlineáris, $\Theta_1 = \pm 90^\circ$ esetén a zaj jelentősen megnő, emiatt az ezen a tartományon történő mérés esetén ezt figyelembe kell venni, illetve zajszűrésével alkalmazni (lásd 4.1.1).

3.4 ábra: Az ADXL 150 egytengelyű gyorsulásszenzor kalibrálása. Forrás: [10]
3.4 Digitális elfordulásmérő – az alsó rúd vizsgálata

Az alsó rúd elfordulását már nem lehet, illetve jóval nehezebb és pontlanabb gyorsulásszenzorral méni, mivel a mozgás során a szenzor tényleg gyorsulna, illetve a felső rúd elfordulását is mérné. Ezeket a zavaró tényezőket csak numerikusan lehet kompenzálni, ami igen pontatlan eredményt adna. Lehetőség van azonban egy jóval egyszerűbb elv alkalmazására, amelyet az AEDB 9140 típusú digitális elfordulásmérő biztosít (lásd 2.2.2.2. fejezet).

A tárcsát az alsó tengelyre, az olvasófejet pedig felső rúd aljára helyezve (lásd 3.5. ábra) az elfordulás zavartalanul mérhető, méghozzá ez a művelet sem befolyásolja magát a mozgást.

Az adatgyűjtő az impulzusokat számlálja, ez alapján a virtuális mérőműszer egy számot kap, amelyek között különbség a fentiek értelmében 0,36°-ot jelent. A szoftver az első index-jel (körbefordulás-jelzés) érkezéskor 0-ra kalibrálja az aktuális szöget, így lehetőség adódik az abszolút szögmérsékre.

A szenzor igen érzékeny, az olvasófej egy kis elmozdulására adatvesztés léphet fel, ezért az érzékelőt egy doboz zárja el a külvilágtól, megvédve így a finom beosztású tárcsát is a portól. (lásd 3.2. ábra).

3.5 Mérősofтвер

A kettős inga mozgásának vizsgálatához szükséges online, az adatsorokat offline kiértékelő programot, illetve az EduDaq adatgyűjtővel történő kommunikáció szubrutinjait LabVIEW környezetben készíttettem el. A LabVIEW egy virtuális mérőműszerek fejlesztésére készített magas szintű programozási nyelv, melynek beépített matematikai analízist végző alprogramjai sok esetben nagyban segítek egy virtuális mérőműszer elkészültét.

A valós idejű sofтверrel az USB port és a mintavételezési frekvencia beállítása után a mozgás vizsgálata azonnal lehetségesse válik. A kaotikus mozgások mérése során a PC és az eszköz közötti mintavételi frekvencia 100 Hz volt, míg az eszköz és a szenzorok közötti mintavételi ráta 20 kHz, (amely az alsó ingarész igen gyors, másodpercenként 4-5 körbefordulást produkáló mozgása során is elegendő).

A mérősofтвер működését az alábbiakban ismertetem részletesen.
4 Eredmények

Munkám fő eredménye a mérőrendszer és szoftvereinek elkészítése, azoknak demonstrációs alkalmazása illetve a mozgás tanulmányozása során alapvető következtetések levonása arra nézve, mit és hogy érdemes vizsgálni a disszipatív rendszer káoszának megértéséhez. A dolgozat elején felvetett kérdések (lásd 2.1.2.3. fejezet) részletes analízisére a rendszer alkalmaznak bizonyult, az arra vonatkozó megfontolásokat az elméleti vizsgálat tükrében külön fejezetben tárgyalom, amely megalapozza a disszipatív rendszer leírásához szükséges későbbi vizsgálatokat.

4.1 A rendszer elért képességei

Fő célkitűzésem olyan mérőrendszer készítése volt, mely könnyen elérhető szenzorok segítségével, mégis a célnak megfelelő pontossággal online mérhetővé tegye a kaotikus mozgás minél több paraméterét. A szoftver a fázistér-elemek aktuális értékének kijelzése mellett képes látványosan szemlélteti a káosz egyik fő ismérvét, miszerint rendkívül érzékeny a kezdőfeltételekre, továbbá képes valós időben kijelzni a káosz vizsgálatának főbb elemeit, a fázistér metszeteket, fázisportékat. Az alábbiakban ezeket mutatom be részletesebben.

Konvenció: a következőkben:
– a felső rúd elfordulása: \(\Theta_1 \), mértékegysége: fok,
– a felső rúd szögsebessége: \(\omega_1 \), mértékegysége: fok/szekundum,
– az alsó rúd elfordulása: \(\Theta_2 \), mértékegysége: fok,
– az alsó rúd szögsebessége: \(\omega_2 \), mértékegység: fok/szekundum.
– Az ábrákon az időtengelyen (Time) a mintavételei pontok számát jelöli, a mintavételei frekvencia minden mérés során 100 Hz volt.

4.1.1 A felső rúd koordinátáinak kijelzése

Mint a 3.3. fejezetben látható, a gyorsulásszenzor által adott jelet a program szögfelfordulássá konvertálja. Mivel nemlineáris leképezéssel történik a konverzió, a zaj a rúd vízszintes helyzetében igen naggyá válik (lásd 4.1. ábra). A pontosság növelése érdekében kétfélé zajszűrést próbáltam ki.

Mozgóátlaggal (lásd 2.2.3. fejezet) való számolás során az utolsó 10 pontra számított átlagolás tűnt ideálisnak, ennél nagyobb értékekre gyors mozgás esetén jelalakokat torzította a szűrő.

A Bessel-aluláteresztő szűrő (lásd 2.2.3. fejezet) egy a LabVIEW-ba beépített alprogram, így használata kézenfekvő volt. Másodrendű szűrőként, 5 Hz levágási frekvenciával a jel megfelelően letisztult.
4.1. ábra: A felső szögkitérésének (Θ_1) kijelzett értékei, felül szűrés nélkül, középen 10-es mozgóátlag, alul pedig Bessel-aluláteresztő szűrővel zajszűrve.
Mint a 4.1. ábrán látható, a két szűrt szögelfordulás-jel között számottevő különbség nem látható, azonban a belőlük numerikus deriválással számított szögsebesség-értékeken már a különbség jelentős, így a további számolásokhoz a Bessel-szűrő által szűrt jelet használtam. A levágási frekvenciát a szögkitérés-jelek spektruma alapján (lásd 4.1.3. fejezet) ugyancsak 5 Hz volt.

4.1.2 Az alsó rúd koordinátáinak kijelzése

Bár az alsó rúd elfordulását mérő digitális szenzor zaja jóval kisebb (lásd 3.4. fejezet), a numerikusan számított szögsebesség már zajosnak bizonyult, így a szenzor jelét a felső rúdnál is használt Bessel-aluláteresztő szűrővel szürt meg. A levágási frekvencia a spektruma alapján (lásd 4.1.3. fejezet) ugyancsak 5 Hz volt.

4.2 ábra: A kijelzett szögsebesség (ω_1) értékek, felül a mozgóátlaggal szűrt jelből numerikusan számított, alul a Bessel-aluláteresztő szűrő által szűrt jelből numerikusan számított szögsebességek láthatóak.
4.3. ábra: Felül: Θ_2 szűrés nélkül, alatta Θ_2 Bessel-alulátéresztő szűrővel, alatta a numerikusan számított ω_2 a szűrésmentes jelből, legalul pedig a numerikusan számított ω_2 a szűrt jelből.
4.1.3 A rudak szögelfordulásának spektrumai

A jelek zajszűrésekor felmerült a levágási frekvencia megválasztásának kérdése (lásd 4.1.2., 4.1.3. fejezetek), ezért a program képes a jelek spektrumát felvenni, a felhasználó által kiválasztott jelszakaszra.

A „Get Data” gomb két lenyomása között szögelfordulás-értékekre a program FFT (Fast Fourier Transform) algoritmus segítségével számítja ki a spektrumokat. A program négyszögablakot használ, mivel a spektrumok felvétele speciális beállításokat nem igényel.

A spektrumok felvétele a mozgások különböző tartományaira (periodikus, kvázi-periodikus, kaotikus) lehetőséget adhat további vizsgálatokra.

![Diagram showing the spectra of two pendulums.](image)

4.4. ábra: A két rúd szögelfordulás-adatainak spektrumai a mozgás kaotikus fázisában
4.1.4 Kezdőfeltételekre való érzékenység látványos demonstrációja

A program képes demonstrálni a káosz jelenlétét a mozgásokban, megmutatni, a látványos mozgáson túl miért is nevezzük az inga mozgását kaotikusnak. (lásd 4.2. fejezet).

Több, közeli pontból történő indítást egymás után felvéve, és egy grafikonon külön színekkel ábrázolva jól látható a különbség a mozgások között, ahogy az elengedés után az inga az első instabil állapotához ér. Az alsó szögkitérések nincsenek csonkolva (azaz ±180° közé vágva), így nincs törés a grafikonban, és a távoli koordináták jól jelzik, az alsó inga átfordulásának száma két mozgás között jelentősen eltér, tehát a mozgások között radikális a különbség, a jelenség kaotikus.

Természetesen törekedni kell a minél közelebbi kezdőfeltételek elérésére, illetve hogy az indítások a program indítása után ugyanakkor történjenek. (az Ljapunov-exponens számításához szükséges szinkronizálási pontosság offline javítható [lásd 4.4 fejezet]).

4.4. ábra: 3, különböző színnel jelölt adatsor valós idejű összehasonlítása, felül a felső rúd (Θ₁), alatta az alsó rúd szögkitérése (Θ₂) az idő függvényében.
4.1.5 Fázisportrék, fázistér-metszetek kijelzése

A program képes valós időben kijelezni az alsó és felső rúd fázisportréját, (azaz szögsebességét a kitérés függvényében). Ezen felül képes egy fázistér metszetet is számítani, és valós időben kijelezni az újabb metszéspontokat. A fázistér metszete:

\[\omega_2 - \Theta_2 \] sík, amikor \(\Theta_1 = 0 \), és \(\omega_1 > 0 \)

(4.1)

A metszet praktikus így választani, hiszen a felső rúd, mivel nem (vagy ritkán) fordul át, sokszor áthalad a függőleges helyzetén (\(\Theta_1 = 0 \)), az alsó inga kitérése pedig a teljes tartományon vizsgálható, és az jó néhányszor át is fordul.

4.6. ábra: A felső rúd (Pendulum 1) és az alsó rúd (Pendulum 2) fázisportréja, alatta a fázistér egy metszete (4.1).

A több közeli pontból indított mozgás metszetének összehasonlítására az offline értékelő program ad lehetőséget (lásd 4.3. fejezet). A fenti síkok kijelzése könnyedé teszi a mozgás valós idejű megfigyelését, és egyben demonstrálja a kaotikus mozgások megfigyelési módszereit is.
4.2 Demonstrációs alkalmazhatósága

A kettős inga demonstrációs szerepe eddig is kiemelt jelentőségű volt, sőt, a kvantitatív mérésekre is voltak, vannak kísérletek (lásd 2.3.2. fejezet). Az előbbieken bemutatott program azonban, mivel valós időben jelzi ki a demonstrált mennyiségeket, metszeteket, így a jelenség és annak vizsgálatának bemutatására kíválóan alkalmas (lásd 4.5., 4.6. fejezet). Ezen képességet figyelembe véve az egyszerűen kezelhető rendszer előrelépést jelenthet a káosz demonstrálásában.

A rendszer alkalmaznak mutatkozik mind az általános hallgatóság figyelemfelkeltésére, mind középiskolai, egyetemi kísérletezésre. Szegeden, 2010.01.30.-án az SZTE TTIK Fizikus Tanszékcsoporthoz által szervezett Fizika Napja című rendezvényen a főleg középiskolásokból és tanárokból álló hallgatóság figyelmét és érdeklődését a rendszer egyértelműen felkeltette.

4.3 A rendszer vizsgálata során levont elméleti következtetések

Az elkészült rendszer valós időben képes kijelezni a fázistér elemeinek értékeit, a Fourier-transzformáltakat, a két inga fázisportréját és a fázistér egy metszetét (lásd 4.1. fejezet). Célom volt ezen adatok segítségével a dolgozat elején felvetett kérdések fényében megalapozni a súrlódásos inga mélyebb analízisét (lásd 2.1.2.3., 4.4. fejezet).

A Ljapunov-exponens megméréséhez, illetve a fázistér-metszetek metszéspontjai elhelyezkedésének vizsgálatahoz a kezdőfeltételek kicsiny változása esetén létrejövő mozgások összehasonlítása szükséges. Ehhez a kettős ingát lehetőleg minél jobban egyező kezdőfeltételekkel kell elindítani. Az adatok összehasonlíthatóságához azok felvételét és az indítást is igen pontosan kell szinkronizálni, hogy a különböző indításokhoz tartozó mozgások fázistérbeli koordinátáinak különbségét helyesen lehessen számítani. Erre természetesen a szögkitérések változásának gyorsaságát mérve algoritmus is készíthető, mely a mérősofтвер egy későbbi fejlesztése lehet, a most bemutatott eredményekhez azonban egy offline analizáló programot készítettem, mely az adatsorok megmérése után egyszerre képes kijelezni az keresett jellemzőket.

4.3.1 Offline vizsgálat

A mérősofтверrel rögzített adatokat könnyedén másolhatjuk más LabVIEW programba, így a fázistér rögzített adatainak további feldolgozására egy másik programot készíttettem, amely segítségével megoldható az adatsorok szinkronizálása. A sofтвер kijelzi a fázistér elemeinek értékét, különböző színekkel a különböző adatsorokat, így a szinkronizálás manuálisan történhet. Az elengedés pillanatát az időtengelyen a 0 értékhez tovább a fázistérbeli távolságokat helyesen számítja a program a két adatsor között.
4.7 ábra: Az offline kiértékelő programban szinkronizált, közeli kezdőfeltételekkel indított mozgások változása az idő függvényében. (sorrendben: $\Theta_1, \omega_1, \Theta_2, \omega_2$) (1.-fehér, 2.-piros, 3.-zöld, 4.-kék, 5.-sárga)
4.3.2 Ljapunov-exponens kimérése

Mérésem során az először Shinbrot és társai [1] által végzett mérést kívántam reprodukálni, azaz bizonyos kezdeti helyzet környékéről többször elengedve az ingát, a mozgások pályájának fázistérbeli távolságának növekedésére illesztett exponenciális kiveőjének, a Ljapunov-exponens átlagát kiszámítani. Ha ez az érték pozitívnak adódik, a mozgásokat kaotikusnak nevezhetjük. A kísérletet különböző kezdeti kitérítésekre elvégezve elvégezve feltértépezhetjük, a kettős inga mely tartományokból indítva viselkedik periodikusan, kváziperiodikusan illetve kaotikusan, amely (lásd 4.4. fejezet) fontosnak mutatkozik a disszipatív rendszer megismerésében, hiszen összehasonlíthatóvá váló az elméleti modellből kapott adatokkal. Az alábbiakban bemutatom, hogy az ehhez szükséges mérés a mérőrendszerre kényelmesen felhasználható, és egyben újfent bizonyítom a kettős inga mozgásában megjelenő káoszt a vizsgált kezdőfeltétel esetén.

A kísérlet során 5 mérést végeztem, megpróbálva minél közélebbi szökgitérés értékéből indítani a mozgásokat. (lásd 4.1. táblázat) A 4.7. ábrán jól látható a mozgások fejlődése az időben, miszerint a kezdeti szakaszban megegyeznek, majd, egy bizonyos ponton (az első instabil állapotohoz érve) különlválnak, egészen a mozgás csillapodásáig. Az offline kitértékelő programmal bármilyik adatsor bármelyik kis fázistérbeli összehasonlíthatóvá vált, a program a különbségek időbeli alakulását kijelzi.

Fontos megjegyezni az exponenciális illesztésénél felmerülő problémát. Mivel tranziens, tehát véges ideig káoszt vizsgálnunk, a fázistérbeli különbségek is csak véges ideig fognak növekedni. Ebből következően csak a kapott függvények növekvő részére kell illesztenünk exponenciálist, azonban a növekvő szakasz pontos meghatározása általában igencsak nehékes, az exponens értékek szórása így rendkívül nagy, amely az irodalomban ismert [1],[8] (lásd 4.9. ábra). Ahogy erre Shinbrot is rámutat [1], az illesztés pontos megvalósítása így komolyabb analízist és algoritmusokat igényel, azonban az exponens mindenléppen pozitívnak adódik, tehát, például demonstrációs kísérletek, laboratóriumi gyakorlat vagy olyan mérés esetén, ahol pusztán a káosz megjelenése érdekbe minket, az említett nehézkes illesztési mechanizmusok elhagyhatóak. Eredményeimből látszik, hogy a kaotikus régiók pontosabb feltértépezéséhez az említett algoritmus irása is egy fontos további fejlesztés lehet.

Mivel az alsó rúd többször átfordul, a szenzor akár több ezer foknyi aktuális kitérést is jelezhet. Fázissíkon történő ábrázolásnál igen, időbeli változást ábrázoló grafikonon (lásd pl.: 4.7. ábra) viszont nem csonkoltam a szökgitérést -180 és -180 fok közé, hiszen a keletkezett törés meggazavarja az átláthatóságot, illetve az átfordulásából összadódó szögértékek információval bírnak, miszerint hányszor fordult át addig a mozgás során a rúd. A fázistérbeli távolságok számításánál a csonkolás esetleges alkalmazása érdekes kérdés, én Shinbrot eljárását követve [1] nem csonkoltam a szögeket.
Az alábbiakban bemutatott eredmények káosz megjelenését, és az előbbi problémákat is jól demonstrálják.

![Diagram](image)

A 4.8 ábrán látható, hogy a 2. és 4. mozgás távolodásának mértéke a fázistérben exponenciálisan nő, és több mint 20 másodpercig tart, ez szép példája a káosz megjelenésének.

Az 4.9. ábrán bemutatott esetek a példák a fentebb említett, az irodalomban eddig is ismert illesztési problémára. Ezen esetekben a nagyon rövid időre való illesztést választottam, ám ezek az értékek többi átlagánál általában jóval nagyobbak, hiszen az instabil helyzet után való ellenkező irányba távolodást fejezik ki (lásd 4.1. táblázat).

![Diagram](image)

Mivel a fenti 5 mozgás összehasonlítása közül az összes lehetséges kombináció esetén a lokális Ljapunov-exponens pozitívnak adódott (lásd 4.1. táblázat), így tehát az átlagos exponens is pozitív, a vizsgált kettős inga mozgását az adott kezdőfeltételekre egyértelműen kaotikusnak nevezhetjük.

Az indítási Θ_1 különbségei a mért adatok szerint $\pm 0,5^\circ$-on belül voltak, azonban fontos megjegyezni, hogy a gyorsulásszenzor pontossága ezt nem éri el. A kezdőfeltételek tehát:

$$\Theta_1 = 160^\circ, \omega_1 = 0^\circ s^{-1},$$

$$\Theta_2 = -133,3^\circ, \omega_2 = 0^\circ s^{-1}$$

Az átlagos Ljapunov-exponens:

$$\lambda = 0,29$$

4.3.3 A fázistér egy metszetének vizsgálata közel azonos kezdőfeltételek esetén

A dolgozat elején említett másik érdekes kérdés, melyre a rendszer választ adhat, és amelyre válaszolni kívántam, megvilágítva a további lehetőségeket, a fázistér egy metszetének alakulása közel azonos indítások esetén. Az előzőekben vizsgált, kaotikusnak adódott (lásd 4.3.2. fejezet) mozgások esetén jól látható (lásd 4.10. ábra), hogy a metszéspontok nem adott helyeken tömörülnek, a különböző mozgásokhoz tartozó csoportok struktúrája közel sem egyezik, mindössze annyiban, hogy végül mindannyian az origóba tartanak, így az 55 másodperc után készült képen is látható a középen történő sürűsödés.

![4.10. ábra: A fázistér (4.1) típusú metszete 5, közel azonos kezdőfeltétellel indított, különböző színekkel jelölt kaotikus mozgás esetén. (t=55 s)](image-url)
A kapott kép kialakulása is vizsgálható, a programban az időtengelyt léptetve láthatjuk ahogy felépül a fázistér egy metszete, azaz az idő (így energiacsökkenés) függvényében vizsgálhatóvá válik, több, közeli kezdőfeltételből induló mozgás közös metszete (lásd 4.11. ábra), amely az elméleti eredmények fényében érdekesnek mutatkozik (lásd 4.4. fejezet).

4.11. ábra: Az 5, különböző színnel jelölt adatsor fázistér metszeteinek alakulása és az alsó rúd elfordulásához viszonyítva sorrendben: \(t = 3 \) s, 9 s, 15 s, 21 s esetén.
4.4 A rendszer által nyújtott további lehetőségek

Munkám fő eredménye a disszipatív és konzervatív eset tanulmányozását is lehetővé tevő rendszer elkészítése. Ezenfelül a fentiakban megvizsgáltam az általam felvetett vizsgálati lehetőségeket. Magának az analízisnek az elvégzése így igen igéretes további lehetőség, melynek a 2.1.2.3. fejezetben is felvetett fő kérdései tehát a fenti eredmények fényében:

- A periodikus, kvázi-periodikus és kaotikus tartományok feltérképezése és a konzervatív esetére számított tartományokkal való összevetése a Ljapunov-exponensek mérésével a rendszer alkalmas (lásd 4.3.2. fejezet), ehhez szükséges az exponenciális illesztést segítő algoritmus írása.

- A rendszer segítségével elérhetővé vált a fázistér-metszetek felvétele (lásd 4.3.3. fejezet), ezért a továbbiakban vizsgálhatóvá válik a közel azonos kezdőfeltételekből indított adatsorokra kapott metszet és a konzervatív, az adott kezdőfeltételekhez tartozó energián mozgó súrlódásmentes inga metszeteinek összehasonlítása. Érdemesnek látszik az analízist a periodikus, kvázi-periodikus és kaotikus tartományokon elvégezni.

- A fázistér-metszéspontok haladása a metszés pillanatában aktuális energiára számított elméleti Poincaré-metszeten is követhetővé vált (4.3.3). Ez a vizsgálat kikerüli az elméleti és valós metszetek alapvető különbsége okozta hibát, mivel a súrlódásos esetben a mozgás idővel egyértelműen az origóba tart, a disszipatív metszet origójában a pontok besűrűsödnek.

- Lehetőség nyílt energiacsökkenés kimérésére, ebből a differenciálegyenlet súrlódó tagjának felírására, így numerikus szimulációval az előbbiek könnyedén, számtalan kezdőfeltétel esetén vizsgálhatóak, így ez a további vizsgálatok egyik fő irányvonalá lehet.

A fenti eredmények tükrében fontos fejlesztés lehet a felső inga mérési tartományainak kiterjesztése, az exponenciális illesztést elősegítő algoritmus írása, illetve a jelenleg offline végzett műveletek lehetőség szerinti valós idejű megvalósításának lehetővé tétele.
5 Összefoglalás

A kettős inga kaotikus mozgásának vizsgálata az utóbbi évtizedekben jelentős figyelmet kapott, így egy valós kettős inga vizsgálata mind demonstrációs, mind a disszipatív és konzervatív rendszerek közötti kapcsolat megértése szempontjából fontosnak mutatkozott.

Munkám során egy erre alkalmas mérőrendszert fejlesztettem ki. Célom olyan rendszer fejlesztése volt, ami könnyen elérhető eszközök segítségével, mind a demonstrációt mind a mozgás tanulmányozását elősegítendő valós időben ábrázolja a fázistér elemeinek aktuális értékét, illetve a vizsgálat szempontjából fontos fázistér-metszeteket.

Erre a virtuális mérőműszerek használata adott lehetőséget. Az inga mozgását végző mérőrendszer a felső rúd elfordulását mérő gyorsulásszenzorból, az alsóét digitális elfordulásmérőből, adatgyűjtő egységből és a virtuális mérőműszerből, a szoftverből állt.

Munkám fő eredménye az előbbi célkitűzésnek megfelelő, olyan mérőrendszer kifejlesztése, amely képes valós időben kijelezni: a felső rúd szögelfordulását és az ebből numerikusan számított szögsebességet, az alsó rúd szögelfordulását és az ebből numerikusan számított szögsebességet, az ingák fázisportréját és a fázis tér egy metszetét. Képes különböző adatsorok felvételére és együttes kijelzésére, így lehetővé teszi a közeli kezdőfeltételek ből induló mozgások összehasonlítását, amely mind az elméleti következtetések (pl. Ljapunov-exponens), mind a demonstráció szempontjából rendkívül hasznosnak bizonyult.

Bár, a kettős inga hagyományos demonstrációs eszköze a kaotikus dinamikának, és az utóbbi években több eredmény is született egyetemi laborgyakorlati és emelt szintű középiskolás méréseken való alkalmazásáról, a rendszer nyújtotta lehetősége, miszerint a látványos mozgás közben tudjuk egyszerre demonstrálni mind a káosz megjelenését, mind a tudományág által használt vizsgálati módszereket, előrelépést jelenthet a kettős inga mozgásának demonstrációjában.

A rendszer elkészítésén túlmenően meg kívántam vizsgálni, miként végezhető el részletes analízis a súrlódó és súrlódásmentes mozgás közötti kapcsolatról, így az ehhez felvetett kérdések vizsgálhatóságát mérésekkel is megvilágítottam. A közel azonos kezdőfeltételekből induló mérés pontos szinkronizálásához offline szoftvert készítettem.

Reprodukáltam a valós kettős inga mozgásában megjelenő kaotikusságról közölt első eredményt, az általam mért Ljapunov-exponens a vizsgált kezdőfeltételekre pozitívnak, így a mozgás kaotikusnak adódott, és egyben rávilágítottam módszerben fellépő nehézségekre. A rendszer alkalmasnak bizonyult az indítási helyzetek periodikus, kváziperiodikus és kaotikus tartományainak feltérképezésére, és annak összehasonlítására a súrlódásmentes esethez tartózóakkal.
Bemutattam ugyanezen adatsorokon, miként lehet követni egy vizsgált fázistér-metszetén egyszerre több mozgás alakulását az idő függvényében, és egyben megmutattam, miként oszlanak a közel azonos kezdőfeltételek esetén vizsgált fázistér metszetén a különböző adatsorok metszéspontjai. Ezen eredmények lehetővé teszik a disszipatív eset fázistér-metszeteinek és a konzervatív eset Poincaré-metszetei közötti kapcsolat megértését.

Összességében tehát egy komplett mérőrendszer fejlesztésével lehetővé tettem valódi kettős inga kaotikus mozgásának valós idejű vizsgálatát és demonstrálását, és segítségével megvizsgáltam a konzervatív és disszipatív esetek közötti kapcsolat vizsgálatának lehetőségeit.

6 Köszönetnyilvánítás

Ezúton szeretném köszönetet mondani témavezetőimnek, Dr. Gingl Zoltánnak a munkám teljes körű támogatásáért és szakmai segítségéért a probléma felvetés, mérőrendszer fejlesztés és kiértékelés során, illetve Dr. Gyémánt Ivánnak a kaotikus mozgás elméleti tanulmányozásában nyújtott nélkülözhetetlen iránymutatásáért. Hálával tartozok továbbá a Kísérleti Fizikai Tanszék Zaj, Nemlinearitás és Szilárdtest Laboratóriумában dolgozóknak a munka folyamán nyújtott mindennemű szakmai segítségéért illetve a Tanszék Mechanikus Műhelyének a kettős inga elkészítéséért. Végül köszönetemet fejezném ki Dr. Mingesz Róbertnek a szoftverek készítésében nyújtott segítségeért, Kopasz Katalinnak a szakmódszertani probléma felvetéséért és Nagy Péternek a munkám folyamán felmerült kérdések hasznos és részletes diszkussziójáért.
7 Irodalomjegyzék

8 Nyilatkozat

Alulírott Vadai Gergely, Fizika BSc szakos hallgató (ETR azonosító: VAGPAAT.SZE), a szakdolgozat szerzője fegyelmi felelősségem tudatában kijelentem, hogy dolgozatom önálló munkám eredménye, saját szellemi termékem, abban a hivatkozások és idézések általános szabályait következetesen alkalmaztam, mások által írt részeket a megfelelő idézés nélkül nem használtam fel.

Szeged, 2010. május