
Dependene-based stati programsliing and its approximations
Summary of the Ph.D. Dissertation

by Judit JászSupervisor: Dr. Tibor Gyimóthy
Ph.D. Shool of Computer SieneDepartment of Software EngineeringFaulty of Siene and InformatisUniversity of Szeged

Szeged2009

IntrodutionThe ativity of program sliing is similar to what an experimental programmer doesduring debugging in order to understand the behavior of the program at a partiularpoint in it. To ahieve his aim, he divides the program into smaller parts and identi�esthe statements whih determine the behavior of the given program point. This reduedprogram is alled a program slie, whih is exeutable, and its semantis at the givenprogram point is the same as the semantis of the full program. Formally speaking, aprogram slie is the set of statements whih potentially a�ets the behavior of a givenprogram point, alled a sliing riterion. This original de�nition of program sliing wasintrodued by Mark Weiser in 1979 [26℄.Sine the introdution of the original onept of sliing, various notions of programslies have been proposed [5; 6; 18; 25℄. The main reason for these di�erenes is thefat that di�erent appliations of program sliing require slies with di�erent features.Many papers and surveys in the �eld of software maintenane desribe the de�nitionsand modi�ations of program slies and present new appliations based on the modi�edde�nitions. The original de�nition of a program slie provides one of the greatest lassesof program sliing, whih is referred to as a bakward slie. It is bakward beause,starting from a given program point, it identi�es the events and statements in theprogram whih may be exeute before the given point and may be responsible for itsbad behavior.Of ourse, it is also possible that an appliation based on program sliing has atotally di�erent motivation. If one wants to investigate the e�et of a program point ina program, forward sliing an be of help for reduing the size of the set of statementswhih are a�eted by the given program point. If one examines the program in aonrete exeution or wishes to determine the general behavior of the program at thegiven program point, we an apply tehniques of dynami and stati program sliing,respetively.In the thesis we fous on stati program sliing and one of its potentially appli-ations, namely an examination of the dependenies inside the program. In the �rstpart we use the dependene graphs and dependene relations to determine the statiprogram slies of binary exeutables, then in the seond part we apply the results ofprogram sliing to validate the dependenies determined via a method distint fromprogram sliing. The topis of the thesis an be put into two main groups.I/1 Problems and solutions during the determination of the dependenegraphs of binary programs. The adaptation of dependene-based prog-ram sliing to binary exeutables.1

I/2 Improved sliing algorithms for binary exeutables.I/3 Experimental results of the stati program sliing of binary exeuta-bles.II/1 De�ning Stati Exeute After (SEA) and Stati Exeute Before (SEB)relations and a suitable program representation for �nding these rela-tions. Algorithms for omputing the SEA and SEB relations.II/2 Experimental omparison of SEA and SEB relations with relationsomputed by program sliing.II/3 Hidden dependenies in objet-oriented programs; experimental inves-tigation of SEA and SEB relation in objet-oriented programs.In the following setions, I brie�y desribe the above results and I emphasize myown ontributions in these at the end of eah setion.Program sliing of binary exeutablesAlthough the sliing of programs written in a high-level language has been extensivelystudied in the literature, very few papers have addressed the issue of the sliing of binaryexeutable programs. The lak of existing solutions is really hard to understand sine theappliation domain for sliing binaries is similar to that for sliing high-level languages.The program sliing of binary exeutables an be applied to understand the behaviorof programs without soure ode like assembly programs, legay software, ommerialo�-the-shelf (COTS) produts, viruses and post-link time modi�ed programs. Althoughsome papers deal with the intraproedural program sliing of binary exeutables [9; 20℄,there are only suggestions about how to use dependene graph-based interproeduralsliing to analyze binaries [2℄, but these papers do not disuss the handling of theproblems that arise or provide any onrete experimental results. Sine binaries havemany features whih are not present in high level languages, the methods devised forhigh level languages generally annot be adapted to binaries.
2

I/1. Problems and solutions during the determination of thedependene graphs of binary programs. The adaptation ofdependene-based program sliing to binary exeutables.A potential method for determining the interproedural slies of a program is de�ningthe dependene graphs of the program, and with an appropriate traversal we get thewanted slies [12℄. During the building of the dependene graphs of binary programsmany problems exist whih are not present in high level languages.Sine the ontrol �ow graph � (CFG) is needed in many other appliations likeode analysis, ode generation and ode ompation, there are many papers whih dealwith this topi [10; 15℄. Depending on the arhiteture employed, di�erent problemsarise during the building of the dependene graphs. The determination of the ontrol�ow graphs in the ase of binary programs inludes not only the determination ofthe ontrol �ow edges among statements, but the determination of statements andfuntion boundaries as well.After the determination of the ontrol �ow information, we have to ompute thedata dependene graph � (DDG) and the ontrol dependene graph � (CDG), whihtogether onstitute the program dependene graph � (PDG). Extending the PDG withthe appropriate dependene edges, we get the system dependene graph � (SDG) whihis applied to ompute the interproedural slie of the sliing riterion.The determination of ontrol dependenies with the ontrol �ow information isquite easy, but we have to handle the overlappings and the ross-jumping funtions.Sine binary exeutables an transfer ontrol to another funtion in a way other thanthe funtion all, before the omputation of the dominane relations we have to extendthe program points of a funtion with eah statements, that is reahable without afuntion all from the entry point of the given funtion.For binary exeutables the most di�ult task is the determination of the datadependenies. In high-level languages, the arguments of statements are usually loalvariables, global variables or formal parameters, but suh onstruts are generally notpresent at the binary level. Low-level instrutions read and write registers, �ags (onebit units) and memory addresses, hene existing approahes have to be adapted touse the appropriate terms. In our onservative approah, we only determine whethera given statement reads or writes any memory loation, thus representing the wholememory as only one argument.Unlike that for high-level programs, in binaries the parameter list of proedures isnot expliitly de�ned, but it has to be found via a suitable interproedural analysis. Weintrodued a �x-point iteration method like that shown in Figure 1 to determine the3

U
(0)
f = ∅

U
(i+1)
f =

⋃

j∈If

uj ∪
⋃

g∈Cf

U (i)
g

Uf = U
(i)
f , where U

(i)
f = U

(i+1)
f

D
(0)
f = ∅

D
(i+1)
f =

⋃

j∈If

dj ∪
⋃

g∈Cf

D(i)
g

Df = D
(i)
f , where D

(i)
f = D

(i+1)
fFigure 1: Determination of the Uf and Df sets, where Uf and Df sets are the usedand de�ned elements of the funtion f respetively. If is the set of instrutions of f ,

Cf is the set funtions alled by f , and lastly uj and dj sets are the used and de�nedelements (registers, �ags and memory loations) of the instrutions j.used and de�ned arguments of eah funtion.We have to augment the graph representation of the binary program with appro-priate nodes whih represent the used or de�ned registers, �ags and memory loations,formal input and output parameters, and the atual input and output parameters. Nextthe data dependene edges an be de�ned via a traversal of the ontrol �ow graph. Thesummary edges needed for interproedural sliing may be omputed after implementingthe appropriate algorithm [22℄.I/2. Improved sliing algorithms for binary exeutables.Although the omputation of the dependene graphs is safe, beause we do not ignoreany existing dependenies, it is too onservative due to the onservative approah ofthe data dependene analysis and the lak of arhiteture spei� information use.We an improve both the data dependenies and the ontrol dependenies either byre�ning the stati analysis or with the help of some dynamially gathered information.In the thesis we present two stati approahes for improving the preision of the DDGand two dynami approahes for re�ning the all graph. While the stati approahesare safe, the dynami approahes are impreise in both ases, so the slies may beomeunsafe. In some situations, suh as when we are debugging with limited resoures, thisapproah is aeptable.The �rst stati approah is based on a heuristi analysis of funtion prologs and4

��
��
⊤

��
��
S0

. . . ��
��
Sm

��
��
S

��
��
M

��
��
⊥

������

Q
Q

Q

�
�

�

c
c

c
c

c

Q
Q

Q

#
#

#
#

#

any ⊓⊤ = anyany ⊓⊥ = ⊥
Si ⊓ Sj = Si , if i = j

Si ⊓ Sj = S , if i 6= j

Si ⊓ S = S

Si ⊓ M = ⊥
S ⊓ M = ⊥Figure 2: The lattie and the meet operation of the lattie for improving the handlingof memory use.epilogs. In most urrent arhitetures, various funtion alling onventions exist whihspeify what portions of the register of a funtion have to be keep intat when alled.Using this information we an redue the number of de�ned registers for eah funtion,and hene redue the number of the summary edges and the size of the program slies.In the seond stati approah, we attempted to re�ne the onservative handlingof data dependenies using a more sophistiated analysis of the memory aess ofthe instrutions. At the binary level, the high-level onepts of variables and funtionparameters do not exist, so the ompilers use registers in their plae. But beause inmost arhitetures the number of available registers is limited, registers are also usedto store the temporary results of omputations in the program. The parameters andvariables that annot be assigned to registers are usually stored in a spei� part ofthe memory alled the stak.In our proedure, we mark all registers at a given instrution loation by a pair oflattie elements to represent statially olleted information about their ontents at theentry and exit points of the instrution. Assigning ⊤ to a register means that it mayontain a referene to an (as yet) undetermined stak position. The lattie element

⊥ tells us that it annot be statially determined whether the register ontains areferene in the stak or not. Assigning M to a register means that it does not ontaina referene in the stak. The lattie element S indiates that the register ontainsa referene somewhere in the stak, but the exat loation annot be determined.Assigning Si to a register means that the register ontains a referene to a known stakelement. Figure 2 above shows the lattie and its meet operation. After an appropriateinitialization, a �x-point iteration algorithm is used to propagate these lattie elementsthrough the ontrol �ow graph. The thesis desribes this iteration algorithm in detail.5

In the ase of binary exeutables, espeially in larger programs, there are manystatially unresolved funtion alls. In these situations, the target of the all may beall the funtions, whose addresses were used during the exeution of the program.Needless to say, these situations introdue many unneessary edges in the dependenegraphs. With the dynami improvements, we attempted to re�ne the dependeniesaused by indiret funtion alls.To enable the gathering of dynami information, we need to determine the run-timeaddress of eah statially unresolved indiret all site when the onstrution of the CFGis ompleted and write eah address to the disk. Then the appliation an be exeutedin a ontrolled environment on some representative input. The previously determinedaddresses are used as breakpoints where dumping the registers to a log �le should beperformed. With the help of the generated log �les, it is possible to determine therealized targets of the statially unresolved indiret all sites.The all sites whih were not exeuted during any invoation of the appliationhave no assoiated dynami information so they an be handled in various ways. Oneis to retain the all edges where the all site was not overed by any of the dynamiexeutions. Another is to rely entirely on dynami data and treat them as alling nofuntions, but this solution may result in over-optimisti slies.I/3. Experimental results of the stati program sliing of bi-nary exeutables.We implemented our solutions and evaluated them on programs taken from the SPECCINT2000 [24℄ and Media Benh benhmark suites [21℄. The seleted programs wereompiled using Texas Instruments' TMS470R1x Optimizing C Compiler version 1.27efor the ARM7T proessor ore with Thumb instrution set. In order to gather dynamiinformation about the indiret all sites, we exeuted the seleted benhmark programsin the emulator of Texas Instruments' TMS470R1x C Soure Debugger.Using the onservative sliing approah, we ahieved interproedural slies wherethe average sizes were about 52% of all the instrutions. This means that the sliingof binary exeutables an be an e�ient tool for many appliations. With the statiimprovements, we were able to further redue the sizes by some 1% - 4 %. Basedon our studies, the moderate improvement in the size of interproedural slies an bemostly be attributed to the onservative handling of the memory aess of the alledfuntions and the high number of unresolved funtion alls.The dynami improvements revealed the fat that there is a high orrelation be-tween the redution of the all edges and the size of the program slies. Where the6

number of indiret funtion alls ould be determined and a big redution of the alledges ould be ahieved, the omputed slies were muh smaller than in the onser-vative ase.My own ontributionThe results of our studies introdued in the �rst part of the thesis was motivated by thefat that although there are many potential appliations of the interproedural programsliing of binary exeutables, there were no previous studies whih satisfatorily overedthis topi. We presented the interproedural slies of binary exeutables with the helpof dependene graphs, where the detailed desription of building the ontrol-, data- andsystem dependene graphs are the author's own ontribution. The author's own workis an improved data �ow analysis based on the lattie, while the design of this lattieis not the work of the author. The improvements of the all graph with dynamiallygathered information are the joint work of the author and her o-authors, as are thedesign and evaluation of the experimental results. Exept for the implementations ofthe ontrol �ow graph, all implementations of the methods presented in the thesis andexperiments performed are the sole work of the author.Stati Exeute After and Stati Exeute Before re-lationsThough program sliing is potentially suitable for determining the dependenies amongthe program omponents, the general solutions for program sliing are not e�etivelyusable for large programs. The reason is twofold: �rstly the program representation ofa program with millions of lines of ode an be extremely huge; seondly in many asesit is not neessary to determine dependenies at the same level as that for sliing.Many appliations determine the dependenies among the proedures of the givenprogram just with the all graph [7℄, and the dependenies among the lasses just withsome ohesion metris [8; 27℄. Although these methods are quite simple, they are notsafe and it is not hard to show that they do not always identify real dependenies.In the seond part of the thesis we present a tehnique whih is not just readilyomputable, but it is a safe approximation of the proedure level and lass level depen-denies of the program. The novel tehnique has a high preision at the proedure leveland the lass level ompared to the usual results obtained using onventional programsliing tehniques. 7

II/1. De�ning Stati Exeute After (SEA) and Stati ExeuteBefore (SEB) relations and a suitable program representationfor determining these relations. Algorithms for omputing theSEA and SEB relations.Our goal was to provide an alternative way of approximating the dependenies amongthe proedures of the program. Our approah was motivated by Apiwattanapong [1℄,who introdued the notion of Exeute After relation and applied it in dynami impatanalysis. Aording to the de�nition, the proedures f and g are in Exeute Afterrelation if and only if any part of g is exeuted after any part of f in any of theseleted set of exeutions of the program.As a stati ounterpart of this approah, we de�ne the Stati Exeute After (SEA)relation. We say that (f, g) ∈ SEA if and only if it is possible that any part of g maybe exeuted after any part of f 1. As the notion of the bakward slie is the dual of theforward slie, the Stati Exeute Before (SEB) relation an be determined as a dualounterpart of the SEA. The proedures f and g are in SEB relation if and only if itis possible that any part of g may be exeuted before any part of f .Aording to Apiwattanapong et al. [1℄ and Beszédes et al. [3℄, the formal de�nitionof the SEA relation is the following:SEA = CALL ∪ SEQ ∪ RET[∪ID],where
(f, g) ∈ CALL ⇐⇒ f (transitively) alls g,

(f, g) ∈ SEQ ⇐⇒ ∃h : f (transitively) returns into
h, and after that h (transitively)alls g

(f, g) ∈ RET ⇐⇒ f (transitively) returns into gor rather the ID is the identity relation that an optionally be a part of SEA, sine aslie also ontains the riterion itself and every hange in a funtion f an a�et anypart of f from an impat analysis point of view.We have to build a suitable program representation in order to determine the sets ofSEA relations. With the traditional all graph representation [23℄ this is not su�ient,1Entering a proedure and leaving a proedure are also alled the events of the proedure.8

beause it tells us nothing about the order of the proedure alls within a proedure.On the other hand, an Interproedural Control Flow Graph (ICFG) [19℄ ontains a lotof information that is not related to proedure alls.In our Interproedural Component Control Flow Graph (ICCFG), eah proedure isrepresented by a Component Control Flow Graph � (CCFG) whih ontains an entrynode and several omponent nodes. We get these omponent nodes by determining thestrongly onneted subgraph of the ontrol �ow graph of the proedure. Moreover, theomponents are onneted by ontrol �ow edges. We an further redue this omponentgraph if we remove the omponents with no all sites and insert ontrol �ow edgesamong its predeessor and suessor omponents. The CCFG graphs are onneted byall edges.We presented several alternative methods for omputing the SEA and SEB relations.These methods have some extreme features. One of these methods depends on tothe ICCFG and its traversals at the omputation of the dependenies of a partiularproedure. In the other methods we ompute the dependenies of eah proedure atthe same time by rossing eah node of the ICCFG just one.II/2. Experimental omparison of SEA and SEB relations withrelations omputed by program sliing.We used program sliing to demonstrate that the SEA and SEB relations are suitablefor approximating the semanti dependenies among the program proedures. In ourexperiments, we ompared the omputed SEA and SEB relations with the relationsomputed by an appropriate program sliing tool, alled CodeSurfer [11℄. Naturally,the SEA relations were ompared with the forward slies, while the SEB relations wereompared with the bakward slies. As we de�ned the SEA and SEB relations at theproedure level, for a omparison we had to extend program sliing to the proedurelevel. The program slie of a partiular proedure is the set of proedures that ontainsat least one statement whih is an element of one of the program slies starting fromany statement of the given proedure.For a omparison, we used the preision and reall values. The preision sore isde�ned as the ratio of the number of proedures whih are identi�ed by either theslier or the SEA (SEB) relation and the number of proedures identi�ed by sliing.The reall sore is de�ned as the extent of the properly identi�ed dependenies basedon sliing.A program slie is omputable by the appropriate traversal of the system depen-dene graph, starting from an arbitrary riterion [12℄. The traversed edges are the on-9

trol dependene, the data dependene, the parameter and the summary edges. Heneeah dependeny an only our among the program points whih are onneted by aontrol �ow path. This means that the proedural level program slie of a partiularproedure must be a real subset of its SEA or SEB relations. So the reall sore shouldbe 100% in every ase.This assumption was not ful�lled in a omparison of the results of the forward sliesgot via the CodeSurfer program sliing tool and the SEA sets, while it was ful�lled inthe bakward ases. We elaborate on this bug in the Appendix setion of the thesis.Beause of this bug, we just ompared the SEB sets and the relations identi�ed bybakward sliing. In our experiments, we examined 29 C programs. In most ases thepreision sore was around 90%. This high preision arose from the fat that the averagedi�erene between the SEA (SEB) relations and the sliing relations was some 4%.Sine both the sliing and the determination of the SEA (SEB) relations are the resultsof an appropriate graph traversal, the graph size of the given representation is not amarginal question. To test the e�ieny of our method, we identi�ed and omparedthe dependene graphs of some big C++ programs. Although the di�erenes in thesizes of these graphs are enough to show that the omputation of the SEA (SEB)relations requires fewer resoures, it is interesting to see that the determination of theICCFG was straightforward, while the determination of the SDG was not possible formozilla, whih has over a million lines of ode.II/3. Hidden dependenies in objet-oriented programs; ex-perimental investigation of SEA and SEB relation in objet-oriented programs.Hidden dependenies are those dependenies of a program whih are not expliitlyreadable from the soure of the program. In the investigation of the hidden depen-denies of the lasses of objet-oriented programs, our aim was to ollet all potentialrelations among the lasses. Many appliations, suh as hange propagation or regres-sion testing require the safe determination of the dependenies among the lasses ofthe objet-oriented programs. There are a number of ways of determining the expliitrelationships in the program. Unfortunately in most ases there are many other depen-denies among the lasses, whose disovery is very di�ult. These dependenies arealled the hidden dependenies of the system.In order to determine the dependenies among the lasses, we extended the SEAand SEB relations to the lass level. Of ourse, in its basi form the SEA and SEBalgorithm has the disadvantage that it aptures the data �ow whih is realized only10

through proedure alls. Data �ows between global variables or diret lass membervariables are invisible to the algorithm due to the lak of orresponding nodes in theICCFG. In the thesis, we present possible program transformations whih ould help usto disover these dependenies.In our experiments where we investigated C++ and Java programs, we showedthat the number of expliit dependenies was muh lower than the number of hiddendependenies. This means that the appliation based only on these metris annotahieve a safe result during the searh for dependenies. On examining the number ofthe dependenies onneted to the individual lasses, we found that the dependeniestend to form lusters. The members of a luster have the same number of dependen-ies as the others have in the same luster. The high value of the hidden dependeniesand the existene of large lusters are not good beause they indiate that the main-tenane of the program an be di�ult and expensive. Sine the number of the hiddendependenies related to a partiular lass orrelates with the size of the SEA (SEB)set of the lass, the determination of the latter relations an help us to reognize thehard-to-maintain lasses of the system and to �nd and eliminate the larger lusters.My own ontributionThe hief goal introdued in the seond part of the thesis was to approximate thedependenies among the proedures and the lasses of the programs we analyzed in apreise and e�etive way. For this reason, we introdued the SEA and SEB relations,and the ICCFG program representation. These results are the joint work of the authorand her o-authors. The algorithms for the omputation of the SEA and SEB relationsand the related measurements were the sole results of the author. The design and theimplementation of the omparison between program sliing and the SEA (SEB) methodwere also the sole work of the author. The design of the omparison of objet-orientedmetris and the SEA (SEB) relations was a joint e�ort, while the implementation ofthe experiments related to C/C++ programs and the determination of the SEA (SEB)relations in pratie were also the sole work of the author.ConlusionsIn the �rst part of the thesis we foused on the interproedural program sliing of binaryexeutables. We presented a onservative sliing method based on the traversal ofdependene graphs. We improved this tehnique via the re�nement of the dependene11

[17℄ [16℄ [4℄ [14℄ [13℄I/1 •I/2 • •I/3 • •II/1 • • •II/2 • • •II/3 •Table 1: The relation between the thesis topis and the orresponding publiations.graphs with stati and dynami information. We implemented all our solutions andevaluated the novel method on some seleted examples.In the seond part of the thesis, we presented the Stati Exeute After and theStati Exeute Before relations and we approximated the dependenies of high levellanguages at the proedure level and lass level with the SEA and SEB relations. Weintrodued one appropriate program representation and several alternative methods todetermine these relations. Although many of these relations are not real dependenies,this method is suitable for �nding the dependenies where there is only a semantidependene between two omponents.Although Stati Exeute After and Stati Exeute Before relations ontain manyfalse dependenies, we demonstrated via experiments that these relations approximatethe results of stati program sliing to a high auray at the proedure or lass level.Sine the determination of these relations is not so expensive as the determinationof program sliing, it an be a useful tool in appliations involving program sliing.Our experimental results also revealed the fat that there is a signi�ant orrelationbetween the number of SEA and SEB relations and the number of diret and indiretouplings of lasses in objet-oriented programs. Sine these relations are suitable forunovering suh hidden dependenies, whih are undetetable when other simple toolsare used, these relations an be used to make more reliable appliations, suh as thosefor impat analysis, hange propagation and testing.Lastly, Table 1 above summarizes whih publiations over whih results of thethesis.
12

AknowledgementsBoth parts of the thesis ontain empirial results whih are the results of a team e�ort.My thanks goes to Ákos Kiss, Gábor Lehotai, Árpád Beszédes, Rudolf Feren, TamásGergely, Péter Siket, István Siket, Zoltán Sógor and Tibor Gyimóthy for their invaluablehelp and useful advie.Judit Jász, May 8., 2009

13

Referenes[1℄ Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. E�ientand preise dynami impat analysis using exeute-after sequenes. In Proeedingsof the 27th International Conferene on Software Engineering (ICSE'05), pages432�441, May 2005.[2℄ J. Bergeron, Mourad Debbabi, M. M. Erhioui, and Béhir Ktari. Stati analy-sis of binary ode to isolate maliious behaviors. In WETICE '99: Proeedingsof the 8th Workshop on Enabling Tehnologies on Infrastruture for Collabora-tive Enterprises, pages 184�189, Washington, DC, USA, 1999. IEEE ComputerSoiety.[3℄ Árpád Beszédes, Tamás Gergely, Szabols Faragó, Tibor Gyimóthy, and FerenFisher. The dynami funtion oupling metri and its use in software evolution.In Proeedings of the 11th European Conferene on Software Maintenane andReengineering (CSMR 2007), pages 103�112. IEEE CS, Marh 21�23, 2007.[4℄ Árpád Beszédes, Tamás Gergely, Judit Jász, Gabriella Tóth, Tibor Gyimóthy, andVálav Rajlih. Computation of stati exeute after relation with appliations tosoftware maintenane. In Proeedings of the 2007 IEEE International Confereneon Software Maintenane (ICSM'07), pages 295�304. IEEE Computer Soiety,Otober 2007.[5℄ Árpád Beszédes, Tamás Gergely, Zsolt Mihály Szabó, János Csirik, and TiborGyimóthy. Dynami sliing method for maintenane of large C programs. In CSMR'01: Proeedings of the Fifth European Conferene on Software Maintenane andReengineering, pages 105�113, Marh 2001.[6℄ David Binkley and Keith Brian Gallagher. Program sliing. Advanes in Comput-ers, 43:1�50, 1996.[7℄ Shawn A. Bohner and Robert S. Arnold, editors. Software Change Impat Analysis.IEEE Computer Soiety Press, 1996.[8℄ Lionel C. Briand, Jürgen Wüst, and Hakim Lounis. Using oupling measurementfor impat analysis in objet-oriented systems. In Proeedings of the Interna-tional Conferene on Software Maintenane (ICSM'99), pages 475�482, Septem-ber 1999.[9℄ Cristina Cifuentes and Antoine Fraboulet. Intraproedural stati sliing of binaryexeutables. In ICSM '97: Proeedings of the International Conferene on SoftwareMaintenane, pages 188�195, Otober 1997.[10℄ Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compilertehniques for ode ompation. ACM Transations on Programming Languagesand Systems, 22(2):378�415, Marh 2000.14

[11℄ GrammaTeh's CodeSurfer.http://www.grammateh.om/produts/odesurfer.[12℄ Susan Horwitz, Thomas Reps, and David Binkley. Interproedural sliing usingdependene graphs. ACM Transations on Programming Languages and Systems,12(1):26�61, 1990.[13℄ Judit Jász. Stati exeute after algorithms as alternatives for impat analysis.Peryodia Politehnia, page Submitted paper, Budapest, 2009.[14℄ Judit Jász, Árpád Beszédes, Tibor Gyimóthy, and Válav Rajlih. Stati exeuteafter/before as a replaement of traditional software dependenies. In Proeedingsof the 2008 IEEE International Conferene on Software Maintenane (ICSM'08),pages 137�146. IEEE Computer Soiety, Otober 2008.[15℄ Daniel Kästner and Stephan Wilhelm. Generi ontrol �ow reonstrution fromassembly ode. In LCTES/SCOPES '02: Proeedings of the joint onferene onLanguages, ompilers and tools for embedded systems, pages 46�55, New York,NY, USA, 2002. ACM.[16℄ Ákos Kiss, Judit Jász, and Tibor Gyimóthy. Using dynami information in interpro-edural stati sliing of binary exeutables. Software Quality Journal, 13(3):227�245, September 2005.[17℄ Ákos Kiss, Judit Jász, Gábor Lehotai, and Tibor Gyimóthy. Interproedural statisliing of binary exeutables. In Proeedings of the Third IEEE InternationalWorkshop on Soure Code Analysis and Manipulation (SCAM'03), pages 118�127, September 2003.[18℄ Bogdan Korel and Janusz Laski. Dynami program sliing. Information ProessingLetters, 29(2):155�163, 1988.[19℄ William Landi and Barbara G. Ryder. Pointer-indued aliasing: a problem taxon-omy. In POPL '91: Proeedings of the 18th ACM SIGPLAN-SIGACT symposiumon Priniples of programming languages, pages 93�103. ACM Press, January 1991.[20℄ James R. Larus and Eri Shnarr. EEL: Mahine-independent exeutable editing.PLDI '95: Proeedings of the ACM SIGPLAN 1995 onferene on Programminglanguage design and implementation, 30(6):291�300, June 1995.[21℄ Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBenh:A tool for evaluating and synthesizing multimedia and ommuniatons systems.In Pro. International Symposium on Miroarhiteture, pages 330�335, 1997.[22℄ Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding upsliing. In Proeedings of the Third ACM SIGSOFT Symposium on the Founda-tions of Software Engineering, pages 11�20, 1994.15

[23℄ Barbara G. Ryder. Construting the Call Graph of a Program. IEEE Transationson Software Engineering, SE-5(3):216�226, May 1979.[24℄ Standard Performane Evaluation Corporation (SPEC). SPEC CINT2000 benh-marks.[25℄ Frank Tip. A survey of program sliing tehniques. Journal of programminglanguages, 3:121�189, 1995.[26℄ Mark Weiser. Program slies: formal, psyhologial, and pratial investigationsof an automati program abstration method. PhD thesis, University of Mihigen,1979.[27℄ F. George Wilkie and Barbara A. Kithenham. Coupling measures and hangeripples in C++ appliation software. Journal of Systems and Software, 52(2�3):157�164, 2000.

16

