
University of Szeged
Department of Software Engineering

Applying Software Product Metrics
in Software Maintenance

Summary of the Ph.D. Thesis

István Siket

Supervisor:

Dr. Tibor Gyimóthy
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Introduction

One of the biggest challenges of software engineering is the difficulty of fulfilling the customers’ precise

demands. Large and complex systems have to be developed in a short time, and after delivering them

to the customer, they have to be maintained and improved based on the new requirements. Due to

the strict deadlines and the complexity of problems that have to be solved, developers cannot always

choose the best solution for each problem, so the quality of the software system may deteriorate

over time. Since quality, which is important from the customer point of view (e.g. that of usability

or reliability), must be maintained to a high level, developers may sacrifice the “internal” quality

(e.g. maintainability) as it is less important for a customer. But the “internal” qualities are as

important as the others, and none of them should be neglected during the lifecycle of the software

system. For example, the cost of finding and correcting a bug, or the cost of implementing a new

feature is heavily dependent on the maintainability of the software system. If we do not look after our

software system over time, we cannot maintain or develop it efficiently. Short-term goals like quality

should not be strived for at the expense of long-term goals like maintainability.

In the thesis we are principally concerned with software maintenance, including testing and discov-

ering a software system’s bugs. Since a significant part of software development costs arises from this,

anything that increases the efficiency of testing is helpful, so it can decrease the overall development

cost. Previously many studies confirmed [1, 3, 16] that there is correlation between the object-oriented

metrics and the faults found in the classes. This means that with the regular measurement and analysis

of object-oriented metrics, the quality and the maintainability of a software system can be improved

and its testing can be made more efficient. They can have a positive impact on the development of

a software system and best practice of the software development community.

The first problem is that if experiments were carried out on small- or medium-sized systems,

relationships cannot be validated in an industrial environment. The second problem is that if large

and complex systems cannot be analyzed, we will not be able to calculate their metrics values, which

is indispensable for the practical application of the results. Without first solving these difficulties, the

set of metrics cannot be usefully applied in the software engineering process.

In this thesis we present a solution for both these problems. First, the Columbus technology is

introduced which allows us to analyze a large software system and to calculate the object-oriented

metrics even for the largest systems encountered by us. For the validation of the metrics, seven

different versions of Mozilla [9] were analyzed and the metric values were calculated. All reported

and corrected bugs were collected from the bug tracking system of Mozilla called Bugzilla [4] and

by applying our heuristic, they were associated with classes. This way, we demonstrated that our

technique was of good practical use, but what was more important was that we had all the necessary

data to carry out our own experiments. First, we examined the object-oriented metrics, defined by

Chidamber and Kemerer [5], and the standard lines of code metric. Later we extended these in our

experiments, where the aim was to examine metric categories instead of the metrics themselves. Using

these results, we were able to construct metric-based quality models to aid software development.

Afterwards, the practical aspect of these metrics was examined by asking the developers for their

views about the relationship between four metrics and software comprehension & testing. The findings

raised several issues connected with the practical use of the metrics, and led us to conclude that we

cannot just give the metrics to the developers without some sort of proper training. The other

beneficial outcome of the survey was that its results can be used to improve our quality models.
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The four main results of the thesis are the following:

1. The analysis of large C++ software systems, developing a language-independent

model for a high-level representation of object-oriented languages, and calculating

object-oriented metrics using this model. We developed a heuristic that associates

corrected bugs with classes.

2. We developed fault-predictor models based on object-oriented design metrics.

3. We analyzed the fault-prone properties of the object-oriented metric categories.

4. We examined the views of software developers and applied the results to improve our

quality models.

1 The Columbus technology

To be able to examine the relationship between the object-oriented metrics and the number of bugs,

we have to calculate these values. First, we will present a solution for the analysis of any large and

complex software system and we will describe a language-independent object-oriented model that

allows us to readily calculate object-oriented metrics even for large systems. Nine Mozilla versions

were analyzed and the metric values were calculated for each one, and with the help of our heuristic,

the reported and corrected bugs were associated with the classes of Mozilla.

The Columbus framework

It is a rather difficult and complex task to analyze the source code of a real-world system. The

source code is usually logically split into several files and these files are then arranged into folders and

subfolders. All the information about how these files are related to each other and what settings are

applied to them is usually stored either in makefiles or in different project files. All this information

is taken into account when building the system. Unfortunately, these files can be very different and

can store almost any kind of data, hence it would be a great challenge to “understand” them. This

is only one example of the many problems that have to be addressed if we would like to analyze a

real-world system in detail.

After examining several software systems, we developed the Columbus framework [6] which allows

us to automatically analyze and extract information from an arbitrary software system without modi-

fying anything in its source code. Although the first version could only analyze C++ systems compiled

with GCC on the Linux platform, now it supports the Windows platform and Visual Studio compiler as

well; furthermore, Java and C# languages can also be analyzed. Many large open-source (e.g. Mozilla

[9] and OpenOffice.org [11]) and industrial systems, among which the largest one contained 30 million

lines of code, were analyzed successfully (and the metric values were calculated), which indeed proves

the feasibility and the power of the Columbus technology.

Information obtained from an analysis can be used for a variety of re- and reverse engineering

purposes [13]. Now we will describe how the object-oriented metrics were calculated.
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Language Independent Model

We worked out a Language Independent Model (LIM) that is a high-level representation of an object-

oriented system. The model consists of four main packages. The base package contains general

classes like the common base class of all other classes in the schema. Another example may be the

class that represents comments of the source code. The physical package contains classes that can be

used to represent the physical structure of the system; more precisely its files, folders and their relations

(for example, a file that includes another one). The main object-oriented elements (e.g. packages,

classes, and methods) of a system and their properties and connections can be represented by the

classes of the logical package. Furthermore, some low-level information, which is necessary for metric

calculations (e.g. the number of branches of a method), but cannot be calculated using LIM, is also

stored in the appropriate class as an attribute. The type package combines the type representation of

the C++, Java and C# languages in a slightly simpler form, so all but “the most rarely used” types

can be built from these classes. Such a precise type representation is not necessary for metrics, but,

for example, source documentation is generated from LIM as well, and it should represent the types

correctly.

One of the main advantages of LIM (in contrast to the language representation model) is that it

uses much less memory so huge systems, which cannot be handled in one C++ schema, might be

represented in LIM. The other benefit is that LIM stores only high-level information, therefore the

tools can calculate object-oriented results faster and easier. If we implement a new exporter on LIM,

it works for all languages that can be represented in LIM; so by doing this we only have to maintain

one program.

We implemented the conversion from C++, Java and C# languages to LIM, so it can be used,

among other things, for calculating object-oriented metrics for these languages. Currently, 16 system

level, 65 class level, and 17 method level metrics can be calculated using our program.

Analysis of Mozilla

Mozilla, which is an open-source Web and e-mail suite, was the first industrial system we analyzed

successfully. During our first experiments seven different Mozilla versions (from 1.0 to 1.6) were chosen

and all the metric values were calculated. All Mozilla versions contained over 1 million non-empty and

non-comment lines of code, over 4,500 classes, and almost 70,000 methods.

The next step was to determine the number of bugs found and corrected in the classes of Mozilla.

We devised a heuristic to collect the necessary bugs from the bug tracking system of Mozilla (called

Bugzilla [4]) and to associate them with the classes. The developer community of Mozilla provided

us with the full Bugzilla database, which contained all the reported bugs since the beginning of its

development. The Bugzilla database contained 256,613 different bug entries, but not all of these were

of interest to us. Hence we filtered out those bugs which were reported for other Mozilla products

(231,021 bugs remained) but were not fixed (57,151 remained) and those bugs that did not contain

a patch file that may have corrected the bug (22,553 remained). Those bugs that were fixed before

version 1.0 of Mozilla were also filtered out (9,539 remained) and similarly, those bugs that were

reported after Mozilla 1.7 were filtered out as well. We found 8,936 different bug entries, which

fulfilled all of these requirements.

We associated the bugs with classes in concrete release versions by using the reporting and the
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correction date. We considered a bug to be present in the actual release at the time when it was

reported and in all subsequent releases up till the date of the fix. The patch files were used to find

out which classes were affected by the bug. This way we could associate 3,961 bugs with classes of

Mozilla 1.6, which was used in our first experiment (Section 2). The results were validated by hand

on random samples and we found that the heuristic could assign the bugs to the correct classes.

One big drawback of this method was that it needed the Bugzilla database. Therefore we improved

our method to make it able to collect the same information over the Internet. Later we repeated our

analysis procedure with nine Mozilla versions, but this time we collected the bugs with the new method.

In our second investigation (Section 3) we utilized the results of the extended analysis.

Own contributions

We developed the Columbus framework, which can analyze a real-sized software system. We intro-

duced the Language Independent Model, which is suitable for representing object-oriented languages,

and we used it for metric calculations. We created a heuristic to associate the reported and corrected

bugs with the classes of Mozilla.

The Columbus framework and the analysis of Mozilla are not the author’s work. But the idea and

the development of the Language Independent Model, the conversion from C++ language to this

model, and the metric calculation using the Language Independent Model are the work of the author.

The bug collection from the bug tracking system of Mozilla and the heuristic used for associating the

bugs with classes are also the author’s work.

2 Fault-predictor models based on object-oriented metrics

Previous studies had already validated the fault-prone capabilities of metrics, but we wanted to test

their results for a large industrial system. For this experiment eight metrics were selected. Six of

these metrics were first presented by Chidamber and Kemerer [5], and this metric suite is one of the

most frequently examined and applied software tools. The seventh metric was LCOMN, which was

a modified version of one of the six metrics. We examined the non-empty and non-comment lines of

code metric as well to learn the difference between the traditional size metric and the object-oriented

metrics. Each of these metrics may be defined in the following way:

• Number of Methods Local (NML) is the number of methods defined in a class.

• Number Of Ancestors (NOA) measures the number of ancestors of a class.

• Number Of Children (NOC) is the number of direct descendants for each class.

• Coupling Between Object classes (CBO) is the number of coupled classes. A class is coupled

to another if the class uses any method or attribute of the other class or it directly inherits one

of these from it.

• Response set For a Class (RFC) is the cardinality of the set, which contains the methods of the

class and methods directly invoked by them.

• Lack of COhesion in Methods (LCOM) is the number of member function pairs without shared

instance variables, minus the number of member function pairs with shared instance variables.

The metric is set to zero whenever this subtraction result is negative.
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• Lack of COhesion in Methods allowing Negative value (LCOMN) is calculated in the same way

as LCOM, but its value is not set to zero when the subtraction result is negative.

• Logical Lines Of Code (LLOC) of a class is the number of all non-empty, non-comment lines of

the body of the class and all of its methods.

Although we calculated the metrics values and determined the number of bugs for each given

Mozilla version, only version 1.6 was used for the analysis. Since the source code of Mozilla contained

classes which were generated on-the-fly during compilation, these classes could not contain any bug.

Therefore these classes were filtered out. Similarly, we also filtered out all bug-free classes which

existed in all seven analyzed versions of Mozilla and where none of the metrics changed. This way we

arrived at 3,192 remaining classes for Mozilla version 1.6, which contained 3,961 bugs.

Four different methods were applied to investigate the metrics and all the results were used to

judge the metrics as well. In the case of Mozilla there were several classes that contained a lot of bugs,

thus we applied linear regression [10] in situations where the number of bugs could be predicted. First,

the metrics were analyzed one by one, with univariate linear regression, to see which metrics could

be used for bug prediction. Then we tried to improve the models by using more metrics together, so

multivariate analysis was applied as well. Table 1 shows the results of applying linear regression. We

can see that for the NOC metric, there is no apparent correlation between the metric values and the

number of bugs. On the other hand, all the other metrics were able to predict bugs (p-values are less

than 0.01) but to a different degree. The best predictor was CBO (it has the highest R2 value), but

LLOC was only slightly worse. As we expected, applying more metrics together in one bug predictor

model, we can achieve a much better result (the R2 value of multivariate regression is much better

than any other value).

NML NOA NOC CBO RFC LCOM LCOMN LLOC Multiv.
p-value 0.000 0.000 0.728 0.000 0.000 0.000 0.000 0.000 0.000
R2 0.321 0.139 0.000 0.349 0.280 0.210 0.157 0.342 0.430

Table 1: Results of linear regression

With the other three methods (logistic regression [8], decision trees [12], and neural networks

[2]) the fault-prone property of the classes was examined, therefore the classes were divided into two

groups, where the first group contained the faulty classes and the other one represented the faultless

classes. In all three methods the metrics were first examined individually and then the extended model

with more metrics was also tested. Though these methods proved incapable of predicting the number

of bugs, if we count the faults in the classes classified as faulty by the model, we can still determine

how many bugs the given model found.

To be able to compare the results of the different methods, we need to calculate three scores. The

correctness score tells us how many classes were classified correctly by the model. The precision score

describes what percentage of the faulty predicted classes is really faulty. The completeness score tells

us what percentage of the faults was found by the model in practice.

Table 2 summarizes the results of the models. The CBO (Coupling Between Object classes) metric

was the best predictor in linear regression and the correctness, precision, and completeness scores of

CBO are almost always the best among the metrics. Moreover, the correctness scores of CBO on its

own are better than those of the multivariate models, and the precision and completeness scores are

5



Metric Model Correctness Precision Completeness
Log. reg. 65.38% 68.84% 55.24%

NML Dec. tree 66.51% 62.34% 65.33%
Neural n. 66.20% 65.75% 60.19%
Log. reg. 64.04% 65.06% 45.17%

NOA Dec. tree 63.66% 63.13% 41.09%
Neural n. 63.47% 61.36% 40.52%
Log. reg. 57.96% – –

NOC Dec. tree 57.95% – –
Neural n. 57.96% – –
Log. reg. 69.77% 70.38% 69.12%

CBO Dec. tree 69.77% 69.13% 67.02%
Neural n. 69.46% 70.63% 65.13%
Log. reg. 66.01% 71.89% 53.60%

RFC Dec. tree 66.45% 65.15% 56.91%
Neural n. 66.76% 63.99% 61.66%
Log. reg. 64.69% 81.34% 43.68%

LCOM Dec. tree 66.67% 63.96% 60.59%
Neural n. 66.17% 63.92% 60.36%
Log. reg. 63.82% 85.02% 39.01%

LCOMN Dec. tree 66.67% 63.96% 60.59%
Neural n. 67.17% 66.70% 60.62%
Log. reg. 66.85% 72.98% 54.58%

LLOC Dec. tree 67.98% 66.81% 64.41%
Neural n. 67.58% 65.29% 65.85%
Log. reg. 69.61% 72.57% 65.24%

Multiv. Dec. tree 69.58% 68.38% 67.84%
Neural n. 68.77% 68.94% 64.76%

Table 2: Summary of the correctness, precision and completeness scores

also better in some cases. Hence, it seems CBO is the best predictor. LLOC (Logical Lines Of Code)

got excellent scores in each method applied and only the CBO metric was better. NML (Number of

Methods Local) and RFC (Response set For a Class) gave worse but still usable results. The scores

for the LCOM (Lack of COhesion in Methods) and LCOMN (Lack of COhesion in Methods allowing

Negative value) metrics differed by 3-4% at most, but both of them were poor. This means that they

are not really good for predicting bugs. We can just say that some statistical connection was found

between NOA (Number Of Ancestors) and the number of bugs, but it is not such a good predictor

as the others and further investigation is required. In the case of NOC (Number Of Children) all

three method classified all the classes as faultless, therefore NOC cannot be seriously used for bug

prediction.

Summarizing our results, we can state that 7 out of the 8 metrics can be usefully applied for

fault-prediction, and the best one seems to be the CBO metric, which is better than LLOC. As we

mentioned before, several previous studies corroborate our general findings. The main value of our

results is that we are one of the first to demonstrate a concrete statistical connection between metrics
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and the bugs contained in a large system.

Studying the evolution of Mozilla

We examined the metric statistics for Mozilla to see how it changed over the seven versions we studied.

The values of NML, CBO, RFC, LCOM, and LLOC increased significantly with version 1.2. With this

version the number of bugs also increased, which is also curious because at the same time the number

of classes decreased.

We presumed from these observations that there must have been a bigger reorganization of the

Mozilla source code with version 1.2, causing a significant increase in the metric values and the number

of bugs. Of course, other factors might have also influenced the number of submitted and fixed bugs,

so further investigation is needed to identify the precise reason for this.

Own contributions

We examined the relationship between Chidamber and Kemerer metric suite and the traditional lines

of code metric values and the number of bugs found in the classes. The regression analysis and various

machine learning methods applied in this study gave very similar results. We found that 7 out of the

8 metrics in question can be used for fault-prediction, but to a different degree.

The analysis of the fault-prone property of the metrics, with the help of regression analysis and

machine learning methods, and the construction of fault-predictor models are the author’s own work.

The analysis of Mozilla’s software evolution is not the author’s result.

3 Examining the fault-prediction capabilities of metric-cate-
gories

Previously we examined only eight metrics but we could not form any definite general conclusions.

Therefore we decided to extend our experiments so as to examine metric categories as well. First,

we analyzed two more versions of Mozilla, so we had all the versions from 1.0 to 1.8. Since lots of

bugs had been corrected since the previous experiment, the bug reports were collected again and they

were associated with classes. Thanks to our new way of bug collection, we did not need the Bugzilla

database any longer because the necessary information could be extracted directly from Bugzilla. We

chose version 1.6 again, and the generated and unchanged classes were filtered out in the same way

as before. So 3,209 classes and 7,662 bugs remained in version 1.6.

We examined five metric categories (size, complexity, coupling, inheritance and cohesion) and

the fault-proneness capability of a category was determined via its metric capability. 58 metrics were

chosen and they were classified according to the five metric categories.

As the four previously applied methods gave very similar results, we decided just to employ logistic

regression. We found statistical connections between the metrics and the bugs in 17 cases. Based

on these results, we reasonably concluded that the coupling metrics are the best bugs predictors,

which supports our previous results, where we found that CBO was the best. The complexity category

achieved good results as well. The metrics from size category, which measured the lines of code

of a class in a different way or counted the methods and public library routines, were useful too.
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Unfortunately, the other size metrics we tested were of little practical worth. Cohesion metrics gave

very poor results so we do not suggest using any of them for fault-prediction. Lastly, none of the

inheritance metrics was suitable for bug prediction. These results are broad agreement with our

previous findings.

Own contributions

We extended our previous analysis to metric categories and found that coupling metrics are the best

predictors, but complexity metrics and some of the size metrics may also be beneficial for fault-

prediction. The predictive capabilities of cohesion metrics are negligible and the inheritance metrics

proved unsuitable for bug prediction.

The entire analysis of the fault-prediction capabilities on the metric categories is the author’s own

work.

4 Using software developers’ view to improve quality models

We demonstrated that the metric values for arbitrarily large software systems can be easily calculated

with the help of the Columbus technology. For an industrial system we found that there was a

correlation between the metric values and the quality of the software, hence we might think that

all the difficulties would be eliminated if we applied the metrics in practice. But before introducing

metrics in our software process, we should investigate how the developers would use them. If they

cannot use the metrics properly, we just slow down their work and the software quality will not be

improved. What is worse, the use of metrics might have unexpected consequences.

Therefore we created a Survey to examine the developers’ knowledge and opinions about the use

of three object-oriented (LLOC, CBO, and WMC) metrics and one code duplication (CI) metric. The

Survey contained over 50 questions. It examined the participants’ views in order to discover what

kinds of relations exist between the metrics and program comprehension & testing. The Survey can

be divided into three parts. The first part contains several general questions about the participants’

experience and skills in order to get an overall picture about them. In the second part, the questions

examined the participants’ views about each metric separately; more precisely, we asked exactly the

same questions about all four metrics to learn their opinion of each. In the third part the metrics were

examined together and the participants had to rank the them in order of their importance.

The 50 participants who filled out the questionnaire at our Software Engineering Department all

work on industrial and R&D projects. They ranged from beginner students to experienced programmers

so the participants’ experience and skills differed greatly. Therefore besides the analysis of the answers

and their distribution, statistical methods were applied to see how the different levels of experience

influenced their assessment on the practical worth of each metric.

First the general questions and their relationships were analyzed and we found that the replies

broadly reflected the structure of our department. Based on these replies we divided the participants

into two groups (junior and senior), according to their knowledge and experience in a particular area.

For each question we examined whether there was any significant difference between the replies of

the two groups.

In the second part, the questions asked how they would assess the problem of the understanding

8



& testing of an unknown piece of software by just using metrics. We were interested in what kind of

reasons (for example, generated code or a well-known design pattern) would be accepted for “wrong”

metric values. The third set of questions asked how the participants would share their testing resources

based on metrics. All these questions were asked for each metric separately. In many cases we found

that the junior and senior participants’ answers differed significantly, which probably means that the

experience gained in different areas has a direct influence on the practical use of metrics.

In the third part, among other questions we investigated the importance of the four metrics from

a testing aspect. According to the participants, the WMC metric was the most important, while the

scores for the other three metrics (LLOC, CBO, CI) were almost the same, but they were significantly

worse than the WMC score. This was surprising because it seems to contradict the results of our

earlier studies.

The Survey has many interesting findings which should be taken into account before applying

metrics in practice. One conclusion drawn from the answers and the fact that the metrics were

frequently applied differently by the senior developers is that we should first explain to the developers

how the metrics should be used in their everyday work.

In addition, it often turned out that the metrics should be applied differently. In the replies over

half of the participants said they would accept wrong metric values for generated source code. When

investigating the developers’ views about these cases, our quality models ought to be improved to

handle these parts of the software differently.

Own contributions

We were curious about how developers could benefit from applying software metrics, so a Survey was

devised to learn how the developers would use the metrics in different software maintenance areas,

and to see which of the metrics were important for them. We showed that the experience gained in

different areas often influences the judgement of the practical use of metrics. The results also made

clear that developers should be taught about their proper use. For us, these results can be used to

improve the efficiency of our quality models.

Although the idea and topic of the Survey is not the author’s, the detailed elaboration of the

Survey, its implementation and the evaluation of its results are the author’s own work.
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Summary

The thesis examined object-oriented metrics from several aspects. First, we presented our Columbus

technology which is suitable for analyzing large C++, Java and C# systems and we showed how

object-oriented metrics can be calculated. We developed a heuristic to automatically collect the

reported and corrected bugs from a bug tracking system and to associate them with the source code

elements.

We proved that there is correlation between the metrics and the number of bugs, which means

that the quality models based on metrics can be used to improve the quality of the software. Later

we extended our experiments to metric-categories as well. Using these results, we created the kind of

tools that are able to measure the software quality of the package in question, and at the same time

it can be used to follow its evolution.

In addition, our Survey about the practical use of metrics demonstrated that it is not enough to

give the developers the metrics; we also have to show them how to use them. The results of the

survey can also be used to improve our quality model by taking into account the views of developers.

Lastly, Table 3 below summarizes which publications cover which results of the thesis. We should

mention here that there is a great international interest in the topic of the thesis, which is supported

by the fact Ferenc et al.’s article [6] has been independently cited 34 times, while Gyimóthy et al.’s

article [7] has been cited over 100 times to date.

[6] [7] [14] [15]
1. • •
2. •
3. •
4. •

Table 3: The relation between the thesis topics and the corresponding publications
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