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1 Introduction

The main contribution of this thesis is that we approach fuzzy reasoning from
three different angles. First, by creating a new, hybrid fuzzy rule-learning
model with classical inference methods. Second, by introducing a new reason-
ing method, with intuitive and practical properties. And third, by supervising
the so-called fuzzy truth value-based reasoning model, and showing new ways
to represent and calculate with fuzzy operations such as conjunctions and
implications.

2 The Squashing function

The sigmoid function is defined as

σ
(β)
d (x) =

1

1 + e−β(x−d)
.

In order to get an approximation of the generalized cut function i.e.

[x]a,δ =











0, if x ≤ a − δ/2
x−(a−δ/2)

δ , if a − δ/2 < x < a + δ/2

1, if a + δ/2 ≤ x

we integrated the difference of two sigmoid functions. The result is called the
squashing function [1, 2]
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,

where a ∈ R and δ ∈ R
+.

Theorem 2.1. Let a ∈ R and δ, β ∈ R
+. Then limβ→∞ S

(β)
a,δ (x) = [x]a,δ and

S
(β)
a,δ (x) is continuous in x, a, δ and β.

The squashing function approximates the cut function. We defined the
approximation error of the squashing function as

εβ = S
(β)
0,δ (−δ) =

1

2δ
ln

(

σ
(−β)
δ (−δ)

σ
(−β)
−δ (−δ)

)1/β

,

where β > 0. We have the following lemma on the relationship between εβ

and β.
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Lemma 2.2. Let us fix the value of δ. Then εβ < c · 1
β , where c = ln 2

2δ is
constant.

The following derivatives of the squashing function are continuous and can
be expressed by itself and sigmoid functions:

∂S
(β)
a,δ (x)

∂x
=

1

2δ

(

σ
(β)
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(β)
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,

∂S
(β)
a,δ (x)
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=

1

2δ
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,
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(β)
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1

2δ

(

σ
(β)
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(β)
a−δ(x)

)

−
1

δ
S

(β)
a,δ (x).

2.1 Approximation of piecewise linear membership func-

tions

Piecewise linear membership functions can be constructed from generalized
cut functions, and thus approximated by using squashing functions with a
suitable conjunction operator. We have chosen the  Lukasiewicz conjunction.
The formula of conjunction also uses the squashing function in place of the
cut function. This way, the membership function and the operator are both
constructed from the same component.

The approximation of a trapezoid membership function (ATR) is the fol-
lowing:

ATR(x, al, δl, ar, δr, β) = S
(β)
1/2,1/2

(

S
(β)
al,δl

(x) + S
(−β)
ar,δr

(x) − 1
)

.

3 Rule based fuzzy classification using squash-

ing functions

Our proposed three-stage fuzzy rule construction algorithm is the following [3].

1. The training data is fuzzified using approximated trapezoidal member-
ship functions for each input dimension.

2. The structures of the logic rules are evolved by a genetic algorithm.

3. A gradient based local optimization is applied to fine-tune the member-
ship functions.

The first step of rule learning is a discretization procedure, the fuzzification
of the training data. To avoid complex formulas, we are only concerned with
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disjunctions of conjunctions i.e. formulas given as disjunctive normal forms. A
set of rules is represented by a constrained neural network so that the hidden
layer contains only conjunctive neurons and the output layer contains only
disjunctive neurons. Every output neuron corresponds to one rule. For multi
class problems several networks (with one output node) can be trained, one
network per class. The output class is decided by taking the maximum of the
activations of the networks’ output. In the second step this structure is opti-
mized by a genetic algorithm to give the best possible result. The third step
of the rule construction algorithm requires that both the membership func-
tions and the logical connectives have a continuous gradient. The continuous
squashing function-based approximation is used.

3.1 Applications of the classification method

The following shorthand notation will be used for the description of member-
ship functions:

[a1 <δ1
x <δ2

a2] ,

where ai denote the centers and δi denote the widths of the left and right
slopes. If one side of the trapezoid is outside of the corresponding input
interval then it is omitted.

The problem sets are from the UCI machine learning repository. Our
results on the Iris dataset are:

• Iris Setosa: [x3 <1.7 3.8]

• Iris Virginica: [1.5 <0.5 x4]

• Iris Versicolor: [0.35 <3.76 x3 <1.55 6.6]
AND [0.27 <1.28 x4 <0.32 1.9]

These rules give 96% accuracy with 5 misclassified samples. Only two features
are used, and the average certainty factors are [98% 92% 96%] for the classes.

Our results on the Wine dataset are:

• Wine 1: [435 <683 x13]

• Wine 2: [x10 <3.36 5.9]

• Wine 3: [x7 <1.26 1.74]

These rules give 95% accuracy with 6 misclassified and 3 undecided samples.
Note that only three features are used (x7, x10, x13) in the rules. The average
certainty factors are [88% 85% 85%].

Our results on the Ionosphere dataset are:

[0.69 <0.5 x1] AND [−0.19 <0.013 x5]
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With 1/2 threshold, this simple rule gives 88% accuracy.
Our results on the Thyroid dataset are:

• Normal: [4.92 <2.46 x2 <6.95 14.57]

• Hypo: [x2 <3.75 6.2]

• Hyper: [10.95 <4.31 x2 <12.77 36.8]

These rules give 94.8% accuracy with 11 misclassifications. Note that only x2

is used. The average certainty factors are [95% 88% 94%].

4 Reasoning using approximated fuzzy inter-

vals

Let A,A∗ ∈ F (X) and B ∈ F (Y ) be fuzzy sets on the universes of discourse
X and Y , where F is the set of all fuzzy sets. The compositional rule of
inference (CRI) introduced by Zadeh [7] states that knowing A∗ and the rule
”IF A THEN B”, the conclusion B∗ ∈ F (Y ) is calculated by means of the
combination/projection principle of the form

B∗(y) =
∨

x∈X

{A∗(x) ∧ R(A(x), B(y))} ,

where R ⊂ IX × IY is a fuzzy relation.
We established conditions under which the CRI reasoning scheme with a

continuous t-norm △ and its residual ⊲ as the fuzzy relation is closed under
sigmoid-like functions [4].

4.1 Closure properties of the generalized CRI

Theorem 4.1 (∧-based CRI). Let A,A∗, B be sigmoid-like fuzzy sets, and
let the reasoning scheme be the original CRI. Then B∗ can be calculated as
follows.

If A and A∗ have the same type of monotonicity, i.e. both are strictly
increasing or decreasing, then

B∗(y) = B(y) ∨ A∗(A−1(B(y)))

where A−1 is the (unique) inverse function of A, and B∗ is also a sigmoid-like
function.

If A∗(x) = A′(x) for a negation ′ i.e. if the functions have different type of
monotonicity, then B∗(y) = 1, i.e. the conclusion is interpreted as unknown.
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Corollary 4.2. Three special cases of Theorem 4.1 are:

• If A∗(x) > A(x) for all x then A∗(A−1(x)) > x and so B∗(y) =
A∗(A−1(B(y))) for all y.

• If A∗(x) ≤ A(x) for all x then A∗(A−1(x)) ≤ x and so B∗(y) = B(y)
for all y.

• If A∗ is ν-sharper than A (or vice versa) then B∗(y) has two parts divided
by A−1(ν) and can be calculated according to the previous two cases.

Theorem 4.3 (Product-based CRI). Let A,A∗, B be sigmoid-like fuzzy sets,
and let the reasoning scheme be the generalized CRI with the product t-norm
and its residual, the Goguen implication. Then B∗ can be calculated as follows.

If A and A∗ have the same type of monotonicity then

B∗(y) = B(y) ·
∨

x:A(x)≥B(y)
{A∗(x)/A(x)},

where B∗ is also a sigmoid-like function.
If A∗(x) = A′(x) for a negation ′, then B∗(y) = 1.

Theorem 4.4 (Nilpotent CRI). Let A,A∗, B be sigmoid-like fuzzy sets, and
let the reasoning scheme be the generalized CRI with the  Lukasiewicz t-norm
and its residual. Then B∗ can be calculated as follows.

If A and A∗ have the same type of monotonicity then

B∗(y) = B(y) +
∨

x:A(x)≥B(y)

{A∗(x) − A(x)}.

Here B∗ is a sigmoid-like function if and only if A∗ ⊆ A.
If A∗(x) = A′(x) for a strict negation then B∗(y) = 1.

These theorems are also valid regarding respective isomorphic t-norms
to the minimum, the product and the  Lukasiewicz t-norm. In case of the
minimum, it is easy to see, since it is only isomorph to itself. Regarding
Archimedean t-norms, a strictly increasing bijection transformation of the
generator function does not change the assertions of the proofs. Regarding
ordinal sums, the previous Theorems can be applied for each t-norm summand
separately.

Theorem 4.5. Let △ be an arbitrary ordinal sum of a family of continuous
t-norms, ⊲ its residual. Let A,A∗ and B be sigmoid-like functions. Let

B∗(y) =
∨

x∈X

{A∗(x)△ (A(x)⊲B(y))} .
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If A and A∗ are both increasing or decreasing, then B∗ is sigmoid-like if all
summands of △ are either the minimum or strict. If additionally A∗ ⊆ A
then B∗ is sigmoid like for all continuous ordinal sums △. If A and A∗ have
different type of monotonicity then B∗ ≡ 1.

The  Lukasiewicz t-norm based generalized CRI is closed under sigmoid-like
functions only if A∗ ⊆ A, since in this case B∗ ≡ B. In the general case, it
introduces a non-zero level of indetermination of the conclusion. Using the
product t-norm, the conclusion is sigmoid-like. The min-based CRI is also
closed under sigmoid-like functions.

4.2 The Membership Driven Inference

The Membership Driven Inference (MDI) reasoning scheme [4] is

B∗ = A∗ ◦ A−1 ◦ B,

where A and B are the antecedent and the consequent of a rule, A∗ is the
input and B∗ is the output of the rule.

This reasoning scheme is simple, and it depends only on the sigmoid-
like membership functions of A,A∗ and B. It does not contain explicitly
any conjunctive, implicative or other operation, nor any similarity or distance
measure. Although, MDI originates from the min-based generalized CRI it can
also be regarded as a modified fuzzy truth value (FTV) reasoning where the
mapping MI responsible for the inference in truth value space is the identity.
There is no t-norm for which MI ≡ id, hence the MDI is not a special case of
the FTV reasoning scheme. Its properties are summarized as follows.

Theorem 4.6. The MDI reasoning scheme with sigmoid-like membership
functions fulfills the following properties:

i) If A∗ = A then B∗ = B (generalized modus ponens)

ii) If B∗ = ′ ◦ B then A∗ = ′ ◦ A for any negation ′ (generalized modus
tollens)

iii) If C∗ = B∗ ◦ B−1 ◦ C then C∗ = A∗ ◦ A−1 ◦ C (generalized chain rule)

A more general rule is valid, covering the first two cases:

iv) For any unary operator f , A∗ = f ◦ A if and only if B∗ = f ◦ B. Note
that with the proper f function this case involves the ν-sharpening of A,
too.

Moreover, let alone sigmoid-like functions, for any A and B, A∗ ≡ 0 i.e.
undefined if and only if B∗ ≡ 0, and A∗ ≡ 1 i.e. unknown if and only if
B∗ ≡ 1.
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The problem of fuzzy abduction is also fulfilled by the MDI reasoning
scheme: in case B∗ is given, and A∗ is unknown, then it is easy to see that
A∗ = B∗ ◦ B−1 ◦ A.

Strictly speaking, this inference mechanism is not equivalent to the gener-
alized CRI reasoning scheme of Zadeh (due to different fulfilled axioms), nor
to similarity based reasoning (due to the lack of similarity measure). And
since A∗ ◦ A−1 can be treated as an unary operator (a truth-function) or as
some kind of (non-commutative) similitude between A and A∗, this reasoning
scheme can be positioned in between the generalized CRI and the similarity
based reasoning schemes.

4.3 Efficient computation of the MDI reasoning scheme

Theorem 4.7. If all fuzzy sets are squashing functions, i.e. if

A(x) = 〈a <δa
x〉β

A∗(x) = 〈a∗ <δa∗
x〉β

B(x) = 〈b <δb
x〉β

then B∗(x) = 〈b∗ <δb∗
x〉β, where

b∗ = b +
δb

δa
(a∗ − a) δb∗ =

δbδa∗

δa

Theorem 4.8. Suppose β > 0 and finite. If all fuzzy sets are trapezoidal fuzzy
intervals approximated by squashing functions, i.e. if

A(x) = AΠ(x; β, aL, δL
a , aR, δR

a ),

A∗(x) = AΠ(x; β, a∗
L, δL

a∗ , a∗
R, δR

a∗),

B(x) = AΠ(x; β, bL, δL
b , bR, δR

b ),

then B∗(x) = AΠ(x; β, b∗L, δL
b∗ , b

∗
R, δR

b∗), where

b∗L = bL +
δL
b

δL
a

(a∗
L − aL), δL

b∗ =
δL
b δL

a∗

δL
a

,

b∗R = bR +
δR
b

δR
a

(a∗
R − aR), δR

b∗ =
δR
b δR

a∗

δR
a

.

5 Calculations of operations on fuzzy truth val-

ues

In general, the convolutions that define the operations on fuzzy truth values
are difficult to calculate. If we restrict our investigations to extensions of
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continuous and Archimedean t-norms and t-conorms, we will get less complex
results [5].

Theorem 5.1. If △1 = ∧, ▽ = ∨, and △2 = △ is an arbitrary continuous
and Archimedean t-norm, then the following hold for all f, g ∈ F :

(f N∧ g) (z) =
∨

z=x∧y

(f(x)△ g(y)) =
((

fR △ g
)

∨
(

f △ gR
))

(z),

(f H∨ g) (z) =
∨

z=x∨y

(f(x)△ g(y)) =
((

fL △ g
)

∨
(

f △ gL
))

(z).

Theorem 5.2. If △1 and △2 are t-norms, s.t. △1 is continuous and Archi-
medean, then the following hold for all f, g ∈ F . For z > 0:

(f N g ) (z) =
∨

x≥z

(f(x)△2 g(x⊲1z)) =
∨

y≥z

(f(y ⊲1z)△2 g(y)) .

If △1 is strict then for z = 0:

(f N g ) (0) =
(

f(0)△2 gR(0)
)

∨
(

fR(0)△2 g(0)
)

,

and if △1 is nilpotent then for z = 0:

(f N g ) (0) =
∨

x

(

f(x)△2 gL(x′)
)

=
∨

y

(

fL(y′)△2 g(y)
)

,

where ⊲1 denotes the residual implication of △1, and x′ = (x⊲1 0) is the
strong negation corresponding to ⊲1.

A similar theorem holds for extended Archimedean t-conorms.

Theorem 5.3. If △ is a t-norm, ▽ is a continuous and Archimedean t-
conorm, then the following hold for all f, g ∈ F . For z < 1:

(f H g ) (z) =
∨

x≤z

(f(x)△ g(x⊳ z)) =
∨

y≤z

(f(y ⊳ z)△ g(y)) .

where ⊳ denotes the residual coimplication of ▽. If ▽ is strict then for z = 1:

(f H g ) (1) =
(

fL(1)△ g(1)
)

∨
(

f(1)△ gL(1)
)

,

and if ▽ is nilpotent then for z = 1:

(f H g ) (1) =
∨

x

(

f(x)△ gR(x′)
)

=
∨

y

(

fR(y′)△ g(y)
)

,

where ⊳ denotes the residual coimplication of ▽, and x′ = (x⊳ 1) is a strong
negation.
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5.1 Left- and right-maximal and monotonic fuzzy truth

values

Theorems 5.2 and 5.3 in general do not considerably decrease computational
complexity of the extended operations. To this end, we restrict our investiga-
tions to special classes of fuzzy truth values: let F+ and F− denote the set
of non-decreasing and non-increasing continuous fuzzy truth values, f is end-
maximal if fL = fR, left-maximal if fL = fLR, right-maximal if fR = fLR

and normal if fLR = 1, where

fR(x) =
∨

y≥x

f(y) and fL(x) =
∨

y≤x

f(y).

Corollary 5.4. If f is right-maximal and g ∈ F−, then

(f N g) (x) = fLR(x)△2 g(x),

and f N g ∈ F−. Furthermore, if f is also normal, then f N g = g, i.e. f acts
as a unit element.

Corollary 5.5. If f is left-maximal and g ∈ F+, then

(f H g) (x) = fLR(x)▽ g(x),

and f H g ∈ F+. Furthermore, if f is also normal, then f H g = g.

5.2 Continuity of Operations on Fuzzy Truth Values

We gave sufficient conditions for the continuity of the compound fuzzy truth
values f N g and f H g. Let Fc denote the set of continuous fuzzy truth values.

Proposition 5.6. The strict conjunction f N g of f, g ∈ Fc is continuous if
f or g is left- or right-maximal.

Proposition 5.7. The nilpotent conjunction f N g of f, g ∈ Fc is continuous
if f ∈ F+

c or g ∈ F+
c .

Proposition 5.8. The strict disjunction f H g of f, g ∈ Fc is continuous if f
or g is left- or right-maximal.

Proposition 5.9. The nilpotent disjunction f H g of f, g ∈ Fc is continuous
if f ∈ F−

c or g ∈ F−
c .
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5.3 Extended  Lukasiewicz operations on linear FTVs

The  Lukasiewicz conjunction and disjunction of fuzzy truth values are

(f NW g)(z) =
∨

z=(x+y−1)∨0

((f(x) + g(y) − 1) ∨ 0)

(f HW g)(z) =
∨

z=(x+y)∧1

((f(x) + g(y) − 1) ∨ 0)

Let L ⊂ Fc be the set of linear fuzzy truth values characterized by

fa,b ∈ L ⇐⇒ fa,b(x) =

{

x − a

b − a

}1

0

,

where a 6= b, x ∈ [0, 1] and {t}b
a = a ∨ t ∧ b. Let L+ ⊂ F+

c denote the set
of non-decreasing, and L− ⊂ F−

c the set of non-increasing linear fuzzy truth
values. The set of normal, non-decreasing (non-increasing) linear fuzzy truth
values is L+

1 (resp. L−
1 ) and characterized by b ≤ 1 (resp. b ≥ 0).

Theorem 5.10. The following hold for all fi = fai,bi
∈ L+ (i = 1, 2).

(f1 NW f2)(z) = (f1(1)△W f2({b1}z ⊲W z))

∨ (f2(1)△W f1({b2}z ⊲W z)) ,

where {x}z = z ∨ x ∧ 1.

The  Lukasiewicz conjunction of non-decreasing linear fuzzy truth values is
continuous in any case. Although, it is not always linear, linearity is preserved
for normal fuzzy truth values.

Corollary 5.11. For all fi = fai,bi
∈ L+

1 (i = 1, 2)

(f1 NW f2) (z) = f1(b2 ⊲W z) ∨ f2(b1 ⊲W z).

Furthermore, f1 NW f2 is also linear with parameters

aNW
= (a1 + b2 − 1) ∧ (a2 + b1 − 1),

bNW
= b1 + b2 − 1.

Theorem 5.12. The following hold for all fi = fai,bi
∈ L− (i = 1, 2). For

z > 0,

(f1 NW f2)(z) = (f1(z)△W f2({b1}z ⊲W z))

∨ (f2(z)△W f1({b2}z ⊲W z)) ,

and if z = 0, then

(f1 NW f2)(0) = f1(0)△W f2(0).

Corollary 5.13. For fi = fai,bi
∈ L−, the  Lukasiewicz conjunction f1 NW f2

is continuous if and only if b1 + b2 ≥ 1.
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6 Type-2 implications on fuzzy truth values

Let A = (A,0,1,⊑,4), where A ⊆ F . A function • : A × A → A is called
a type-2 fuzzy implication over A if and only if it satisfies the boundary
conditions

0 • 0 = 0 • 1 = 1 • 1 = 1; 1 • 0 = 0,

and it is antitone in the first and monotone in the second argument w.r.t. at
least one of the partial orders ⊑ or 4.

6.1 Extended S-implications and S-coimplications

S-implications are formed by a t-conorm ▽ and a strong negation ′ according
to the formula x′ ▽ y. S-coimplications are dual to S-implications, and are
defined as x′ △ y. The extensions to type-2 operations of these operations are
f ◮ g and f ◭ g.

Proposition 6.1. The operations ◮ and ◭ are closed on FC .

Proposition 6.2. The operations ◮ and ◭ are closed on FN . Moreover,
f ◮ g and f ◭ g are normal if and only if f, g ∈ FN .

Theorem 6.3 ([6]). The operation ◮ is a type-2 fuzzy implication over A ⊆ F

if and only if A is a subalgebra of the algebra of convex normal functions FCN .

6.2 The extended residuals of ∧ and ∨

As well as the minimum (∧) and maximum (∨) operators, their type-2 ex-
tensions, meet (⊓) and join (⊔) are widely used in many applications. The
residuals of ∧ and ∨ have the well-known formulas

x⊲∧ y =

{

1 if x ≤ y,

y otherwise,
and x⊳∨ y =

{

0 if y ≤ x,

y otherwise.

We considered the extensions of ⊲∧ and ⊲∨ (resp. ⊏ and ⊐). For all f ∈ F
let

fr(x) =







∨

y>x
f(y), if x < 1,

0, otherwise.
f l(x) =







∨

y<x
f(y), if x > 0,

0, otherwise.

It is known, that x⊲ y = 1 iff x ≤ y holds for any residual fuzzy implica-
tion. The extended counterpart of this equivalence is f ◮ g = 1 iff f � g
for a binary relation � over F . The necessary and sufficient conditions in the
special case of ⊏ are summarized as follows.
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Theorem 6.4. For all f, g ∈ F , f ⊏ g = 1 if and only if

1. f, g ∈ FN , and

2. gl(x0) = 0, where x0 = sup{x | f(x) > 0}.

6.3 Distributive properties of ⊏ and ⊐

Proposition 6.5. The following distributive laws hold for all f, g, h ∈ F ,

1. f ⊏ (g ∨ h) = (f ⊏ g) ∨ (f ⊏h), f ⊐ (g ∨ h) = (f ⊐ g) ∨ (f ⊐h),

2. (f ∨ g) ⊏ h = (f ⊏h) ∨ (g ⊏ h), (f ∨ g) ⊐ h = (f ⊐h) ∨ (g ⊐h).

In general, ⊏ does not distribute over ⊓ and ⊔, only the following inequal-
ities hold.

Theorem 6.6. For all f, g, h ∈ F ,

f ⊏ (g ⊓h) ≤ (f ⊏ g)⊓ (f ⊏ h), f ⊏ (g ⊔h) ≤ (f ⊏ g)⊔ (f ⊏h).

6.4 Algebras of convex and normal fuzzy truth values

An undoubtedly important subalgebra of F is the algebra of interval fuzzy
truth values FI . It is proved to be isomorphic to the algebra (I [2],∧,∨,′ , 0, 1),
where I [2] denotes the set of closed intervals in I. First, we prove two negative
results.

Theorem 6.7. The algebra FI of interval fuzzy truth values is not closed
w.r.t. ⊏ and ⊐.

Corollary 6.8. The set FC of convex fuzzy truth values is not closed w.r.t.
⊏ and ⊐.

A positive result is proved on normal fuzzy truth values.

Theorem 6.9. The set FN of normal fuzzy truth values is closed w.r.t. ⊏

and ⊐. Moreover, f ⊏ g ∈ FN (resp. f ⊐ g ∈ FN ) if and only if f, g ∈ FN .

We also show that the algebra of left- or right-maximal fuzzy truth values
is a subalgebra of F [6].

Theorem 6.10. The algebra FM = (FLM ∪ FRM ,⊓,⊔,∗ ,⊏,0,1) i.e. the
algebra of left- or right-maximal fuzzy truth values is a subalgebra of
(F ,⊓,⊔,∗ ,⊏,0,1).
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